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S

The increased collection of high-dimensional data in various fields has raised a strong
interest in clustering algorithms and variable selection procedures. In this paper, we pro-
pose a model-based method that addresses the two problems simultaneously. We introduce
a latent binary vector to identify discriminating variables and use Dirichlet process mixture
models to define the cluster structure. We update the variable selection index using a
Metropolis algorithm and obtain inference on the cluster structure via a split-merge
Markov chain Monte Carlo technique. We explore the performance of the methodology
on simulated data and illustrate an application with a  microarray study.

Some key words: Bayesian inference; Clustering; Dirichlet process mixture model; DNA microarray data
analysis; Variable selection.

1. I

In recent years, high-dimensional datasets have become common in various areas of
application. Often, the goal of the analysis is to uncover the group structure of the
observations and identify variables that best distinguish the different groups. A typical
example is the analysis of  microarray data, where there is interest in discovering
disease subtypes and isolating discriminating genes. The results could lead to a better
understanding of the underlying biological processes and help develop targeted treatment
strategies.
The practical utility of variable selection is well recognised and several methods have

been developed for regression and classification models; see for example George &
McCulloch (1993) and Sha et al. (2004). Few contributions have been made in the context
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of clustering. This is a more challenging problem since there is no observed response to
guide the selection. In addition, the inclusion of unnecessary variables could complicate
or mask the recovery of the clusters (Tadesse et al., 2005). Liu et al. (2003) address the
problem by first reducing the dimension of the data using principal component analysis
and then fitting to the factors a mixture model with a fixed number of clusters. They use
Markov chain Monte Carlo sampling techniques to update the sample allocations and
the number of factors deemed relevant for the clustering. In practice, however, the number
of clusters is not known and there is often interest in evaluating the actual variables. The
principal components, which are linear combinations of all variables, do not have a
straightforward interpretation. Recently, Friedman & Meulman (2004) have proposed an
algorithmic approach for clustering observations on separate subsets of variables. They
formulate the problem in terms of distance-based clustering with weighted variables. They
use heuristic search strategies to find an optimal weighting of the variables while jointly
minimising the clustering criterion. Their approach works in conjunction with hierarchical
clustering, and hence does not provide inference on the number of clusters, nor does it
provide a measure of uncertainty for the sample allocations. Model-based approaches
have also recently been proposed. Hoff (2006) adopts a mixture of Gaussian distributions
where different clusters are identified by mean shifts. The model parameters are updated
using Markov chain Monte Carlo sampling techniques and Bayes factors are computed
to identify discriminating variables. Both Friedman & Meulman’s and Hoff ’s methods
allow separate subsets of variables to discriminate different groups of observations. Tadesse
et al. (2005) have put forward a variable selection method in which latent variables are
introduced to identify discriminating variables and the clustering is formulated in terms
of a finite mixture of Gaussian distributions with an unknown number of components.
They used a reversible jump Markov chain Monte Carlo technique to allow for the
creation and deletion of clusters. Unlike the procedures of Friedman & Meulman and
Hoff, this approach assumes that the same subsets of variables discriminate across all
components. However, the variable selection technique they adopt has the advantage of
allowing flexible inference on both joint and marginal posterior distributions of the
variables.
In this paper, we build on the model of Tadesse et al. (2005) by formulating the clustering

in terms of an infinite mixture of distributions via Dirichlet process mixtures. Samples
from a Dirichlet process are discrete with probability one and can therefore produce a
number of ties, thereby forming clusters.

2. M 

2·1. Clustering via Dirichlet process mixture models

A long-standing issue in all clustering procedures, including mixture models
(McLachlan & Basford, 1988; Banfield & Raftery, 1993), is the problem of determining
the number of clusters. This can be handled by fitting finite mixtures with an unknown
number of components, such as the reversible jump Markov chain Monte Carlo algorithm
(Richardson & Green, 1997; Tadesse et al., 2005) and continuous time Markov birth-
death processes (Stephens, 2000a), which allow for creation and deletion of components.
An alternative approach is to define mixture distributions with a countably infinite number
of components. These models can be implemented by employing a Dirichlet process prior
for the mixing proportions (Antoniak, 1974; Ferguson, 1983), and various Markov chain
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Monte Carlo sampling methods for fitting Dirichlet process mixture models have been
developed (Escobar, 1994; MacEachern, 1994; Escobar & West, 1995; MacEachern &
Müller, 1998).
Let X= (x1 , . . . , xn ) be independent p-dimensional observations arising from a mixture
of distributions F(h

i
). The model parameters specific to individual i, h

i
, are assumed to

be independent draws from some distribution, G, which in turn follows a Dirichlet process
prior. This leads to the following hierarchical mixture model:

x
i
|h
i
~F(h

i
),

h
i
|G~G,

G~(G
0
, a),

(1)

where G0 defines a baseline distribution for the Dirichlet process prior, such that
E(G)=G0 , and a is a concentration parameter. The Pólya urn scheme representation of
the Dirichlet process provides the basis for most computational strategies to fit this model
(Blackwell & MacQueen, 1973). Integrating over G allows the h

i
to be written in terms

of successive conditional distributions:

h
i
|h
−i
~

1

n−1+a
∑
kNi
d(h
k
)+

a

n−1+a
G
0
, (2)

where d(h
k
) is a point mass distribution at h

k
.

Equivalent models can be obtained by taking the limit as K�2 of finite mixture
models with K components. This leads to

x
i
|c
i
, w~F(w

c
i

),

c
i
|p~Discrete ( p

1
, . . . , p

K
),

w
c
~G
0
,

p~Dir (a/K, . . . , a/K ),

(3)

where the latent variable c
i
indicates the cluster allocation of sample i and w

c
i

corresponds
to the identical h

i
’s. As shown in Neal (2000), integrating over the mixing proportions p

and taking K�2 leads to the following prior for c
i
:

pr (c
i
=c
l
for some lN i|c

−i
)=

n
−i,c
ln−1+a

,

pr (c
i
Nc
l
for all lN i|c

−i
)=

a

n−1+a
, (4)

where n
−i,c
is the number of c

l
=c for lN i. Thus, sample i is allocated to an existing

cluster with probability proportional to the cluster size and it is assigned to a new cluster
with probability proportional to a. As shown in Antoniak (1974), the prior probability
of observing exactly k distinct clusters is given by

pr (K=k|a, n)=
n
a
k
ak

1

A
n
(a)

, (5)

where the coefficients
n
a
k
are the absolute values of Stirling numbers of the first kind

(Abramowitz & Stegun, 1964, p. 833) and A
n
(x)=

n
a1x+na2x2+…+

n
a
n
xn.
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If G0 in (3) is a conjugate prior for F, sampling from the posterior distribution using
Gibbs sampling is straightforward. We will consider a procedure in which conjugacy is
fully exploited as described by Neal (1992). Integrating out the model parameters w

c
isimplifies the algorithm considerably, as the latent indicators c

i
will then be the only

parameters to be updated. The conditional probabilities for the c
i
’s are then given by

pr (c
i
=c
l
for some lN i|c

−i
, x
i
)=b

n
−i,c
ln−1+a P F(x

i
; w)dH

−i,c
l

(w),

pr (c
i
Nc
l
for some lN i|c

−i,
, x
i
)=b

a

n−1+a P F(x
i
; w)dG

0
(w), (6)

where b is the appropriate normalising constant, and H
−i,c
is the posterior distribution

of w based on the prior G0 and all observations x
l
for which lN i and c

l
=c.

The Gibbs sampler and the sequential importance sampling (MacEachern et al., 1999),
which rely on the Pólya-urn-based incremental update, suffer from slow mixing. Several
methods have been developed to overcome this problem. One such approach is the blocked
Gibbs sampler of Ishwaran & James (2001) which updates blocks of parameters. Green
& Richardson (2001) have proposed the use of split/merge moves in the spirit of their
reversible jump procedure for finite mixture models (Richardson & Green, 1997). Jain &
Neal (2004) and Dahl (2006) have also proposed sampling schemes that involve splitting
and merging of clusters to circumvent the lack of mixing of the standard Gibbs sampler.
Here, we make use of Jain & Neal’s (2004) split-merge Markov chain Monte Carlo
procedure. The method, which is described in § 2·3, escapes local modes by separating or
combining a group of observations based on the Metropolis–Hastings algorithm.

2·2. Variable selection in clustering

Unlike linear models and classification problems, where the response variable is
observed and guides the selection, here the sample allocations are unknown parameters
that need to be estimated. Stochastic search variable selection techniques (George &
McCulloch, 1993; Brown et al., 1998) have been used successfully in various applications
to identify informative predictors. These methods introduce a latent binary vector c to
index all possible models and use the c

j
’s to induce a mixture prior on the corresponding

regression coefficients. However, clustering is different from a regression setting and the
following adjustment is needed to define the latent indicators (Tadesse et al., 2005):

c
j
=q1, if variable j defines a mixture distribution,

0, otherwise.
(7)

The latent vector c is therefore used to identify directly variables that discriminate between
the different groups. We denote byX

(c)
the set of variables that define mixture distributions

and by X
(cc)
the remaining variables which favour one multivariate density across all

observations.
Our goal is to combine the clustering and variable selection tasks. We assume that

F(w
c
i

) in (3) is an infinite mixture of Gaussian distributions with component parameters
w
k
= (m

k
, S
k
). Thus, conditional on the discriminating variables, we have

x
i(c)
|c
i
=k, w

k
, c~N(m

k(c)
, S
k(c)
) (8)
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and, with y= (g, V), the nondiscriminating variables follow

x
i(cc)
|y, c~N(g

(cc)
, V
(cc)
). (9)

The likelihood function therefore consists of the contribution from the clustering and
nonclustering covariates which, assuming no correlation between the two sets of variables,
is given by

L(c, c, w, y|X)= (2p)−{n(p−p
c
)}/2 |V

(cc)
|−n/2 expq− 12 ∑n

i=1
(x
i(cc)
−g
(cc)

)TV−1
(cc)

(x
i(cc)
−g
(cc)

)r
× a
K

k=1
(2p)−(n

k
p
c
)/2|S
k(c)
|−n
k
/2 expq−12 ∑

iµC
k

(x
i(c)
−m
k(c)

)TS−1
k(c)

(x
i(c)
−m
k(c)

)r,
(10)

where p
c
=Wp
j=1
c
j
and C

k
={i : c

i
=k, i=1, . . . , n} with cardinality n

k
. In practice, it is

plausible to have correlation between clustering and nonclustering variables, but it
is difficult to accommodate such structure. Our assumption provides computational
convenience. It is well known that high correlation among covariates complicates data
analysis. In our approach, since the component parameters are integrated out and not
estimated, we believe that the implications of ignoring the correlation between the two
sets of variables will be minimal.
For the prior specification on c, we consider its elements, c

j
, to be independent Bernoulli

random variables with common probability

pr (c)= a
p

j=1
vc
j
(1−v)1−c

j
, (11)

where v can be elicited as the proportion of variables expected a priori in the
discriminating set. Any further knowledge about some of the variables or their interactions
can be incorporated in the prior.
As mentioned above we specify conjugate priors and integrate out the mean and

covariance parameters. For computational convenience, we assume independence among
the nondiscriminating variables and set V=s2I

p×p
. We specify the prior distributions as

follows:

m
k(c)
|S
k(c)
~N(m

0(c)
, h
1
S
k(c)
), g

(cc)
|V
(cc)
~N(m

0(cc)
, h
0
V
(cc)
),

S
k(c)
~ (d; Q

1(c)
), s2~ (a, b),

(12)

where (d; Q1 ) is an inverse Wishart distribution with dimension p, shape parameter
d=n−p+1, n degrees of freedom and mean Q1/(d−2) (Brown, 1993, Appendix A). The
notation (a, b) denotes an inverse gamma distribution with mean b/(a−1 ) and variance
b2/{(a−1)2 (a−2)}. Small values of d lead to weak prior information. We set d=a=3,
the smallest integer such that the mean and variance of the corresponding densities are
defined, and take Q1=k1Ip×p . Some care is needed in the choice of k1 and b. These
hyperparameters need to be specified in the range of variability of the data. We found
values close to the mean variance of the columns of X to yield reasonable results. For the
mean parameters, we take the priors to be fairly flat over the region where the data are
defined. Each element of m0 is set to the corresponding covariate interval midpoint. Values
of h0 and h1 between 10 and 1000 performed well. These data-based priors ensure that
the prior distributions overlap with the likelihood and that we obtain well-behaved
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posterior densities. As mentioned in Richardson & Green (1997), in mixture models
it is not possible to be fully noninformative and obtain proper posterior distributions.
This point is also emphasised by Wasserman (2000), who proposed data-dependent
priors in the context of finite mixtures. A comprehensive discussion about various prior
specifications and their effects is provided in Kass & Wasserman (1996). The authors
argue that the use of diffuse proper priors in complex statistical models can lead to
posteriors with undesirable properties.
After the component parameters are integrated out, the marginalised likelihood becomes

f (X|c, c)=p−np/2 a
K

k=1
{H
k(c)
|Q
1(c)
|(d+p
c
−1)/2 |Q

1(c)
+S
k(c)
|−(n
k
+d+p

c
−1)/2}H

0(cc)
(S
0(cc)

)−(a+n/2),

(13)

in which

H
k(c)
= (h
1
n
k
+1)−p

c
/2 a
p
c
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C{(n
k
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c
− j )/2}

C{(d+p
c
− j )/2}

,

H
0(cc)
= (h
0
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c
)/2ba(p−p

c
) a
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,

S
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= ∑
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k
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−x: k(c) ) (xi(c)−x: (k(c) )T+

n
k

h
1
n
k
+1

(m
0(c)
−x: k(c) ) (m0(c)−x: k(c) )T,

S
0(cc)
= a
p−p
c

j=1
Cb+ 1

2q ∑n
i=1

(x
ij(cc)
−x: j(cc) )2+

n

h
0
n+1

(m
0j(cc)
−x: j(cc) )2rD ,

where x: k(c) is the sample mean of cluster k, and x: j(cc) is the sample mean of the jth
nondiscriminating variable.

2·3. Model fitting

We update the variable selection index using repeated Metropolis steps and carry out
inference on the cluster structure using the Jain & Neal (2004) split-merge algorithm. Our
procedure iterates between the following steps.

Step 1. Update the latent variable selection indicator c by repeating the following
Metropolis step t times. A new candidate cnew is generated by randomly choosing one of
two transition moves:
(i) add/delete by randomly picking one of the p indices in cold and changing its value;
(ii) swap by drawing independently and at random a 0 and a 1 in cold and switching
their values.

The new candidate is accepted with probability

minq1, f (cnew |X, c)

f (cold |X, c) r , (14)

where f (c|X, c)3 f (X|c, c) pr (c). This stochastic update was suggested for model selection
by Madigan & York (1995) and has been used extensively for variable selection in linear
models by George & McCulloch (1997), among others, and in classification by Sha et al.
(2004). In the context of clustering, we are dealing with a more complex model where
there is no observed outcome to guide the selection. Instead, the variable selection and
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the cluster structure evolve simultaneously. Therefore, to allow the selection to stabilise
for a given cluster configuration, we repeat the Metropolis steps a number of times. In
general, we found little improvement in the Markov chain Monte Carlo performance
beyond 20 intermediate Metropolis steps.

Step 2. Update the latent sample allocation vector c using Jain & Neal’s (2004) split-
merge procedure, as follows. Start by selecting two distinct observations, i and l at random
uniformly. Let C denote the set of observations, kµ{1, . . . , n}, for which kN i, kN l and
c
k
=c
i
or c
k
=c
l
.

Case 1. If C is empty, use the following simple random split-merge algorithm.
(a) If c

i
=c
l
, then

(i) the component is split such that a new component csplit
i
1{c
1
, . . . , c

n
} is

created, the allocations for the other observations remaining unchanged;
(ii) the proposal is accepted with probability

a(csplit, c)=minq1, q(c|csplit ) pr (csplit )L (csplit |X, c)

q(csplit |c) pr (c)L (c|X, c) r ,
where

q(c|csplit )
q(csplit |c)

=1,
pr(csplit )
pr (c)

= a,

L (csplit |X, c)

L (c|X, c)
=

{∆ F(x
i
; w, c)dG

0
(w, c)}{∆ F(x

l
; w, c)dG

0
(w, c)}

∆ F(x
i
; w, c)F(x

l
; w, c)dG

0
(w, c)

=
(1+2h

1
)p
c
/2

(1+h
1
)p
c

×
|Q
1(c)
|(d+p
c
−1)/2 |Q

1(c)
+S
il(c)
|(d+p
c
+1)/2

( |Q
1(c)
+S
i(c)
| |Q
1(c)
+S
l(c)
| )(d+p

c
)/2

× a
p
c

j=1

[C{(d+p
c
+1− j )/2}]2

C{(d+p
c
− j )/2}C{(d+p

c
+2− j )/2}

, (15)

S
i(c)
= (1+h

1
)−1 (x

i(c)
−m
0(c)

) (x
i(c)
−m
0(c)

)T,

S
il
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1
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−m
0(c)

) (x
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−m
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)T+ (x
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) (x
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−m
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)T
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−x
l(c)

) (x
i(c)
−x
l(c)

)T}.

(b) If c
i
Nc
l
, then

(i) c
i
and c

l
are merged into a single component, cmerge ;

(ii ) the proposal is accepted with probability

a(cmerge, c)=minq1, q(c|cmerge ) pr (cmerge )L (cmerge |X, c)

q(cmerge |c) pr (c)L (c|X, c) r ,
where

q(c|cmerge )
q(cmrge |c)

=1,
pr (cmerge )
pr (c)

=
1

a
,

L (cmerge |X, c)
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=
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i
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l
; w, c)dG

0
(w, c)

{∆ F(x
i
; w, c)dG

0
(w, c)}{∆ F(x

l
; w, c)dG

0
(w, c)}

.
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Case 2. If C is not empty, the following restricted Gibbs sampling split-merge is used
(a) Start by building a launch state as follows:

(i) if c
i
=c
l
, then split the component such that claunch

i
1{c
1
, . . . , c

n
} and

claunch
l

=c
l
;

(ii ) if c
i
Nc
l
, then claunch

i
=c
i
and claunch

i
=c
l
;

(iii ) for every kµC, set claunch
k

independently and at random with probability 0·5
to either claunch

i
or claunch
l

;
(iv) perform t intermediate restricted Gibbs sampling scans to allocate each
observation kµC to either claunch

i
or claunch
l

using the conditional distribution

pr (c
k
|c
−k

, x
k
, c)

=
n
−k,c
k

∆ F(x
k
; w, c)dH

−k,c
k

(w, c)

n
−k,c
i

∆ F(x
k
; w, c)dH

−k,c
i

(w, c)+n
−k,c
l

∆ F(x
k
; w, c)dH

−k,c
l

(w, c)
, (16)

where

P F(x
k
; w, c)dH

−k,c
i

(w, c)

=p−p
c
/2A h

1
n
c
i

+1

h
1
n
−k,c
i

+1B−pc/2 apc
j=1

C{(n
c
i

+d+p
c
− j )/2}

C{(n
−k,c
i

+d+p
c
− j )/2}

×|Q
1(c)
+S
c
i
(c)
|−(n
ci
+d+p

c
−1)/2 |Q

1(c)
+S
−k,c
i
(c)
|(n
−k,ci
+d+p

c
−1)/2,

with

S
−k,c
i
(c)
=W
jNk:c
j
=c
i

(x
j(c)
−x: c
i
(c)

) (x
j(c)
−x: c
i
(c)

)T

+
n
−k,c
ih

1
n
−k,c
i

+1
(m
0(c)
−x: c
i

(c)) (m
0(c)
−x: c
i
(c)

)T

and S
c
i
(c)
is defined as in equation (13).

Jain & Neal (2004) found that the improvement in mixing is minimal after
five intermediate scans. The result from the last restricted Gibbs sampling scan
constitutes the launch state for the split-merge procedure.

(b) If c
i
=c
l
, then

(i) let csplit
i
=claunch
i

and csplit
l
=claunch
l

;
(ii ) for every observation kµC, perform one final Gibbs sampling scan from

claunch to set csplit
k
to either csplit

i
or csplit
l
using equation (16);

(iii ) the allocation for observations k1Cn{i, l} remains unchanged, csplit
k
=c
k
;

(iv) evaluate the proposal by the Metropolis–Hastings acceptance probability
a(csplit, c), where q(csplit |c) is obtained by computing the Gibbs sampling
transition probability from claunch to csplit.

(c) If c
i
Nc
l
, then

(i) let cmerge
i
=c
l
and cmerge

l
=c
l
;

(ii ) for every observation kµC, let cmerge
k
=c
l
;

(iii ) the allocation for observations k1Cn{i, l} remains unchanged, cmerge
k
=c
k
;

(iv) the proposal is accepted with probability a(cmerge, c), where q(c|cmerge ) is the
product over kµC of the probabilities of setting each c

k
in the original split

state to its value in the launch state.
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One iteration is completed after performing a full Gibbs sampling scan and updating
all sample allocations c

i
(i=1, . . . , n) from their conditional distributions given by

pr (c
i
=c
l
for some lN i|c

−i,
X, c)

3p−np
c
/2

n
−i,c
ln−1+aA h

1
n
c
l

+1

h
1
n
−i,c
l

+1B−pc/2 apc
j=1

C{(n
c
l

+d+p
c
− j )/2}

C{(n
−i,c
l

+d+p
c
− j )/2}

×|Q
1(c)
+S
c
l
(c)
|−(n
cl
+d+p

c
−1)/2 |Q

1(c)
+S
−i,c
l
(c)
|(n
−i,cl
+d+p

c
−1)/2, (17)

where

S
k(c)
= ∑
l:c
l
=k

(x
l(c)
−x: k(c) ) (xl(c)−x: k(c) )T+

n
k

h
1
n
k
+1

(m
0(c)
−x: k(c) ) (m0(c)−x: k(c) )T

and S
−i,k(c)

is the equivalent expression without the ith observation, and

pr (c
i
Nc
l
for all lN i|c

−i
, X, c)3p−np

c
/2

a

n−1+a
(h
1
+1)−p

c
/2 a
p
c

j=1

C{(1+d+p
c
− j )/2}

C{(d+p
c
− j )/2}

×|Q
1(c)
|(d+p
c
−1)/2 |Q

1(c)+S
i(c)

|−(d+p
c
)/2, (18)

where S
i(c)
= (h1+1)−1 (xi(c)−m0(c) ) (xi(c)−m0(c) )T.

The split-merge algorithm helps improve the mixing of the sampler, which is a typical
problem in fitting mixture models. The problem here is further aggravated by the inclusion
of variable selection. In cases where the sampler still exhibits poor performance, becoming
stuck at a local mode and not accepting the proposed split-merge moves, a tempering
scheme can be introduced. One such approach is the parallel tempering algorithm (Geyer,
1991). A series of distributions that interpolate between the distribution of interest and a
distribution from which sampling is easier are defined, such that f

t
(c|X, c)= f (c|X, c)1/T

t
,

for t=1, . . . , T . The procedure consists of the following steps.

Step 1: Parallel scan. For each chain with equilibrium distribution f
t
( . ), cold (T

t
) is updated

to cnew (T
t
) as described above.

Step 2: State exchange. Two neighbouring chains, T
t
and T

t∞
, are randomly chosen and

an attempt is made to swap cnew (T
t
) with cnew (T

t∞
). This update is accepted with probability

minq1, C f {cnew (Tt∞ ) |X, c}

f {cnew (T
t
) |X, c} D(T−1t −T−1t∞ )r .

3. P 

3·1. Inference about c

For inference about the cluster structure, a commonly used estimate is the maximum
a posteriori sample allocation vector, which corresponds to the configuration with highest
conditional posterior probability among those drawn by the Markov chain Monte Carlo
sampler:

c@= argmax
1∏t∏M

pr (c(t) |X, c@), (19)
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where c@ is the set of variables selected based on the marginal posterior probabilities
pr(c
j
=1|X).

We also investigate another estimator that relies on the posterior pairwise probabilities,
pr(c
i
=c
j
|X), estimated by the empirical frequencies in the Markov chain Monte Carlo

output. With a sample size n there are (n
2
) such pairwise posterior probabilities, which can

be viewed as entries of a symmetric n×n similarity matrix. An approach proposed by
Dahl (2006), which he refers to as least-squares clustering, estimates the cluster structure
by forming an association matrix at every Markov chain Monte Carlo iteration. Each cell
of the association matrix takes the value 1 if the corresponding row and column elements
are allocated to the same cluster and 0 otherwise. The sum of absolute deviations between
the entries of the association matrix and those of the similarity matrix is then calculated
for each Markov chain Monte Carlo output, and the configuration that minimises that
quantity is considered.

3·2. Inference about c

Inference about variables that discriminate between the different groups can be done
either through the joint posterior distribution of c or through the marginal posterior
distributions of its elements. The former selects variables based on

c@= argmax
1∏t∏M

pr (c(t) |X, c@), (20)

where c@ is the sample allocation estimated based on pr(c
i
=c
j
|X). The latter identifies the

variables with largest marginal posterior probabilities pr(c
j
=1|X), which are estimated

by the empirical frequencies in the Markov chain Monte Carlo output.

4. D 

4·1. Simulation study

We first investigate the performance of the methodology using simulated data. We
generate a dataset of 15 observations and 1000 variables, where a set of 20 variables are
chosen to separate the observations into four components:

x
ij
~I
{1∏i∏4}

N(m
1
, s2
1
)+I
{5∏i∏7}

N(m
2
, s2
2
)+I
{8∏i∏13}

N(m
3
, s2
3
)

+I
{14∏i∏15}

N(m
4
, s2
4
) (i=1, . . . , 15, j=1, . . . , 20), (21)

where I{ .} is the indicator function, equal to 1 if the condition is satisfied. Thus, the first
four observations are generated from one group, the next three come from the second
group, the next six are in the third group, and the last two fall in the fourth group. The
component parameters m

k
and s2

k
, for k=1, . . . , 4, are randomly chosen from [−5, 5] and

[0·01, 1] respectively. The remaining 980 variables, which do not separate the samples
into clusters, are drawn from a standard normal density.
We chose the hyperparameters h1 and k1 such that h1×k1 is close to the mean of the
empirical variances from the p variables. We set h1=1000 and found the results to be
quite robust for values of k1 in the range [5×10−4, 2×10−3]. For the nondiscriminating
variables, we chose b equal to the mean of the variances and found h0 values between 10
and 100 to perform well. We report here the results for a=1, d=a=3, k1=7×10−4,
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h0=100, b=0·2 and v=10/p. We started a Markov chain Monte Carlo run from a
vector c with 10 randomly selected elements set to 1 and each observation in a separate
cluster. We ran 100 000 iterations and used the first 40 000 as burn-in. At each iteration,
we performed 20 repeated Metropolis steps to update c and three restricted Gibbs scans
with one final Gibbs sampling to update c. We also used the parallel tempering algorithm
with two temperature ladders to improve further the mixing of the sampler. The temper-
atures were chosen such that the acceptance rates for exchanges between neighbouring
chains are between 0·5 and 0·7.
Figures 1(a) and (b) show respectively the trace plots for the number of clusters and

the number of discriminating variables. The sampler stabilised quickly around models
with 3 to 5 clusters and 15 to 20 discriminating variables. We estimated the cluster
allocations as described in § 3. The posterior sample allocations estimated using equation
(19) favoured five components with the last two observations assigned to separate clusters.
The allocations obtained using the pairwise probability estimates and the sum of absolute
deviations algorithm perfectly matched the true cluster structure. Figure 2(a) displays
the pairwise posterior probabilities, pr(c

i
=c
j
|X), of allocating observations i and j to the

same cluster. The groupings used to simulate the data are successfully identified. For
the variable selection, we ordered the visited vectors c(t) according to their posterior
probabilities and identified the ‘best’ subset as the c@ from equation (20). This vector
contained 17 variables, all of which are among the 20 discriminating covariates used to
simulate the data. We also looked at the marginal posterior probabilities, pr(c

j
=1|X),

which are displayed in Fig. 2(b). The x-axis in this plot corresponds to the variable indices
and the spikes indicate variables that have high posterior probabilities. The same 17
variables were selected at a marginal probability threshold of 0·7.
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Fig. 1: Simulated data with a=1 and v=10/p. Trace plots for (a) number of clusters, (b) number of
included discriminating variables.

We investigated the sensitivity of the results to the choice of a and v, which respectively
influence the number of clusters and the number of selected variables. In general, we found
the results to be quite robust to the values of these hyperparameters. Here, we report the
results for two different choices of each parameter. We took a=1 and a=15, the latter
of which is equal to the sample size. As shown in equation (5), the number of clusters is
defined a priori by the sample size n in the data and the choice of the hyperparameter a.
With a=1, the prior predictive distribution of the number of components turns out to
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Fig. 2: Simulated data with a=1 and v=10/p. (a) Pairwise posterior probabilities pr(c
i
=c
j
|X), (b) marginal

posterior probabilities pr(c
j
=1|X).

be concentrated between one and six, whereas with a=15 between 7 and 14 clusters
are expected a priori. For the variable selection hyperparameter, we chose v=10/p and
v=30/p. The trace plots for the corresponding Markov chain Monte Carlo output, not
shown, indicate that the inference on both the cluster structure and the selected variables
is similar to that for the case a=1 and v=10/p. However, a large value of a does make
the sampler visit models with more components, although there is still strong support for
models with three to five clusters. The four clusters are successfully identified and the
same 15 discriminating variables are selected. A larger value of a also affects the mixing
of the sampler in terms of the variable selection; this is not surprising since the cluster
structure and the variable selection evolve simultaneously.
This simulated dataset is identical to the one used in Tadesse et al. (2005), where a

finite mixture model with the reversible jump Markov chain Monte Carlo technique
was used to infer the cluster structures, and performed much better than Friedman &
Meulman’s (2004) clustering objects on subsets of attributes algorithm, which implements
variable selection in the context of hierarchical clustering.

4·2. DNA microarray data analysis

A typical application where clustering has become a common task is the analysis of
 microarray data, where thousands of gene expression levels are monitored on a few
experimental units. For example, Medvedovic & Sivaganesan (2002) used Dirichlet process
mixture models to cluster genes with similar expression patterns. Our goal here is different.
We want to uncover subclasses among the experimental units and identify genes that best
discriminate between the different groups. This could help identify disease subtypes and
understand some of the heterogeneity in treatment outcome for patients receiving similar
diagnoses.
We illustrate our methodology using the widely analysed leukaemia data of Golub et al.

(1999) and focus on the 38 patients from the training set. We followed the same pre-
processing as other investigators (Dudoit et al., 2002) by truncating expression measures



889Variable selection in clustering

beyond the threshold of reliable detection at 100 and 16 000, and by removing probe sets
with intensities such that max/min∏5 and max−min∏500. This left 3571 genes for
analysis. The expression readings were log-transformed and each variable was rescaled by
its range.
We chose the hyperparameters using similar guidelines to those of the simulated

example. We performed Markov chain Monte Carlo runs with a set to 1 and 38. The
other hyperparameters were taken to be d=a=3, h0=100, h1=10, k1=0·06, b=0·1 and
v=20/p. For both values of a, we ran two chains with different initial models, one in
which all c

j
’s except one are set to 0, and the other in which 10 randomly chosen c

j
’s are

set to 1. In all cases, the sampler was started with all observations assigned to one cluster
and 200 000 iterations were run with the first 100 000 used as burn-in.
Figures 3(a) and (b) give the summary trace plots for the number of clusters and the

number of discriminating variables using a=38 for one of the chains. The sampler mixed
well mostly visiting models with four to seven components. As for the number of variables,
the chain stabilised near models with 120 discriminating variables. The second run gave
similar results. For posterior inference, we pooled the output from the two chains by
taking the union of the sets of visited models. The sample allocation estimates based on
the maximum a posteriori probability and those based on the least-squares clustering
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Fig. 3: Microarray data. Trace plots for (a) number of clusters with a=38, (b) number
of discriminating variables with a=38, (c) number of clusters with a=1, (d) number of

discriminating variables with a=1.
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algorithm, as described in § 3, were respectively

c@MAP= (1, 2, 1, . . . , 1, 1, 1, . . . , 1, 1, 1, 1,
agggggbgggggc

ALL

2, 1, 4, 5, 3, 2, 3, 4, 2, 2, 7)
aggggbggggc

AML

,

c@LSC= (1, 2, 1, . . . , 1, 2, 1, . . . , 1, 2, 1, 1,
agggggbgggggc

ALL

2, 1, 4, 5, 3, 2, 3, 6, 2, 2, 7)
aggggbggggc

AML

.

Figure 4(a) displays a heatmap of the pairwise posterior probabilities, pr(c
i
=c
j
|X). The

first 27 indices correspond to the acute lymphoblastic leukaemia ( ) patients and the last
11 to the acute myeloid leukaemia ( ) patients. Except for patient 25, and to a lesser
extent patients 2, 12 and 20, all pairs of observations among the  group have a high
probability of being assigned to the same cluster. The  group instead exhibits less
homogeneity. Thus, all results indicate that we are able to separate successfully the 
and  patients and suggest that there may be subgroups among the ’s.
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Fig. 4: Microarray data. (a) Pairwise posterior probabilities pr(c
i
=c
j
|X), (b) heatmap of selected genes.

For inference on the variable selection, we computed the marginal posterior probabilities
of the c

j
’s. Differences in marginal posterior probabilities for each gene across the two

Markov chain Monte Carlo chains were minimal. There is good concordance in the results
despite the different starting points. This suggests that similar regions were visited by the
two chains. After pooling the output, we recomputed the marginal posterior probabilities.
There were 116 genes with marginal posterior probabilities greater than 0·7. A heatmap
of the selected genes is given in Fig. 4(b), where the columns correspond to the samples
and the rows represent the log gene expression levels. These genes clearly discriminate
the  patients, columns 1 to 27, and  patients, columns 28 to 38. We also looked
at the genes selected based on the c@ vector from equation (20). This set contained 120
genes that included all the 116 selected with the marginal inference. A large number of
the genes identified by our method as discriminating between the different groups are
known to be implicated with the differentiation or progression of leukaemia cells. Some
of the selected genes include the Charcot–Leyden crystal protein coding gene, which is
known to be down-regulated in  patients with high white blood cell count, the 
gene, which is expressed in acute leukaemia samples, with highest association in 
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tumours carrying t(8; 21) to t(15; 17) chromosomal abnormalities that have a relatively
favourable prognosis, and the myeloid cell nuclear differentiation antigen, which is
correlated with myeloid and monocytic differentiation of acute leukaemia but is absent
in .
We repeated the analysis with a=1. Figures 3(a) and (b) show the corresponding trace

plots for the number of clusters and the number of discriminating variables. The sampler
visited models with 3 to 6 clusters and around 120 discriminating variables. We note again
a slightly slower mixing for smaller values of a, with the chain reaching 120 variables only
at around iteration 140 000. The posterior sample allocations were given by

c@MAP= (1, . . . , 1, 1, 1, . . . , 1, 1, 1, 1,
aggggbggggc

ALL

2, 2, 4, 3, 3, 2, 3, 6, 2, 2, 5)
aggggbggggc

AML

,

c@LSC= (1, . . . , 1, 2, 1, . . . , 1, 2, 1, 1,
aggggbggggc

ALL

2, 2, 4, 5, 3, 2, 3, 6, 2, 2, 5)
aggggbggggc

AML

.

The  and  samples are successfully separated. Samples 12 and 25 from the 
class appear to be closer to some of the observations among the  group. Again,
we note more heterogeneity among the latter, suggesting potential  subtypes. The
posterior inference on the variable selection identified 100 genes based on marginal
posterior probabilities greater than 0·7, and 112 genes based on the c@ vector with highest
joint posterior probability. These were all included in the set of discriminating genes
identified in the previous analysis.

5. D

The use of infinite mixture models is an attractive alternative to finite mixture models,
which require a dimension-jumping technique to create and delete clusters. With the
Dirichlet process mixture models, the creation and deletion of clusters is naturally taken
care of in the process of updating the sample allocations.
We have adopted two approaches for estimating the sample allocations. One could also

draw inference conditional on a fixed number of clusters, for instance by conditioning on
the value most frequently visited by the sampler. However, this has the limitation of using
only a subset of the Markov chain Monte Carlo output. In addition, with the Gibbs
sampling update adopted here, a label-switching problem arises since the likelihood is
invariant under permutation of the component labels. This problem can be handled using
Stephens’ relabelling algorithm, in which the Markov chain Monte Carlo output is post-
processed to minimise an appropriate loss function (Stephens, 2000b). Alternative posterior
estimators can also be obtained by using the Rao–Blackwellisation method or by using
decision theoretic approaches.
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