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ABSTRACT

Motivation: Surface-enhanced laser desorption and ionization
(SELDI) time of flight (TOF) is a mass spectrometry technology. The
key features in a mass spectrum are its peaks. In order to locate
the peaks and quantify their intensities, several pre-processing steps
are required. Though different approaches to perform pre-processing
have been proposed, there is no systematic study that compares
their performance.
Results: In this article, we present the results of a systematic
comparison of various popular packages for pre-processing of
SELDI-TOF data. We evaluate their performance in terms of two
of their primary functions: peak detection and peak quantification.
Regarding peak quantification, the performance of the algorithms
is measured in terms of reproducibility. For peak detection, the
comparison is based on sensitivity and false discovery rate. Our
results show that for spectra generated with low laser intensity,
the software developed by Ciphergen Biosystems (ProteinChip©

Software 3.1 with the additional tool Biomarker Wizard) produces
relatively good results for both peak quantification and detection.
On the other hand, for the data produced with either medium
or high laser intensity, none of the methods show uniformly
better performances under both criteria. Our analysis suggests
that an advantageous combination is the use of the packages
MassSpecWavelet and PROcess, the former for peak detection and
the latter for peak quantification.
Contact: rguerra@rice.edu; marina@rice.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Mass spectrometry (MS) technology is used to measure the mixture
of proteins/peptides of biological tissues or fluids, such as serum
or urine. Such measurements can be used to identify disease-
related patterns, which hold potential for early diagnosis, prognosis,
monitoring disease progression, response to treatment and drug
target research.

A commonly used mass spectrometry technique uses matrix-
assisted laser desorption and ionization (MALDI) ion source and

∗To whom correspondence should be addressed.

a time-of-flight (TOF). A variant of MALDI is the method of
surface-enhanced laser desorption and ionization (SELDI) that uses
a solid chromatography surface to capture different types of proteins
followed by ion detection. The data collected by SELDI is a vector
of counts, each corresponding to the number of ions detected during
a small, fixed interval of time. A quadratic transformation is used
to derive the mass to charge (m/z) value of the protein from the
TOF. This procedure is called calibration. Thus, the experimental
data produced is an MS spectrum with the x-axis representing the
mass/charge (m/z) ratio and the y-axis representing the intensity of
the protein or peptide ions.

The key features of scientific interest are the MS peaks because
they can be used to infer the existence of a peptide with a particular
m/z ratio. A typical approach to analyzing MS data has the following
two steps. First, peak locations are detected and their intensities
are quantified for each spectrum. This is sometimes referred to as
the pre-processing step of the data. The second step is to search
for proteins that are differentially expressed among samples under
different experimental conditions; clustering and classification of
the differentially expressed proteins may also be performed (Kwon
et al., 2007; Li et al., 2006; Shen et al., 2007).

The pre-processing of MS data can be divided into several
subtasks, including:

• Alignment of the spectra is often required when different
instruments are used to obtain the spectra or when the spectra
are generated over a long period of time. Misalignment must
be corrected to ensure that the same protein intensities are
correctly identified in a sample (Wong et al., 2005).

• Filtering or denoising to remove high-frequency interfering
signal caused by sources unrelated to the bio-chemical nature
of the sample. Such sources can be electrical interference,
random ion motions, statistical fluctuation in the detector gain
or chemical impurities (Shin et al., 2007).

• Baseline subtraction to remove systematic artifacts produced
from small clusters of the matrix material, which needs to be
added to the sample of interest. In general, the baseline exhibits
a decreasing behavior from low m/z to high m/z (Shin and
Markey, 2006).

• Normalization to correct for systematic variation between
spectra due to differences in the amount of protein in the
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sample, degradation over time and variation in the instrument
detector sensitivity (Sauve and Speed, 2004).

• Peak detection refers to the process of identifying peak
locations on the time or m/z scales. It can be performed using
the individual spectra or a mean spectrum.

• Clustering of peaks is required when peak detection is
performed using individual spectra. It decides which peaks in
different samples correspond to the same biological molecule
and determines a single m/z value for each cluster.

• Peak quantification to compute the intensity of each detected
peak in each pre-processed spectrum. This task is usually
performed by computing a local maximum within some range
of the location of the detected peak. A typical range is between
0.1% and 0.3%.

No standard method has been established so far regarding the
pre-processing steps, including the order in which the steps might
be performed. Furthermore, the pre-processing of the data before
peak detection may differ from the pre-processing prior to peak
quantification. For example, Du et al. (2006) use the raw data to
perform peak detection, while Morris et al. (2005) use the same
algorithm to pre-process the spectra before both peak detection and
peak quantification, albeit with different parameters in each case.

Because of the potential applications of mass spectrometry
studies, the development of algorithms for pre-processing MS data
has been an active area of research (Coombes et al., 2007; Du
et al., 2006; Fung and Enderwick, 2002; Kwon et al., 2008; Li
et al., 2005; Malyarenko et al., 2004; Wong et al., 2005). The
pre-processing of MS data can influence the results of subsequent
statistical analysis; thus it is important to identify those methods with
the best performance. To date, limited research has been done in this
direction. Meuleman et al. (2008) performed an extensive study to
compare different algorithms for normalization, while Beyer et al.
(2006) compare the performance of the package Ciphergen Express
Software 3.0 produced by Ciphergen and the R package PROcess.

In this work, we present the results of an extended and up-to-date
study that compares the performance of five popular and current
methods for pre-processing of SELDI data. Our comparison is
divided into two major parts, one for each of the two primary goals of
the pre-processing of MS data: location of peaks and quantification
of peak intensities.

2 METHODS
We list and briefly describe the algorithms for pre-processing that are
being compared in this study, explain the methodology used to perform the
comparison and give a description of the data.

2.1 Algorithms for pre-processing
In this study, we compare the performance of five algorithms for pre-
processing of SELDI data. These algorithms were chosen based on their
application in several published studies. Below we list and describe the
corresponding software.

ProteinChip© Software 3.1 and Biomarker Wizard are commercial
software produced by Ciphergen Biosystems (Fremont, CA, USA). In the
rest of the article we will refer to this combination as Ciphergen. By using
the default options, the pre-processing steps available with this software
include: denoising based on a moving average filter; baseline subtraction with
the baseline being estimated with a piecewise convex-hull; normalization

that takes the total ion current used for all the spots, averages its intensity
and adjusts the intensity scales for all the spectra; and peak detection that
looks for peaks in each individual spectra. A feature that distinguishes this
peak detection algorithms is that it operates in two passes, the first uses
low sensitivity to determine the peak locations of obvious and well-defined
peaks, while the second pass look for smaller peaks at those peak locations
by using higher sensitivity (Ciphergen Biosystems, 2002).

PROcess is a BioConductor package written by Xiaochun Li and available
through R. Pre-processing steps with default options are as follows. The
baseline is estimated by partitioning the m/z range on the log scale into
n equally spaced interval, finding the local minimum within each interval,
and smoothing these local minima by either local regression (loess) or local
interpolation. Normalization is performed using total ion normalization; that
is, for each spectrum its area under the curve (AUC) is calculated for m/z
values greater than a user-defined threshold and all spectra are scaled to
the median AUC. The algorithm for peak detection smooths the normalized,
baseline subtracted spectrum by a moving average, identifies local maxima
in the smoothed spectrum, and finally, a local maximum is considered a
peak when its signal-to-noise ratio, intensity and area, exceed user-defined
thresholds. The PROcess library also includes functions to assess the quality
of a set of spectra (Li et al., 2005).

Cromwell is a set of Matlab scripts implementing the algorithms for
pre-processing of MS data developed by the bioinformatics group at the
MD Anderson Cancer Center (Coombes et al., 2007; Morris et al., 2005).
Denoising is performed via wavelet regression using the undecimated
discrete wavelet transform. The baseline is estimated by computing a
monotone local minimum curve. Normalization is performed by scaling each
individual spectrum so that the mean of its intensities is equal to 1. The
algorithm for peak detection finds local maxima in the denoised, baseline
subtracted spectrum and retains as peaks those with a signal-to-noise ratio
greater than a user-defined threshold.

SpecAlign is freely available software developed by Wong et al. (2005).
The algorithms in this package works on the individual spectra. For
smoothing it uses the Savitzky–Golay filter. Denoising is performed using the
Symmlet wavelet transform and then applying soft thresholding. The baseline
is estimated using a restrained moving average, where only values smaller
than the local average intensity are added to the global moving average.
The peak detection algorithm requires three user-defined parameters: (1) a
‘baseline cutoff’ which represents the fraction of baseline under the baseline
intensity at which the algorithm ignores selection peaks, (2) a ‘window size’
for defining a peak and (3) a ‘height ratio’ that works as a threshold for
the signal-to-noise ratio. As a distinguished feature, it includes an algorithm
for the alignment of spectra. Guidelines for combining the various subtasks
available in this software are not provided for the authors. Some insights can
be found in Whistler et al. (2007). Such information is important because
the interaction of the pre-processing steps is complex and the results vary
according to the specific order in which they are applied.

MassSpecWavelet is a Bioconductor package developed by Du et al.
(2006). Peak detection is performed by using the continuous wavelet
transform. A remarkable feature of this method is that no pre-processing of
the spectra is required before peak detection. This package does not include
any other pre-processing steps.

2.2 Methods of comparison
To assess the performance of these algorithms for pre-processing of SELDI
data, we considered two aspects: the reproducibility of the quantified peaks
and their false positive rate of peak detection.

2.2.1 Reproducibility A functional model for the observed data is

f (t)=B(t)+N ∗S(t)+ε(t), (1)

where t takes values in the m/z scale, f (t) denotes the observed signal, B(t)
is the baseline, N is a normalization factor, S(t) is the true signal and ε(t)
refers to the high-frequency noise (Coombes et al., 2007).
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An algorithm for pre-processing of MS data produces estimators for the
baseline, noise and the normalization constant. The better those estimators,
the closer the pre-processed spectrum would be to the true signal. Therefore,
one way to measure its performance is by analyzing the variability that
appears when it is used to pre-process a set of spectra that reflects the same
true signal. Such analysis is possible by using replicates of a given sample.
The best algorithm for pre-processing will be the one that minimizes the
variability of the pre-processed spectra, or in other words, the one whose
output is more reproducible.

Variability in a set of pre-processed spectra can be measured by performing
peak quantification and then measuring the variability of the quantified
intensities at each peak location. Because of the varying scales in peak
intensities, a commonly used statistic to summarize their variability is the
coefficient of variation (CV), which is equal to the SD divided by the
mean. A pre-processing algorithm yielding relatively small CVs will be said
to have high reproducibility, and thus, better performance than competing
algorithms.

Note that a requirement to perform peak quantification is to have a set
of peak locations. We used the same set of peak locations to perform peak
quantification across all algorithms. This procedure has the advantage that the
results are not influenced by the performance of peak detection algorithms.
Ideally, if we knew the biological composition of the sample, we would
be able to establish the location where quantification of intensities matters.
However, with real data we do not have that information so the peak locations
have to be estimated. Two factors become relevant: the quality of the peaks,
that is, we need to verify by visually inspecting the spectra where the
plausible peaks locate, and the robustness of our results to different sets
of detected peaks. As shown in Section 3.1, we took into account those two
factors in our analysis.

2.2.2 Peak detection A ‘true’ peak is a peak associated with a peptide in
the biological sample of interest. A peak detection algorithm estimates the
locations of the true peaks by producing a set of m/z values. In this study,
a detected peak is matched to a true peak if the former is in the 0.3% error
range around the location of the latter.

In this study, we evaluated the performance of peak detection algorithms
using sensitivity and false discovery rate (FDR). As suggested by Du et al.
(2006), given a set of detected peaks, the sensitivity is estimated as the
proportion of true peaks correctly detected, while the FDR is defined as the
proportion of falsely detected peaks. By modifying the parameters of a peak
detection algorithm, we obtained combinations of sensitivity and FDR and
plotting these combinations we obtained a curve which can be interpreted
similarly as a receiver operating characteristic curve. Given a value for the
FDR, the higher the sensitivity, the better the performance of a peak detection
algorithm. The ideal combination is having 100% sensitivity and 0% FDR.

We used simulated data to compare the performance of peak detection
algorithms. With real data the number and location of protein peaks are
unknown and therefore neither sensitivity nor FDR are estimable. The
simulated data were generated using the simulation engine developed by
Coombes et al. (2005), the details are given in Section 2.4.

2.3 Experimental data
Eighteen aliquots of the normal human serum control (Ciphergen
Biosystems) were randomly spotted on a 96-well plate and then fractionated
by an anion exchange procedure into six fractions. Each fractionated
serum was spotted in duplicates on weak cation exchange (CM10)
Arrays (Ciphergen Biosystems). Then, each spot were analyzed by three
laser power settings, resulting totally 648 spectra for the analysis of
different algorithms—36 spectra per combination of fractionation and laser
power setting. The details of the fractionation and spotting procedures
were previously reported (Li et al., 2006). In brief, a commercially
available pooled human control serum was purchased from Ciphergen
Biosystems. The sample were randomly spotted on a 96-well plate
together with other samples and then fractionated by an anion exchange

fractionation procedure. Twenty microliters of each sample were denatured
by 30 µl of 50 mM Tris–HCl buffer containing 9 M urea and 2%
3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (pH 9).
The proteins were fractionated in an anion-exchange Q HyperD F 96-well
filter plate (Ciphergen Biosystems). Six fractions, including those from the
flow through (Fraction 1), pH 7 (Fraction 2), pH 5 (Fraction 3), pH 4
(Fraction 4), pH 3 (Fraction 5) and organic eluant fractions (Fraction 6),
were collected by stepwise decreases in pH gradient. For ProteinChip array
binding, 20 µl of each fractionated serum were diluted in 80 µl of CM Low
Stringency Buffer (0.1M sodium acetate, pH 4.0) and profiled on Weak
Cation Exchange (CM10) Arrays (Ciphergen Biosystems). Sinapinic acid
(Ciphergen Biosystems), which served as an energy absorbing molecule, was
used to facilitate desorption and ionization of proteins on the ProteinChip
arrays. All fractionation and on-chip spotting steps were performed on a
Biomek 2000 Robotic Station (Beckman Coulter, Fullerton, CA, USA).

The MS profiles of the serum samples on the ProteinChip arrays
were acquired by a Protein Biology System (Model PBSIIc, Ciphergen
Biosystems) using three different laser spot protocols (low, medium and
high power settings). The high mass setting for the low laser protocol was
25 kDa, with an optimization range from 1 to 7.5 kDa and a deflector setting
of 1 kDa. The medium and high laser spot protocol had a high mass setting
of 200 kDa and deflector setting of 10 kDa, with an optimization range from
10 to 50 kDa and from 10 to 75 kDa, respectively. The laser intensities were
between 170 and 250, and detector sensitivities between 4 and 10. These
settings were optimized manually for each fraction to achieve a maximum
yield of protein peaks. The final MS profiles were generated by averaging
65 laser shots with 5 shots on 13 positions of each array spot, preceded
by two warming shots at intensities 10 units higher than the laser power.
The data of the warming shots were not included in the final spectra. The
starting and end positions of the spot were incrementally changed for each
laser setting to avoid depletion of signal. Mass detection accuracy of PBSIIc
was calibrated externally by using the All-in-1 peptide and All-in-1 protein
II molecular mass standards (Ciphergen Biosystems). As suggested by the
manufacturer’s protocol, the m/z regions used to perform peak detection and
quantification were set to 1500–10 000, 10 000–30 000 and 30 000–200 000
for profiles that were acquired using low, medium and high laser power
settings, respectively.

The reproducibility among the competing algorithms at a given peak
location will be evaluated by the CV of the peak intensities across the 36
replicates. Note that a specific peak location is not only determined by its m/z
ratio, but also by a combination of fractionation and laser intensity. Based
on the experimental design, the calculated CV of a peak includes variations
in both experimental procedures and data analysis.

2.4 Simulated data
To compare the performance of peak detection algorithms, we worked with
simulated data. We generated 100 experiments, each of them with 50 spectra.

To generate the component B(t)+N ∗S(t) in Equation (1) for each
simulated spectrum, we used the simulation engine developed by Coombes
et al. (2005) following the guidelines provided by Morris et al. (2005). In
brief, such guidelines include the following steps. First, the characteristics
of the population which will be reflected in the simulated data has to be
determined. Specifically, two distributions must be specified, one for the
m/z values corresponding to true peaks in the population and other for the
abundance of each protein across samples. This task is accomplished by
using real data, in our study we used the real spectra described in Section 2.3
produced with low laser intensity corresponding to fractionation 1. The next
step is to generate experiments using the characteristics of the population.
Three factors must be generated per experiment: the location of the true
peaks, the abundance for each protein and the prevalence of the peaks across
spectra. Note that we can use the given population to generate as many
experiments as needed. Finally, the settings of the experiment are used to
obtain the component B(t)+N ∗S(t) for each individual spectrum.
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Fig. 1. Comparison of the noise in the (a) experimental data and simulated
data using (b) an ARMA process and (c) a white noise.

The only missing component in Equation (1) is ε(t). Morris et al. (2005)
proposed the use of Gaussian white noise, however, by estimating the
autocorrelation function and the partial correlation function of the noise in
our experimental data, we found dependence structure. To take into account
this factor, we propose the model

ε(t)=σ (t)γ (t), (2)

where, γ (t) follows a stationary autoregressive moving average (ARMA)
process with variance of 1, while σ (t) is a positive function reflecting the
variance of the noise.

The function ε(t) is intended to replicate the noise found in the 36
experimental spectra corresponding to fractionation 1 and low laser intensity.
To attain this goal we proceeded as follows. To generate the component γ (t),
we started by finding a common m/z interval where the 36 spectra had no
noticeable peaks. Then, we used the intensities in that interval to fit an ARMA
process, one per spectrum. We found that in all cases an ARMA process
with 1 autoregressive term and 3 moving average terms provided a good
approximation—using as diagnostic tools the autocorrelation function of
the residuals and the Ljung-Box statistics. Finally, every time we simulated
a spectrum we generated its respective component γ (t) by first randomly
selecting one of the 36 fitted models, then generating an ARMA process
from that model, and finally scaling the simulated process to have variance
of 1. On the other hand, for each simulated spectrum the function σ (t) was
defined as follows. We considered the experimental spectrum corresponding
to the fitted ARMA model that was used to generate γ (t). Such spectrum
was denoised using the undecimated discrete wavelet transform (the same
algorithm used for denoising in the Cromwell algorithm), the denoised
spectrum was substracted from the raw spectrum to obtain an estimator of
the noise, ε̃(t). For each m/z value, t0, we defined σ (t0) as the SD of ε̃(t) in
a windows of length 1000 in the time scale and centered at ε̃(t0).

Figure 1 contains plots for (a) real data, (b) simulated data with noise
generated using model (2) and (c) simulated data with Gaussian white noise.
The axis limits in that figure were chosen to appreciate the characteristics
of the noise. Clearly, noise generated with model (2) has a better agreement
with real data than Gaussian white noise. Though the plot only shows spectra
in the m/z range from 2000–2300, similar results were found in the m/z range
from 2000–25 000.

We simulated 100 experiments, each of them with 150 true peaks and
50 spectra. The peaks are distributed in the m/z range from 1500 to 25 000.
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Fig. 2. Mean (n = 36) raw spectrum for spectra generated for fractionation
1 with low laser intensity. Detected peaks produced by Ciphergen appear in
circles.

For each experiment, we used the approach by Morris et al. (2005) to generate
the component B(t)+N ∗S(t) of the individual spectra and we added the
noise, ε(t), using model (2).

3 RESULTS

3.1 Peak quantification
The experimental profiles were obtained by fractionating the sample
into six parts and analyzing each of them with three laser intensities:
low, medium and high. Therefore, the biological information in the
sample is reflected in 18 spectra. We obtained 36 replicates for
each of the 18 spectra. (see details in Section 2.3). To guarantee
that we were using the raw data, we extracted the vector of
counts from the XML files produced by the ProteinChip© Software
3.1 rather than using its automatic procedures to export the data
in comma-separated values (csv) files. The correct alignment of
the spectra was verified by using heatmaps (plots not shown).
Each spectra was pre-processed using the algorithms described in
Section 2.1. MassSpecWavelet was not included in this part of the
analysis because it only performs peak detection. PROcess has two
algorithms to estimate the baseline, one uses local interpolation
while the other applies local regression, we included both variants
and denoted them as PROcess1 and PROcess2, respectively. The
specific settings used for each package can be found in the
Supplementary Material.

We identified a set of plausible peaks using the Ciphergen’s
software. From the set of detected peaks produced by Ciphergen,
we only kept the peak locations that were detected in at least half of
the replicates and were located within the m/z range corresponding
to the laser power protocol used to acquire the profiles: 1500–10 000,
10 000–30 000 and 30 000–200 000 for low, medium and high laser
power settings, respectively. We found 455 peaks, which split into
233, 123 and 99 peaks for data acquired using low, medium and high
laser intensity, respectively. Figure 2 shows that these peaks match
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Fig. 3. (a) Comparison of algorithms based on the CV of peak intensities. We include two algorithms from the PROcess package. PROcess1 uses local
interpolation to estimate the baseline, while PROcess2 applies local regression. The number of CVs per laser intensity is nlow =233, nmed =123 and nhigh =99,
respectively. Those cases when the CV is negative or higher than 1.5 are not shown, they account for 1.5% and 2.8% of the location peaks, respectively.
(b) Ratio of CVs with PROcess1 in the denominator. Negative ratios or ratios higher than 8 are not shown, they represent 0.9% and 2.8% of the location
peaks, respectively.

well with the peaks that appear in the mean raw spectrum. Similar
results were found for all fractionations and laser intensities.

For each detected peak, x, we quantify its intensity in the
individual spectra as the local maximum within the m/z interval
[(1−0.003)x,(1+0.003)x]. The reproducibility of the pre-processed
spectra was calculated as the CV of the peak intensity for x across
all 36 replicates.

To analyze the CVs, we used a repeated measures ANOVA with
between-subject factors. This model is adequate for this application
because we have both, within- and between-subject factors. At each
peak location (subject), we measure five CVs, each corresponding to
a particular algorithm (within-subject factor). In addition, the peak
locations are grouped according to laser intensity (between-subject
factor).

We applied the repeated measures ANOVA model to the log-
transformed data. The transformation helps to better satisfy the
assumptions of normality and equal variances. Not all the algorithms
for baseline subtraction guarantee that the intensities in the baseline-
subtracted spectra will be positive, as a consequence the CVs do not
need to be positive. We removed the peak locations with any negative
CV, they accounted for 1, 6 and 2 peak locations detected with low,
medium and high laser intensity, respectively.

Let ykij denote the logarithm of the CV using algorithm j from
the i-th peak location obtained with laser intensity k. The repeated
measures ANOVA model with between subjected factors can be
written as

ykij =µ+γk +τj +
(
γ τ

)
kj +πi(k) +ekij, (3)

where

• µ is the overall mean,

• γk is the fixed effect of laser intensity k, with
∑3

k=1γk =0,

• τj is the fixed effect of the algorithm j, with
∑5

j=1τj =0,

• (γ τ )kj is the fixed effect for the interaction of the k-th group

and the algorithm j, with
∑3

k=1(γ τ )kj =
∑5

j=1(γ τ )kj =0,

• πi(k) are independent random effects for the i-th subject in the

k-th group, with πi(k) ∼N(0,σ 2
π ),

• ekij are independent random error terms, with ekij ∼N(0,σ 2
e ).

To test differences among laser intensities, algorithms and their
interaction we used F-tests. The specific expressions for the
F-statistics are given by Davis (2002). The P-values were all
smaller than 0.0001. The between group test indicates that the laser
intensity used to produce the data has a significant effect on the
performance of the algorithms. The within-subject test indicates
that there are significant differences on the reproducibility attained
by each pre-processing algorithm. And finally, the test for the
interaction between the variables’ laser intensity and algorithm
suggests that the differences among the performances of the pre-
processing algorithms change when we analyze data produced with
different laser intensities.

Figure 3a shows the CVs by algorithm and laser intensity. The
CVs associated with peak locations detected with the high laser
intensity are relatively smaller than low and median intensities.
Taking ratios of CVs at each peak location, with PROcess1 in
the denominator, we find (Fig. 3b) that all algorithms tend to be
less reproducible than PROcess1. Furthermore, the ratios increase
with laser intensity ranging from low to high, for example, with
Ciphergen the percentage of peak locations with a ratio greater than 2
goes from 2% at low laser intensity to more than 20% and 50% at
medium and high laser intensities, respectively.
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To verify the robustness of our results to different sets of detected
peaks, we performed peak detection using MassSpecWavelet. In this
case, the set of detected peaks has 495 elements and includes 80%
of the peaks detected with Ciphergen. The results using this new
set of peaks were similar to those reported here. See Supplementary
Material for an analogous Figure 3.

For any given spectrum, there is a low-mass region where the
spectrum is not reliable because is dominated by the matrix signal.
Such region is typically ignored by pre-processing algorithms, such
as those we consider in this study. The results reported here were
obtained using a cutoff equal to 1500 m/z. We verified by visual
inspection of the spectra that the magnitude of the noise above
1500 m/z was relatively stable. For spectra acquired using medium
and high laser intensity, the cutoff could be increased since the data
were used to quantify peaks in the m/z range from 10 000 to 30 000
and 30 000 to 200 000, respectively. We repeated the analysis using
the m/z cutoffs 1500, 9000 and 28 000 for low, medium and high laser
intensity, respectively. The results were similar to those reported
here, an analogous Figure 3 can be found in the Supplementary
Material.

3.2 Peak detection
To compare the performance of the algorithms in terms of peak
detection, we used an extensive simulation study that includes 100
experiments. Each experiment has 50 spectra and 150 true peaks
distributed in the range from 1500 to 25 000 m/z.

MassSpecWavelet, PROcess and Cromwell were applied over the
100 experiments. For SpecAlign and Ciphergen only 10 experiments
were considered because for those packages the modification
of the settings for peak detection must be done manually. See
Supplementary Material for the specific settings used for each
algorithm. The sensitivity and FDR for each set of detected peaks
were computed as explained in Section 2.2.2. We used different
signal-to-noise thresholds and obtained, for each algorithm, a set of
FDR–sensitivity curves, one per experiment.

We summarized the results by computing the mean of the FDR–
sensitivity curves. For each algorithm and signal-to-noise threshold
there are as many combinations of FDR and sensitivity as the number
of analyzed experiments. By computing for each signal-to-noise
threshold the mean of its FDRs and sensitivities, respectively, we
obtained a mean version of the FDR–sensitivity curves. Figure 4
shows the mean FDR–sensitivity curves by algorithm. On average,
MassSpecWavelet has the highest mean sensitivities, and thus,
the best performance. Ciphergen is the only competing package
that reached mean sensitivity levels similar to those produced by
MassSpecWavelet, but only with mean FDRs above ∼0.4. On the
other hand, PROcess showed the worst performance with a mean
sensitivity below 0.5 for any mean FDR in the range from 0 to
0.6. Since the poor performance of this algorithm was evident by
visually comparing the sets of detected peaks with the spectra, we
tried to obtain better results by modifying the peak detection settings;
however, we were not able to find a combination with good visual
results, this situation is reflected in its mean FDR–sensitivity curve.

To take into account the variability of the sensitivity across
experiments, we computed the sensitivity of the algorithms at given
values of FDR. Specifically, we used every FDR–sensitivity curve to
approximate, by linear interpolation, the sensitivity associated with
a FDR of 0.1, 0.2 and 0.3, respectively. Figure 5 contains boxplots
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Fig. 5. Sensitivities by FDR and algorithm. Each boxplot represents the
sensitivities at the given level of FDR computed across the experiments. The
number of sensitivities that each boxplot represents is equal to the number
of analyzed experiments: 100 for MassSpecWavelet and Cromwell, and 10
for Ciphergen and SpecAlign.

of those sensitivities grouped by algorithm and FDR. PROcess
is not included because its sensitivities were all below 0.5. The
results are similar to those found using the mean FDR–sensitivity
curves. MassSpecWavelet is clearly the algorithm with the best
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performance, being the only algorithm that reaches sensitivities
above 0.95 with a FDR of 0.1. It is followed by Ciphergen whose
sensitivities increase constantly when the FDR goes from 0.1 to 0.3.
The results in Figure 5 can also be presented in terms of peak counts.
See Supplementary Material for a table summarizing the numbers
of missed peaks and falsely discovered peaks by various methods.

4 DISCUSSION
MS data requires several pre-processing steps in order to identify the
location of peaks and quantify their intensities. Since any high-level
statistical analysis relies on the quality of the pre-processing, it is of
interest to compare the performance of competitive methods.

In this article, we considered MS data produced with
the method of SELDI-TOF MS. Our comparison of pre-
processing algorithms/approaches for this type of data included the
Bioconductor packages PROcess and MassSpecWavelet available
through R, the freely available software SpecAlign, the set of Matlab
scripts, Cromwell, developed by the bioinformatics group at the MD
Anderson Cancer Center and the commercial software produced by
Ciphergen, which is commonly used in SELDI studies but whose
relative performance with other competing algorithms had not been
systematically explored. We evaluated their performances in terms
of their primary functions: peak detection and peak quantification.

Regarding peak quantification, we found that the R package
PROcess produced more reproducible results (Fig. 3). However,
the results were not homogeneous across laser intensities. The
differences among the methods were larger with data produced
at high and medium laser intensities. In terms of peak detection,
we found that the packages with the best performance were
MassSpecWavelet and Ciphergen (Figs 4 and 5).

In working with the peak detection algorithms we noticed the
following. In general, when performing peak detection it was
easier to tune the parameters for MassSpecWavelet, Ciphergen
and SpecAlign; we were able to get sensible results by only
modifying the threshold for the signal-to-noise ratio while using
the defaults settings for the other parameters. In terms of the
required pre-processing steps, all the packages, with the exception
of MassSpecWavelet, perform peak detection on the pre-processed
spectra. Thus, MassSpecWavelet is the only algorithm, from among
those we considered in this study, not sensitive to the previous pre-
processing steps. Finally, our experience using Ciphergen’s software
suggests that with both, real and simulated data, there exists very
good agreement between the detected peaks and those that can
be visually detected in the mean spectrum (Fig. 2). Our results
thus indicate that analyzing individual spectra is aceptable for peak
detection; at least as implemented by the Ciphergen software.

Our peak detection comparison included corroboration with Du
et al. (2006). In that study, curves of FDR–sensitivity were used
to compare MassSpecWavelet, PROcess and Cromwell, and it
was argued that the relative performance among the algorithms
is explained by the estimate of the signal-to-noise ratio used in
each case. The main difference between the peak detection study
conducted by Du et al. (2006) and the one reported in this article is
the data set that was used to perform the comparison. Experimental
data set with 60 spectra and 21 true peaks was used by Du et al.
(2006), while we considered simulated data with 50 spectra and 150
true peaks. Thus, the comparison of the algorithms in terms of peak
detection is robust to different number of peaks.

Combining the results for the two criteria, we obtain some
guidelines regarding the best algorithms for pre-processing of
SELDI-TOF MS data. For data generated with low laser intensity,
our results suggest that the software developed by Ciphergen is
able to produce relatively good results, i.e. its reproducibility when
measuring peak intensities is comparable to that of other algorithms,
while its performance for peak detection is only surpassed by
MassSpecWavelet. On the other hand, for medium and high laser
intensity, none of the methods show uniformly better performances
under both criteria. For these laser intensities, our results suggest
that an advantageous combination is the use of the Bioconductor
packages, MassSpecWavelet and PROcess, the former for peak
detection and the latter for peak quantification.

The results reported in this article may be able to apply to
other variants of MALDI-TOF MS. However, a cautionary note is
that some of the methods included in this study were specifically
developed for pre-processing of data collected by SELDI. For
other types of MS data, our approach based on considering the
reproducibility of the peak quantification as well as the FDR and
sensitivity of the peak detection could be used to compare the
performance of pertinent algorithms.
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