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Spiked Dirichlet Process Prior for Bayesian
Multiple Hypothesis Testing in Random Effects

Models

Sinae Kim∗, David B. Dahl† and Marina Vannucci‡

Abstract. We propose a Bayesian method for multiple hypothesis testing in ran-
dom effects models that uses Dirichlet process (DP) priors for a nonparametric
treatment of the random effects distribution. We consider a general model for-
mulation which accommodates a variety of multiple treatment conditions. A key
feature of our method is the use of a product of spiked distributions, i.e., mixtures
of a point-mass and continuous distributions, as the centering distribution for the
DP prior. Adopting these spiked centering priors readily accommodates sharp
null hypotheses and allows for the estimation of the posterior probabilities of such
hypotheses. Dirichlet process mixture models naturally borrow information across
objects through model-based clustering while inference on single hypotheses aver-
ages over clustering uncertainty. We demonstrate via a simulation study that our
method yields increased sensitivity in multiple hypothesis testing and produces a
lower proportion of false discoveries than other competitive methods. While our
modeling framework is general, here we present an application in the context of
gene expression from microarray experiments. In our application, the modeling
framework allows simultaneous inference on the parameters governing differential
expression and inference on the clustering of genes. We use experimental data on
the transcriptional response to oxidative stress in mouse heart muscle and compare
the results from our procedure with existing nonparametric Bayesian methods that
provide only a ranking of the genes by their evidence for differential expression.

Keywords: Bayesian nonparametrics; differential gene expression; Dirichlet pro-
cess prior; DNA microarray; mixture priors; model-based clustering; multiple hy-
pothesis testing

1 Introduction

This paper presents a semiparametric Bayesian approach to multiple hypothesis testing
in random effects models. The model formulation borrows strength across similar ob-
jects (here, genes) and provides probabilities of sharp hypotheses regarding each object.

Much of the literature in multiple hypothesis testing has been driven by DNA mi-
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croarrays studies, where gene expression of tens of thousands of genes are measured
simultaneously (Dudoit et al. 2003). Multiple testing procedures seek to ensure that
the family-wise error rate (FWER) (e.g., Hochberg (1988), Hommel (1988), Westfall and
Young (1993)), the false discovery rate (FDR) (e.g., Benjamini and Hochberg (1995),
Storey (2002), Storey (2003), and Storey et al. (2004)), or similar quantities (e.g., New-
ton et al. (2004)) are below a nominal level without greatly sacrificing power. Accounts
on the Bayesian perspective to multiple testing are provided by Berry and Hochberg
(1999) and Scott and Berger (2006).

There is a great variety of modeling settings that accommodate multiple testing
procedures. The simplest approach, extensively used in the early literature on mi-
croarray data analysis, is to apply standard statistical procedures (such as the t-test)
separately and then combine the results for simultaneous inference (e.g., Dudoit et al.
2002). Westfall and Wolfinger (1997) recommended procedures that incorporate depen-
dence. Baldi and Long (2001), Newton et al. (2001), Do et al. (2005) and others have
sought prior models that share information across objects, particularly when estimating
object-specific variance across samples. Yuan and Kendziorski (2006) use finite mixture
models to model dependence. Classical approaches that have incorporated dependence
in the analysis of gene expression data include Tibshirani and Wasserman (2006), Storey
et al. (2007), and Storey (2007) who use information from related genes when testing
for differential expression of individual genes.

Nonparametric Bayesian approaches to multiple testing have also been explored
(see, for example, Gopalan and Berry (1998), Dahl and Newton (2007), MacLehose
et al. (2007), Dahl et al. (2008)). These approaches model the uncertainty about the
distribution of the parameters of interest using Dirichlet process (DP) prior models that
naturally incorporate dependence in the model by inducing clustering of similar objects.
In this formulation, inference on single hypotheses is typically done by averaging over
clustering uncertainty. Dahl and Newton (2007) and Dahl et al. (2008) show that this
approach leads to increased power for hypothesis testing. However, the methods provide
posterior distributions that are continuous, and cannot therefore be used to directly test
sharp hypotheses, which have zero posterior probability. Instead, decisions regarding
such hypotheses are made based on calculating univariate scores that are context spe-
cific. Examples include the sum-of-squares of the treatment effects (to test a global
ANOVA-like hypothesis) and the probability that a linear combination of treatment
effects exceeds a threshold.

In this paper we build on the framework of Dahl and Newton (2007) and Dahl et al.
(2008) to show how the DP modeling framework can be adapted to provide meaningful
posterior probabilities of sharp hypotheses by using a mixture of a point-mass and a
continuous distribution as the centering distribution of the DP prior on the coefficients
of a random effects model. This modification retains the increased power of DP models
but also readily accommodates sharp hypotheses. The resulting posterior probabilities
have a very natural interpretation in a variety of uses. For example, they can be used to
rank objects and define a list according to a specified expected number of false discover-
ies. We demonstrate via a simulation study that our method yields increased sensitivity
in multiple hypothesis testing and produces a lower proportion of false discoveries than
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other competitive methods, including standard ANOVA procedures. In our applica-
tion, the modeling framework we adopt simultaneously infers the parameters governing
differential expression and clusters the objects (i.e., genes). We use experimental data
on the transcriptional response to oxidative stress in mouse heart muscle and compare
results from our procedure with that of existing nonparametric Bayesian methods which
only provide a ranking of the genes by their evidence for differential expression.

Recently Cai and Dunson (2007) independently proposed the use of similar spiked
priors in DP priors in a Bayesian nonparametric linear mixed model where variable
selection is achieved by modeling the unknown distribution of univariate regression
coefficients. Similarly, MacLehose et al. (2007) used this formulation in their DP mixture
model to account for highly correlated regressors in an observational study. There, the
clustering induced by the Dirichlet process is on the univariate regression coefficients
and strength is borrowed across covariates. Finally, Dunson et al. (2008) use a similar
spiked centering distribution of univariate regression coefficients in a logistic regression.
In contrast, our goal is nonparametric modeling of multivariate random effects which
may equal the zero vector. That is, we do not share information across univariate
covariates but rather seek to leverage similarities across genes by clustering vectors of
regression coefficients associated with the genes.

The remainder of the paper is organized as follows. Section 2 describes our proposed
modeling framework and the prior model. In Section 3 we discuss the MCMC algorithm
for inference. Using simulated data, we show in Section 4.1 how to make use of the pos-
terior probabilities of hypotheses of interest to aid the interpretation of the hypothesis
testing results. Section 4.2 describes the application to DNA microarrays. In both
Sections 4.1 and 4.2, we compare our proposed method to the LIMMA (Smyth 2004),
to the SIMTAC method of Dahl et al. (2008) and to a standard ANOVA procedure.
Section 5 concludes the paper.

2 Dirichlet Process Mixture Models for Multiple Testing

2.1 Random Effects Model

Suppose there are K observations on each of G objects and T ∗ treatments. For each ob-
ject g, with g = 1, . . . , G, we model the data vector dg with the following K-dimensional
multivariate normal distribution:

dg | µg, βg, λg ∼ NK (dg | µgj + Xβg, λgM) , (1)

where µg is an object-specific mean, j is a vector of ones, X is a K × T design matrix,
βg is a vector of T regression coefficients specific to object g, M is the inverse of a
correlation matrix of the K observations from an object, and λg is an object-specific
precision (i.e., inverse of the variance). We are interested in testing a hypothesis for
each of G objects in the form:

H0,g : β1,g = . . . = βT∗,g = 0
Ha,g : βt,g 6= 0 for some t = 1, . . . , T ∗

(2)
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for g = 1, . . . , G.

Object-specific intercept terms are µgj, so the design matrix X does not contain
the usual column of ones and T is one less than the number of treatments (i.e., T =
T ∗ − 1). Also, d1, . . . , dG are assumed to be conditionally independent given all model
parameters. In the example of Section 4.2, the objects are genes with dg being the
background-adjusted and normalized expression data for a gene g under T ∗ treatments,
G being the number of genes, and K being the number of microarrays. In the example,
we have K = 12 since there are 3 replicates for each of T ∗ = 4 treatments, and the X
matrix is therefore:

X =




03 03 03

j3 03 03

03 j3 03

03 03 j3




where j3 is a 3-dimensional column vector of ones and 03 a 3-dimensional column vector
of zeroes. If there are other covariates available, they would be placed as extra columns
in X. Note that the design matrix X and the correlation matrix M are known and
common to all objects, whereas µg, βg, and λg are unknown object-specific parameters.
For experimental designs involving independent sampling (e.g., the typical time-course
microarray experiment in which subjects are sacrificed rather than providing repeated
measures), M is simply the identity matrix.

2.2 Prior Model

We take a nonparametric Bayesian approach to model the uncertainty on the distribu-
tion of the random effects. The modeling framework we adopt allows for simultaneous
inference on the regression coefficients and on the clustering of the objects (i.e., genes).
We achieve this by placing a Dirichlet process (DP) prior (Antoniak 1974) with a spiked
centering distribution on the distribution function of the regression coefficient vectors,
β1, . . . , βG,

β1, . . . , βG | Gβ ∼ Gβ

Gβ ∼ DP (αβ , G0β)

where Gβ denotes a distribution function of β, DP stands for a Dirichlet process,
αβ is a precision parameter, and G0β is a centering distribution, i.e., E[Gβ ] = G0β .
Sampling from DP induces ties among β1, . . . , βG, since there is a positive probability
that βi = βj for every i 6= j. Two objects i 6= j are said to be clustered in terms
of their regression coefficients if and only if βi = βj . The clustering of the objects
encoded by the ties among the regression coefficients will simply be referred to as the
“clustering of the regression coefficients,” although it should be understood that it is
the data themselves that are clustered. The fact that our model induces ties among
the regression coefficients β1, . . . , βG is the means by which it borrows strength across
objects for estimation.
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Set partition notation is helpful throughout the paper. A set partition ξ = {S1, . . . ,
Sq} of S0 = {1, 2, . . . , G} has the following properties: Each component Si is non-empty,
the intersection of two components Si and Sj is empty, and the union of all components
is S0. A cluster S in the set partition ξ for the regression coefficients is a set of indices
such that, for all i 6= j ∈ S, βi = βj . Let βS denote the common value of the regression
coefficients corresponding to cluster S. Using this set partition notation, the regression
coefficient vectors β1, . . . , βG can be reparametrized as a partition ξβ and a collection
of unique model parameters φβ = (βS1 , . . . , βSq ). We will use the terms clustering and
set partition interchangeably.

Spiked Prior Distribution on the Regression Coefficients

Similar modeling frameworks and inferential goals to the one we describe in this paper
were considered by Dahl and Newton (2007) and Dahl et al. (2008). However, their
prior formulation does not naturally permit hypothesis testing of sharp hypotheses, i.e.,
it can not provide Pr(Ha,g|data) = 1− Pr(H0,g|data), where hypotheses are defined as
in (2), since the posterior distribution of βt,g is continuous. Therefore, they must rely
on univariate scores capturing evidence for these hypotheses. The prior formulation
we adopt below, instead, allows us to estimate the probability of sharp null hypotheses
directly from the MCMC samples.

These distributions have been widely used as prior distribution in the Bayesian
variable selection literature (George and McCulloch 1993; Brown et al. 1998). Spiked
distributions are a mixture of two distributions: the “spike” refers to a point mass
distribution at zero and the other distribution is a continuous distribution for the pa-
rameter if it is not zero. Here we employ these priors to perform nonparametric multiple
hypothesis testing by specifying a spiked distribution as the centering distribution for
the DP prior on the regression coefficient vectors β1, . . . , βG. Adopting a spiked cen-
tering distribution in DP allows for a positive posterior probability on βt,g = 0, so
that our proposed model is able to provide probabilities of sharp null hypotheses (e.g.,
H0,g : β1,g = . . . = βT∗,g = 0 for g = 1, . . . , G) while simultaneously borrowing strength
from objects likely to have the same value of the regression coefficients.

We also adopt a “super-sparsity” prior on the probability of βt,g = 0 (defined as
πt for all g), since it is not uncommon that changes in expressions for many genes will
be minimal across treatments. The idea of the “super-sparsity” prior was investigated
in Lucas et al. (2006). By using another layer in the prior for πt, the probability of
βt,g = 0 will be shrunken toward one for genes showing no changes in expressions across
treatment conditions.

Specifically, our model uses the following prior for the regression coefficients β1, . . . ,
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βG:

β1, . . . , βG | Gβ ∼ Gβ

Gβ ∼ DP (αβ , G0β)

G0β =
T∏

t=1

{πtδ0(βt,g) + (1− πt)N(βt,g|mt, τt)}

π1, . . . , πT |ρ1, . . . , ρT ∼
T∏

t=1

{(1− ρt)δ0(πt) + ρtBeta(π|aπ, bπ)}

ρ1, . . . , ρT ∼ Beta(ρ|aρ, bρ)
τ1, . . . , τT ∼ Gamma(τ |aτ , bτ )

Note that a spiked formulation is used for each element of the regression coefficient
vector and πt = p(βt,1 = 0) = . . . = p(βt,G = 0). Typically, mt = 0, but other values
may be desired. We use the parameterization of the gamma distribution where the
expected value of τt is aτ bτ . For simplicity, let π = (π1, · · · , πT ) and τ = (τ1, · · · , τT ).

After marginalized over πt for all t, the G0β becomes

G0β =
T∏

t=1

{ρtrπδ0(βt) + (1− ρtrπ)N(βt|mt, τt)} ,

ρ1, · · · , ρt ∼ Beta(ρ|aρ, bρ).

where rπ = aπ/(aπ + bπ). As noted in equation above, the ρtrπ is now specified as a
probability of βt,g = 0 for all g.

Prior Distribution on the Precisions

Our model accommodates heteroscedasticity while preserving parsimony by placing a
DP prior on the precisions: λ1, . . . , λG:

λ1, . . . λG | Gλ ∼ Gλ

Gλ ∼ DP (αλ, G0λ)
G0λ = Gamma(λ|aλ, bλ)

Note that the clustering of the regression coefficients is separate from that of the pre-
cisions. Although this treatment for the precisions also has the effect of clustering the
data, we are typically more interested in the clustering from the regression coefficients
since they capture changes across treatment conditions. We let ξλ denote the set parti-
tion for the precisions λ1, . . . , λG and let φλ = (λS1 , . . . , λSq ) be the collection of unique
precision values.
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Prior Distribution on the Precision Parameters for DP

Following Escobar and West (1995), we place independent Gamma priors on the preci-
sion parameters αβ and αλ of the DP priors:

αβ ∼ Gamma(αβ |aαβ
, bαβ

),
αλ ∼ Gamma(αλ|aαλ

, bαλ
).

Prior Distribution on the Means

We assume a Gaussian prior on the object-specific mean parameters µ1, . . . , µG:

µg ∼ N(µg | mµ, pµ). (3)

3 Inferential Procedures

In this section, we describe how to conduct multiple hypothesis tests and clustering
inference in the context of our model. We treat the object-specific means µ1, . . . , µG as
nuisance parameters since they are not used either in forming clusters or for multiple
testing. Thus, we integrate the likelihood with respect to their prior distribution in (3).
Simple calculations lead to the following integrated likelihood (Dahl et al. 2008):

dg | βg, λg ∼ NK

(
dg | Xβg + E−1

g fg,
Eg

λgj′Mj + pµ

)
, (4)

where

Eg = λg(λgj
′Mj + pµ)M− λ2

gMjj′M, and

fg = λgmµpµMj.
(5)

Inference is based on the marginal posterior distribution of the regression coefficients,
i.e., p(β1, . . . , βG | d1, . . . , dG) or, equivalently, p(ξβ, φβ | d1, . . . , dG). This distribu-
tion is not available in closed-form, so we use a Markov chain Monte Carlo (MCMC)
to sample from the full posterior distribution p(ξβ,φβ, ξλ,φλ, ρ, τ | d1, . . . , dG) and
marginalize over the parameters ξλ,φλ, ρ, and τ .

3.1 MCMC Scheme

Our MCMC sampling scheme updates each of the following parameters, one at a time:
ξβ, φβ, ξλ, φλ, ρ, and τ . Recall that βS is the element of φβ associated with cluster
S ∈ ξβ, with βSt being element t of that vector. Likewise, λS is the element of φλ

associated with cluster S ∈ ξλ. Given starting values for these parameters, we propose
the following MCMC sampling scheme. Details for the first three updates are available
in the Appendix.
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(1) Obtain draws ρ = (ρ1, . . . , ρT ) from its full conditional distribution by the follow-
ing procedure. First, sample Yt = rπρt from its conditional distributions:

yt| · ∼ p(yt) y
∑

S∈ξ I(βSt=0)

t (1− yt)
∑

S∈ξ I(βSt 6=0),

with

p(yt) ∝ y
aρ+bρ−1
t (rπ − yt)bρ−1,

which does not have a known distributional form. A grid-based inverse-cdf method
has been adopted for sampling yt. Once we draw samples of Yt, then we will obtain
ρt as Yt/rπ.

(2) Draw samples of τ = (τ1, · · · , τT ) from their full conditional distributions:

τt | · ∼ Gamma


aτ +

|ζt|
2

,


 1

bτ
+

1
2

∑

S∈ζt

(βSt −mt)2



−1


 , (6)

where ζt = {S ∈ ξβ | βSt 6= 0} and |ζt| is its cardinality.

(3) Draw samples of βS = (βS1, . . . , βST ) for their full conditional distributions:

βSt | · ∼ πStδ0 + (1− πSt)N
(
h−1

t zt, ht

)
, (7)

where
ht = τt +

∑

g∈S

xT
t Qgxt,

zt = mtτt +
∑

g∈S

xT
t QgAg,

Qg = (λgj
′Mj + pµ)−1Eg,

Ag = dg −X(−t)βS(−t) −E−1
g fg,

and the probability πSt is

πSt =
yt

yt + (1− yt)
√

h−1
t τt exp

{− 1
2τtm2

t + 1
2h−1

t z2
t

} ,

where yt = ρtrπ with rπ = aπ/(aπ + bπ), and X(−t) and βS(−t) denote the X
and βS with the element t removed, respectively.

(4) Since a closed-form full conditional for λS is not available, update λS using a
univariate Gaussian random walk.

(5) Update ξβ using the Auxiliary Gibbs algorithm (Neal 2000).
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(6) Update αβ from its conditional distribution.

α|η, k ∼
{

Gamma(aα + k, b∗α) with probability pα

Gamma(aα + k − 1, b∗α) with probability 1− pα

where

b∗α =
(

1
bα
− log(η)

)−1

, and

pα =
aα + k − 1

aα + k − 1 + n/b∗α

Also,

η|α, k ∼ Beta(α + 1, n).

(7) Update ξλ using the Auxiliary Gibbs algorithm.

(8) Update αλ using the same procedure in (6) above.

3.2 Inference from MCMC Results

Due to our formulation for the centering distribution of the DP prior on the regression
coefficients, our model can estimate the probability of sharp null hypotheses, such as
H0,g : β1,g = . . . = βT∗,g = 0 for g = 1, . . . , G. Other hypotheses may be specified,
depending on the experimental goals. We estimate these probabilities by simply finding
the relative frequency that the hypotheses hold among the states of the Markov chains.

Our prior model formulation also permits inference on clustering of the G objects.
Several methods are available in the literature on DP models to estimate the cluster
memberships based on posterior samples. (See, for example, Medvedovic and Siva-
ganesan 2002; Dahl 2006; Lau and Green 2007.) In the examples below we adopt the
least-squares clustering estimation of Dahl (2006) which finds the clustering configura-
tion among those sampled by the Markov chain that minimizes a posterior expected
loss proposed by Binder (1978) with equal costs of clustering mistakes.

3.3 Hyperparameters Setting

Our recommendation for setting the hyperparameters is based on computing for each
object the least-squares estimates of the regression coefficients, the y-intercept, and the
mean-squared error. We then set mµ to be the mean of the estimated y intercepts and
pµ to be the inverse of their variances. We also use the method of moments to set
(aτ , bτ ). This requires solving the following two equations:

aτ bτ = mean of variances of least-squares regression coefficients
aτ b2

τ = sample variance of variances of least-squares regression coefficients
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Cluster Size β1 β2 β3 β4 β5

1 300 0 0 0 0 0
2 50 0 0 ∼ N(0, 1

4 ) 0 ∼ N(0, 1
4 )

3 50 0 0 0 0 ∼ N(0, 1
4 )

4 25 ∼ N(0, 1
4 ) ∼ N(0, 1

4 ) 0 0 0
5 25 0 0 ∼ N(0, 1

4 ) ∼ N(0, 1
4 ) 0

6 25 ∼ N(0, 1
4 ) ∼ N(0, 1

4 ) ∼ N(0, 1
4 ) ∼ N(0, 1

4 ) 0
7 25 ∼ N(0, 1

4 ) 0 ∼ N(0, 1
4 ) 0 ∼ N(0, 1

4 )

Table 1: Schematic for the simulation of the regression coefficients vectors in the first alter-
native scenario.

Likewise, aλ and bλ are set using the method of moments estimation, assuming that
the inverse of the mean-squared errors are random draws from a gamma distribution
having mean aλbλ. As for (aπ, bπ) and (aρ, bρ), a specification such that (rπE[ρt])T =∏T

t=1 p(βt,g = 0) = 0.50 is recommended if there is no prior information available.

We refer to these recommended hyperparameter settings as the method of moments
(MOM) settings. The MOM recommendations are based on a thorough sensitivity
analysis we performed on all the hyperparameters using simulated data. Some results
of this simulation study are described in Section 4.1.

4 Applications

We first demonstrate the performance in a simulation study and then apply our method
to gene expression data analysis.

4.1 Simulation Study

Data Generation

In an effort to imitate the structure of the microarray data experiment examined in the
next section, we generated 30 independent datasets with 500 objects measured at two
treatments and three time points, having three replicates at each of the six treatment
combinations. Since the model includes an object-specific mean, we set β6,g = 0 so that
the treatment index t ranges from 1 to 5.

We simulated data in which the regression coefficients β for each cluster is distributed
as described in Table 1. Similarly, the three pre-defined precisions λ1 = 1.5, λ2 = 0.2
and λ3 = 3.0 are randomly assigned to each of the 180, 180, and 140 objects (total 500
objects).

Sample-specific means µg were generated from a univariate normal distribution with
mean 10 and precision 0.2. Finally, each vector dg was sampled from a multivariate
normal distribution with mean µgj + Xβg and precision matrix λgI, where I is an
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identity matrix.

We repeated the procedure above to create 30 independent datasets. Our interest
lies in testing the null hypothesis H0,g : β1,g = . . . = β6,g = 0. All the computational
procedures were coded in Matlab.

Results

We applied the proposed method to the 30 simulated datasets. The model involves
several hyperparameters: mµ, pµ, aπ, bπ, aρ, bρ, aτ , bτ , aλ, bλ, aαβ

, bαβ
, aαλ

, bαλ
, and

mt. We set (aπ, bπ) = (1, 0.15) and (aρ, bρ) = (1, 0.005). The prior probability of
the null hypothesis (i.e., that all the regression coefficients are zero) for an object is
about 50%, which is (rπ ∗ E[ρ])5 with rπ = aπ/(aπ + bπ) and E[ρ] = aρ/(aρ + bρ), the
product of Bernoulli random variables across the T treatment conditions each having
success probability. We calculated the MOM recommendations from Section 3.3 to
set (aτ , bτ ) and (aλ, bλ). These recommendations for the hyperparameters are based
on the sensitivity analysis described later in the paper. We somewhat arbitrarily set
(aαβ

, bαβ
) = (5, 1) and (aαλ

, bαλ
) = (1, 1), so that prior expected numbers of clusters are

about 24 and 7 for the regression coefficients and precisions, respectively. We show the
robustness of the choice of those parameters in the later section. For each dataset, we ran
two Markov chains for 5,000 iterations and different starting clustering configurations.

A trace plot of the number of clusters of β from the two different starting stages
for one of the simulated datasets, as well as a similar plot for λ, is shown in Figure 1.
Similar trace plots of generated αβ and αλ are shown in Figure 2. They do not indicate
any convergence or mixing problems. The other datasets also had plots indicating good
mixing. For each chain, we discarded the first 3,000 iterations for a burn-in and pooled
the results from the two chains.

Our interest in the study is to see whether there are changes between the two groups
within a time point and across time points. Specifically, we considered the null hypoth-
esis that all regression coefficients are equal to zero: for g = 1, . . . , 500,

H0,g : β1,g = . . . = β6,g = 0
Ha,g : βt,g 6= 0 for some t = 1, . . . , 6.

We ranked the objects by their posterior probabilities of alternative hypotheses Ha,g,
which equal 1−Pr(H0,g|data). A plot of the ranked posterior probability for each object
is shown in Figure 3.

Bayesian False Discovery Rate

Many multiple testing procedures seek to control some type of a false discovery rate
(FDR) at a desired value. The Bayesian FDR (Genovese and Wasserman 2003; Müller
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Figure 1: Trace plots of the number of clusters for the regression coefficients and the precisions
when fitting a simulated dataset.
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Figure 2: Trace plots of generated αβ and αλ when fitting a simulated dataset.
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Figure 3: Probability of the alternative hypothesis (i.e. 1 − Pr(H0,g : β1,g = . . . = β6,g =
0 | data)) for each object of a simulated dataset of 500 objects.

et al. 2004; Newton et al. 2004) can be obtained by

F̂DR(c) =

∑G
g=1 Dg(1− vg)∑G

g=1 Dg

where vg = Pr(Ha,g|data) and Dg = I(vg > c). We reject H0,g if the posterior proba-
bility vg is greater than the threshold c. The optimal threshold c can be found to be a
maximum value of c in the set of {c : F̂DR(c) ≤ α} with pre-specified error rate α. We
averaged the Bayesian FDRs from the 30 simulated datasets. The optimal threshold,
on average, is found to be 0.7 for an Bayesian FDR of 0.05. The Bayesian FDR has also
been compared with the true proportion of false discoveries (labeled as “Realized FDR”
in the plot) and is displayed in Figure 4. In this simulation, our Bayesian approach is
slightly anti-conservative. As shown in Dudoit et al. (2008), anti-conservative behavior
in FDR controlling approaches is often observed for data with high correlation structure
and a high proportion of true null hypotheses.

Comparisons with Other Methods

We assessed the performance of the proposed method by comparing with three other
methods, a standard Analysis of Variance (ANOVA), the SIMTAC method of Dahl et al.
(2008), and LIMMA (Smyth 2004). The LIMMA procedure is set in the context of a
general linear model and provides, for each gene, an F -statistic to test for differential
expression at one or more time points. These F -statistics were used to rank the genes.
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Figure 4: Plot of proportion of false discoveries and Bayesian FDR averaged over 30 datasets.

The SIMTAC method uses a modeling framework similar to the one we adopt but
it is not able to provide estimates of probabilities for H0,g since its posterior density
is continuous. We used the univariate score suggested by Dahl et al. (2008) which
captures support for the hypothesis of interest, namely qg =

∑T
t=1 β2

t,g. For the ANOVA
procedure, we ranked objects by their p-values associated with H0,g. Small p-values
indicate little support for the H0,g.

For each of the 30 datasets and each method, we ranked the objects as described
above. These lists were truncated at 1, 2, . . . , 200 samples. At each truncation, the pro-
portions of false discoveries are computed and averaged over the 30 datasets. Results
are displayed in Figure 5. It is clear that our proposed method exhibits a lower propor-
tion of false discoveries and that performances are substantially better than ANOVA
and LIMMA and noticeably better than the SIMTAC method.

Sensitivity Analysis

The model involves several hyperparameters: mµ, pµ, aπ, bπ, aρ, bρ, aτ , bτ , aλ, bλ,
aαβ

, bαβ
, aαλ

, bαλ
, and mt. In order to investigate the sensitivity to the choice of these

hyperparameters, we randomly selected one of the 30 simulated datasets for a sensitivity
analysis.

We considered ten different hyperparameter settings. In the first scenario, called the
“MOM” setting, we used all the MOM estimates of the hyperparameters and (aπ, bπ)
= (1,0.15), (aρ, bρ) = (1,0.005), and (aαβ

, bαβ
) = (5,1). The other nine scenarios with



S. Kim, D.B. Dahl and M. Vannucci 721

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

Number of Discoveries

P
ro

po
rt

io
n 

of
 F

al
se

 D
is

co
ve

rie
s

OUR METHOD
SIMTAC
ANOVA
LIMMA

Figure 5: Average proportion of false discoveries for the three methods based on the 30
simulated datasets

change in one set of parameters given all other parameters set same as in the first
scenario were:

i. (aπ, bπ) = (15, 15), so that p(βt,g = 0) = 0.50.

ii. (aπ, bπ) = (1, 9), so that p(βt,g = 0) = 0.10.

iii. (aρ, bρ) = (1, 2), so that E[rπρt] = 0.25.

iv. (aτ , bτ ) = (1, 0.26), to have smaller variance than MOM estimate.

v. (aτ , bτ ) = (1, 0.7), to have larger variance than MOM estimate.

vi. (aλ, bλ) = (1, 0.5), to have smaller variance than MOM estimate.

vii. (aλ, bλ) = (1, 3), to have larger variance than MOM estimate.

viii. (aαβ
, bαβ

) = (25, 1), to have E[αβ ] = 25, so that prior expected number of clusters
is about 77.

ix. (aαβ
, bαβ

) = (1, 1), to have E[αβ ] = 1, so that prior expected number of clusters
is about 7.

We set mt = 0. Also, the mean mµ of the distribution of µ was set to the estimated
least-squares intercepts and the precision pµ to the precision of the estimated intercepts.
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An identity matrix was used for M since we assume independent sampling. We fixed
αλ = 1 throughout the sensitivity analysis. We expect similar sensitivity result of the
parameter as one for αβ . We ran two MCMC chains with different starting values; one
chain started from one cluster (for both β and λ) and the other from G clusters (for
both). Each chain was run for 5,000 iterations.

We assessed the sensitivity of the hyperparameter settings in two ways. Figure 6
shows that the proportion of false discoveries is remarkably consistent across the ten
different hyperparameter settings. We also identified, for each hyperparameter setting,
the 50 objects most likely to be “differentially expressed”. In other words, those 50 have
the smallest probability for the hypothesis H0. Table 2 gives the number of common
objects among all the pairwise intersections from the various parameter settings. These
results indicate a high degree of concordance among the hyperparameter scenarios. We
are confident in recommending, in the absence of prior information, the use of the
MOM estimates for (aτ , bτ ) and (aλ, bλ) and to choose (aπ, bπ) and (aρ,bρ) such that
p(βt,g = 0) = 0.50. The choice for (aαβ

, bαβ
) does not make a difference in the results.
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Figure 6: Proportion of false discoveries under several hyperparameter settings based on one
dataset
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Table 2: Among the 50 most likely differentially expresed objects, the number in common
among the pairwise intersection of the samples identified under the ten hyperparameter settings.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
MOM (both) 41 37 41 38 39 41 39 39 42

(i) 42 45 45 45 42 45 43 46
(ii) 43 44 43 42 44 42 43
(iii) 45 45 43 45 46 46
(iv) 44 40 47 42 44
(v) 45 44 44 45
(vi) 42 44 45
(vii) 45 44
(viii) 44
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4.2 Gene expression study

We illustrate the advantage of our method in a microarray data analysis. The dataset
was used in Dahl and Newton (2007). Researchers were interested in the transcriptional
response to oxidative stress in mouse heart muscle and how that response changes with
age. The data has been obtained in two age groups of mice; Young (5-month old)
and Old (25-month old) which were treated with an injection of paraquat (50mg/kg).
Mice were killed at 1, 3, 5 and 7 hours after the treatment or were killed without having
received paraquat (called baseline). So, the mice yield independent measurments, rather
than repeated measurements. Gene expressions were measured 3 times at all treatments.
Originally, gene expression was measured on 10,043 probe sets. We randomly select
G = 1, 000 genes out of 10,043 to reduce computation time. We also choose the first
two treatments, baseline and 1 hour after injection from both groups since it is often of
interest to see if gene expressions have been changed within 1 hour after injection. Old
mice at baseline were designated as a reference treatment. While the analysis is not
invariant to the choice of the reference treatment, we show in Section 5 that the results
are robust to the choice of the reference treatment. The data was background-adjusted
and normalized using the Robust Multichip Averaging (RMA) method of Irizarry et al.
(2003).

Our two main biological goals are to identify genes which either are:

1. Differentially expressed in some way across the four treatment conditions, i.e.,
genes having small probability of H0,g : β1,g = β2,g = β3,g = 0, or

2. Similarly expressed at baseline between old and young mice, but differentially
expressed 1 hour after injection, i.e. genes having large probability of Ha,g :
|β1,g − β3,g| = 0 & |β2,g − β4,g| > c, for some threshold c, such as 0.1.

Assuming that information on how many genes are differentially expressed is not
available, we set a prior on π by defining (aπ, bπ) = (10, 3) and (aρ, bρ) = (100, 0.05)
which implies a belief that about 50% of genes are differentially expressed. We set
(aαβ

, bαβ
) = (5, 5) and (aαλ

, bαλ
) = (1, 1) so that the expected numbers of clusters are

93 and 8 for the regression coefficients and precisions, respectively. Other parameters
are estimated as we recommended in the simulation study. We ran two chains starting
at two different initial stages: (i) all the genes being together and (ii) each having
its own cluster. The Markov chain Monte Carlo (MCMC) sampler was run for 10,000
iterations with the first 5,000 discarded as burn-in. Figure 7 shows trace plots of the
number of clusters for both regression coefficients and precisions. The plots do not
indicate convergence or mixing problems. The least-squares clustering method found
a clustering for the regression coefficients with 14 clusters and a clustering for the
precisions with 11 clusters.

There were six large clusters for β with size more than 50. Those clusters included
897 genes. The average gene expressions for each one of the six clusters are shown in
Figure 8(a). The y-axis indicates the average gene expressions, and the x-axis indicates
the treatments. Each cluster shows its unique profile. We found one cluster of 18 genes
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Figure 7: Trace plots of number of clusters for the regression coefficients and the precisions
when fitting the gene expression data.

with all regression coefficients equal to zero (Figure 8(b)).

For hypothesis testing, we ranked genes by calculating posterior probabilities for the
genes least supportive of the null hypothesis, H0,g : β1,g = β2,g = β3,g = β4,g = 0. We
listed the fifty genes that were least supportive of the hypothesis H0,g. Figure 9 shows
the heatmap of those fifty genes.

Finally, in order to identified genes following the second hypothesis of interest Ha,g :
|β1,g − β3,g| = 0 & |β2,g − β4,g| > 0.1, we similarly identified the top fifty ranked genes.
For this hypothesis, our approach clearly finds genes following the desired pattern, as
shown in Figure 10.

5 Discussion

We have proposed a semiparametric Bayesian method for random effects models in the
context of multiple hypothesis testing. A key feature of the model is the use of a spiked
centering distribution for the Dirichlet process prior. Dirichlet process mixture models
naturally borrow information across similar observations through model-based cluster-
ing, gaining increased power for testing. This centering distribution in the DP allows
the model to accommodate the estimation of sharp hypotheses. We have demonstrated
via a simulation study that our method yields a lower proportion of false discoveries
than other competitive methods. We have also presented an application to microarray
data where our method readily infers posterior probabilities of genes being differentially
expressed.

One issue with our model is that the results are not necessarily invariant to the
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Figure 10: (a) Average gene expressions of the 50 top-ranked genes supportive of |β1− β3| =
0 & |β2 − β4| > 0.1; (b) Heatmap of those genes
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choice of the reference treatment. Consider, for example, the gene expression analysis
of Section 4.2 in which we used the group (Old, Baseline) as the reference group. To
investigate robustness, we reanalyzed the data using (Young, Baseline) as the reference
group. We found that the rankings between two results are very close to each other
(Spearman’s correlation = 0.9937762, Figure 11).

Finally, as we mentioned in the Section 2.1, our current model can easily accom-
modate covariates by placing them in the X matrix. Such covariates might include,
for example, demographic variables regarding the subject or environmental conditions
(e.g., temperature in the lab) that affect each array measurement. Adjusting for such
covariates has the potential to increase the statistical power of the tests.

1 Appendix

1.1 Full Conditional for Precision

p(τ |d, β, λ) ∝ p(τ )
∏

S∈ξ

p(βS |π, τ )p(dS |βS , λS , π, τ )

=

{
T∏

t=1

p(τt)

}



∏

S∈ζt

T∏
t=1

p(βSt|πt, τt)





∝
T∏

t=1

p(τt)





∏

S∈ζt

N(βSt|mt, τt)





∝
T∏

t=1

τ
aτ+|ζt|/2−1
t exp



−τt


 1

bτ
+

1
2

∑

S∈ζt

(βSt −mt)2








1.2 Full Conditional for new probability yt = ρtrπ of Spike

Note: modified prior ρtrπ = p(βt = 0) where rπ = aπ/(aπ + bπ), thus need a posterior
ρt|rest ∝ p(βt = 0|rest).

Set Yt = rπρt. Then the distribution of Yt is

p(yt) =
1

B(aρ, bρ)

(
yt

rπ

)aρ−1 (
1− yt

rπ

)bρ−1 1
rπ

=
1

B(aρ, bρ)

(
1
rπ

)aρ+bρ−1

y
aρ−1
t (rπ − yt)bρ−1.

Now, we are drawing Yt, not ρt from their conditional distributions: for t,

p(yt|rest) ∝ p(yt) y
∑

S∈ξ I(βSt=0)

t (1− yt)
∑

S∈ξ I(βSt 6=0),
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which is not of known form of distribution. Once we draw samples of Yt, then we will
get ρt as Yt/rπ. We used a grid-based inverse-cdf method. for sampling Yt.

1.3 Full Conditional for Regression Coefficients

p(βSt|λS ,dS , yt, βS(−t)) ∝ p(βSt|yt)
∏

g∈S

p(dg|βSt, βS(−t), λS)

= ytδ0(βSt)
∏

g∈S

p(dg|βSt, βS(−t), λS) + (1− yt)N(βSt|mt, τt)
∏

g∈S

p(dg|βSt,βS(−t), λS)

The first part is obvious. Look at the second part. Set xt = (X1t, · · · , XKt)T ,
X(−t) = (x1, · · · .xt−1, xt+1, · · · , xT ), and βS(−t) = (βS1, · · · , βS(t−1), βS(t+1), · · · , βST )T .

The second part is proportional to:

exp
{
−1

2
τt(βSt −mt)2

}
× exp


−1

2





∑

g∈S

DT
g QgDg








where Dg = dg − xtβSt −X(−t)βS(−t) −E−1
g fg

∝ exp
{
−1

2
(
τtβ

2
St − 2τtmtβSt

)}
exp



−

1
2

∑

g∈S

(xtβSt −Ag)T Qg(xtβSt −Ag)





∝ exp


−1

2



β2

St(τt +
∑

g∈S

xT
t Qgxt)− 2βSt(mtτt +

∑

g∈S

xT
t QgAg)






 .

Therefore, for each t,

βSt| · =





0 with probability πst

∼ N

(
mtτt+

∑
g∈S xT

t QgAg

τt+
∑

g∈S xT
t Qgxt

, τt +
∑

g∈S xT
t Qgxt

)
with probability 1− πst.
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