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Grouping the 20 residues is a classic strategy to discover ordered patterns
and insights about the fundamental nature of proteins, their structure, and
how they fold. Usually, this categorization is based on the biophysical and/
or structural properties of a residue's side-chain group. We extend this
approach to understand the effects of side chains on backbone conformation
and to perform a knowledge-based classification of amino acids by com-
paring their backbone ϕ,ψ distributions in different types of secondary
structure. At this finer, more specific resolution, torsion angle data are often
sparse and discontinuous (especially for nonhelical classes) even though a
comprehensive set of protein structures is used. To ensure the precision of
Ramachandran plot comparisons, we applied a rigorous Bayesian density
estimation method that produces continuous estimates of the backbone ϕ,ψ
distributions. Based on this statistical modeling, a robust hierarchical
clustering was performed using a divergence score to measure the similarity
between plots. There were seven general groups based on the clusters from
the complete Ramachandran data: nonpolar/β-branched (Ile and Val), AsX
(Asn and Asp), long (Met, Gln, Arg, Glu, Lys, and Leu), aromatic (Phe, Tyr,
His, and Cys), small (Ala and Ser), bulky (Thr and Trp), and, lastly, the
singletons of Gly and Pro. At the level of secondary structure (helix, sheet,
turn, and coil), these groups remain somewhat consistent, although there are
a few significant variations. Besides the expected uniqueness of the Gly and
Pro distributions, the nonpolar/β-branched and AsX clusters were very
consistent across all types of secondary structure. Effectively, this consis-
tency across the secondary structure classes implies that side-chain steric
effects strongly influence a residue's backbone torsion angle conformation.
These results help to explain the plasticity of amino acid substitutions on
protein structure and should help in protein design and structure evaluation.
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Introduction

Classification of the 20 amino acids simplifies ana-
lysis and helps uncover relationships that are impor-
tant to protein structure, folding, and function. Such
an understanding is especially important in explain-
ing the less-than-straightforward plasticity found bet-
ween sequence and structure space. Many positions
ess: jwtsai@tamu.edu.
heet; T, turn; C, coil;
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within a protein sequence can absorb a wide variety
of substitutions. In this study, the amino acids are
grouped based on the differences and similarities in
backbone torsion angle distributions seen in Rama-
chandran plots.1 As shown previously, Ramachan-
dran plots provide a simple and direct evaluation of
the main chain's conformational space.2,3 In this
work, we take a knowledge-based approach to amino
acid classification and measure the similarity that the
various side-chain functional groups have upon the
conformation of the main-chain polymer.
Typical classification of amino acids has naturally

focused on the side chain or the portion of a residue
d.
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that is different, since the main chain is a repetitive
polymer. Themost straightforwardmethod has been
the use of the chemistry of an amino acid, such as
hydrophobicity,4 in grouping amino acids. How-
ever, the size, shape, and chimeric chemistry of some
side chains complicate such chemical classification.
For example, the side chain of Lys is considered
a charged group, but the positive charge follows a
long nonpolar chain of four carbon atoms. On the
other hand, Trp is a bulky aromatic groupwith some
hydrophilic tendencies, but this side chain is often
considered a large hydrophobic residue. Using these
hydrophobicity-based groupings to reduce the
amino acid alphabet, insights into protein design
have been made in structure/folding,5 as well in as
enzyme catalysis.6 Computational/knowledge-
based approaches have also been used to group
amino acids.7–10 Such clustering of amino acids has
been used to improve sequence alignments,11 as well
as remote homolog detection.12,13

In this work, we approach amino acid clustering
from a classic structural point of view based on ϕ,ψ
backbone distributions, which has been performed
previously.14–17 Taking this analysis a step further,
we increase the resolution of this analysis by also
making classifications based on four secondary
structure types: helix (H), sheet, (E), turn (T), and
coil (C). To make accurate comparisons between dif-
ferent residues' Ramachandran plots, we must first
overcome the sparse and discontinuous sampling of
ϕ,ψ space in the Protein Data Bank (PDB).18 Even
though information on known structures is substan-
tial19 in the PDB, it is not enough to adequately
sample backbone torsion angle space for all resi-
dues,16 especially when the data are further divided
into secondary structure types. Several approaches
have been use to address this sampling problem. The
simplest have been 1) to use a large set of PDB
structures,14 which oversamples certain folds and
therefore regions of ϕ,ψ space, and 2) an increased
bin size of 10°×10° or larger,14–17 which also reduces
resolution and accuracy. Another approach is to
smooth the data using basic interpolation,20 a
Gaussian approximation,16 or an empirically derived
density-dependent mask.21 When the data become
too sparse, smoothing unknown values becomes less
reliable. In this work, we consider Bayesian density-
estimated representations of a residue's ϕ,ψ distribu-
tions to deal with the sparsity of data. Such modeling
allows meaningful comparisons between Ramachan-
dran plots and is particularly effective for analyses
classified by secondary structure, where data are
even sparser. A Bayesian-based approach has been
used previously22 on the complete backbone torsion
angle space. Unlike our objective of modeling conti-
nuous densities from sparse data, the goals of their
Fourier-based statistical formulation were to avoid
oversampling regions of the Ramachandran plot and
to produce a single well-behaved distribution for use
as a statistical potential function. In this work, we
model all 20 amino acids (as well as their four se-
parate secondary structure classes) by taking a non-
parametric Bayesian approach with a Dirichlet pro-
cess mixture model that recognizes the uncertainty in
the number of components and allows it to vary. This
estimation in our model is simple and can be carried
out via standard computational methods. The results
of this modeling allow us to investigate the backbone
propensities at a finer resolution of individual secon-
dary structures. As an example, we cluster residues
based on their ϕ,ψ distributions and infer construc-
tive insights into the relationship between protein
sequence and structure. In effect, by grouping on the
ϕ,ψ torsion angle distributions, we are able to inves-
tigate the influence of the side chain on its respective
backbone's accessible conformational space.
Results and Discussion

As described in Materials and Methods, backbone
torsion angles were calculated from a set of non-
redundant protein structures and classified in the
following ways. First, the ϕ,ψ angle pairs were
grouped according to amino acid, which will be
further referred to as the All set for simplicity. Then,
for each amino acid, the angles were separated
according to four classes of secondary structure
using the Definition of Secondary Structure for Pro-
teins program. In this work, the following shorthand
will be used to reference these sets: helix (H), sheet
(E), coil (C), and turn (T). This approach resulted in
five groupings of the data per amino acid. The raw
ϕ,ψ angles are shown as gray points in the Rama-
chandran plots for the amino acid Ala in Fig. 1. Next,
the distributions of these torsion angle sets were
calculated either by binning or by Bayesian non-
parametric estimation. Contour representations of
the density estimates for Ala are reported in Fig. 1,
overlaid on the raw data. These highlight the most
populated areas in the plots (i.e., the modes of
distribution). For Ala, there are values in all four
types of secondary structure, although H is domi-
nant in the All plot. Separating the data into the four
individual secondary structure elements allows us
to see the local effect of each side chain on their
respective backbones. In general, for all 20 amino
acids, the distributions were similar to those shown
in Fig. 1, except for the well-known differences from
Gly and Pro. With only a hydrogen atom as a side-
chain group, Gly exhibits the most flexibility in
backbone conformation and very broad distribution
of ϕ,ψ angles, whereas Pro is the most constricted in
ϕ due to its side chains' covalent ring structure
involving its main-chain nitrogen. As expected, the
H class is the best-defined class of the four
secondary structure classes and is followed by T
class. The E and C classes display similar variations,
although the C class is less well populated.

Binning versus density estimation

The simplest approach to estimating distributions
is to bin the data. However, in many cases, the data
are sparse and the binning method results in coarse
estimates subject to random fluctuations. We



Fig. 1. Ala Ramachandran plots of the five classes.
Raw torsion angle data are shown by gray dots, while
density-estimated distributions are overlaid using contour
representations. Distribution classes are labeled above
their respective plots. The highest peak in the All and helix
(H) distributions occurs at (−65°,−40°). This peak is at
(−150°,150°) for sheet (E), at (−65°,−20°) for turn (T), and
at (−70°,140°) for coil (C).
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therefore used a Bayesian nonparametric approach
to generate estimates (see Materials and Methods).
Because these estimates only considered the data
bounded from 180° to −180°, we wanted to ensure
that we were reproducing the periodic boundary at
180°/−180° correctly. As a check of our estimated
distributions, the distance between the binned and
the density-estimated ϕ,ψ torsion angle distribu-
tions was calculated. Divergence scores ranged from
0.017 to 0.247. The top panel of Fig. 2a shows this
comparison for each of the five classes described
above, while the bottom panel of Fig. 2a depicts the
number of ϕ,ψ observations for each amino acid and
class. While H class is the most populated overall,
the amino acids branched at the Cβ atom (Val, Ile,
and Thr) favor E class, as expected. Coil is well
populated, whereas T class has the least number of
members. By combining the analyses in both parts
of Fig. 2a, we found, as expected, that the number
of observations correlates with distance divergence:
more observations produced lower divergence
scores and vice versa. Figure 2b provides examples
of this relationship. The upper portion of Fig. 2b
contrasts the binning and the density-estimated
distributions from the most populated class Leu
All with the lowest distance divergence. In such a
well-sampled case, the distributions are very similar
to each other. Both show the same peak in the helical
area, with a slight variation in the connection of the
distribution over the sheet/coil region. This demon-
strates that our Bayesian density estimation method
closely matches the simpler binning approach when
data are plentiful. The lower portion of Fig. 2b
shows the same comparison for the least populated
case and the second highest divergence distance
of Trp T class. The binned distribution on the left is
clearly uneven and rather coarse, whereas the Bay-
esian density estimation produces a regular smooth
distribution that models well the diversity in the
data, while the binned distribution is informative,
making comparisons problematic for such irregular
distributions. In the Bayesian density estimation, the
left- and right-handed conformations are identified,
and the sheet-like angles are also found. In both
cases, the 180°/−180° boundary is reproduced, al-
though most of the data fall away from the periodic
boundary. Overall, these results demonstrated that
our Bayesian estimation method faithfully repre-
sents the distribution of data and produces smooth
estimates to permit more natural comparisons.

Density-estimated distributions

While the distributions are similar, there are per-
ceptible and significant differences. Overall, the
density-estimated distributions cover the expected
areas of the Ramachandran plot,23,24 and, as ex-
pected, the disallowed regions25 are not well
sampled. The peaks fall into the well-known regions
of the Ramachandran map.21 Each secondary struc-
ture class will be discussed individually.

H class

For the H class, the differences between amino
acids is primarily in the shape of the distribution
that resides in the α region (Fig. 1). The peaks range
in value between −60° and −65° in ϕ and between
−40° and −45° in ψ. Of all the classes, this H class
exhibits the most consistent distributions. The only
exception is for Pro, which is restricted in ϕ and
produces a peak lower of −55°,−35° in ϕ,ψ value.
For the remaining classes, peak and distribution
shape are both factors in the clustering.

T class

The T class is most similar to the H class (Fig. 1),
but has a broader distribution and additional strong



Fig. 2. Comparison of binning versus density estima-
tion. (a) Top line graph shows the distance divergence
between the binned and the Bayesian density estimation
representations of the Ramachandran plots for each of the
20 amino acids in each of the five classes: All, H (helix), E
(sheet), T (turn), and C (coil). Bottom stacked histogram
shows the number of observations for each class, where
the stacked total is the number of observations for the All
class. (b) Ramachandran plots are shown for the distribu-
tions with the highest number (Leu All) and the lowest
number (Trp T class) of observations. Data points are
shown in gray, and the calculated distributions are shown
by the contour lines. Binned estimates are on the left, and
Bayesian density estimates are on the right.
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peaks in the left-handed helical region. In direct
comparison to the H class, the T-class peaks are
consistently more negative in ϕ and more positive in
ψ, and therefore move to the left and up in the
Ramachandran plot towards the 310 helical con-
formation. This is even so for Pro. In this class, the
exception is Gly, which shows a primary ϕ,ψ peak of
80°,10° in the left-handed helical region. Generally,
the other clusters also have secondary peaks in the
left-handed helical region. For example, the Asn,Asp
cluster's second peak at ϕ,ψ is 55°,40°.
E class

In the E class, the distributions are shaped more
broadly, with major peaks in the upper left region of
the Ramachandran plot ranging from −95° to −150°
in ϕ and from 125° to 155° in ψ (Fig. 1). Secondary
peaks are located around the poly-Pro region, with a
ϕ around −65° and with similar ψ values as the
major peak. As before, the Gly peak of 80°,10° is in
the left-handed helical region at ϕ,ψ, but has many
values in the classic upper left E region of the
Ramachandran plot. Closer inspection reveals that
these values are due to Gly at the ends of β-sheets.
As expected, being restricted in ϕ, the Pro peak in
the E class is centered in the poly-Pro region at
−65°,145°.

C class

Although covering the same region, the C-class
distributions are also broad (Fig. 1). In comparison
to the E class, the C-class peaks are located in the
poly-Pro region. They are smaller and less varied in
ϕ (−65° to −95°) but similar inψ (135° to 155°). These
peaks are moved over slightly to the right. Thr and
Gly are exceptions, with higher ψ values of 165° and
170°, respectively, but with secondary peaks in the
poly-Pro region. Once more, Pro is restricted to the ϕ
value of −65° and centered in the poly-Pro region.
As a composite of the four secondary structure

classes, the All class is more complicated and exhi-
bits all the characteristics described above, although
the highest peak is usually in the right-handed
helical region.

Clustering within classes

For each class (All, H, E, C, and T), divergence
distances were calculated and used to cluster the 20
amino acids. Table 1 summarizes the resulting clus-
ters. As shown in Table 1, clusters were taken when
one of two criteria were met: (1) all the amino acids
were in clusters of at least two members besides
Gly and Pro, and (2) the clustering distance became
larger than the lowest divergence distance to a dis-
tribution in another class. This was performed since
the Gly and Pro distributions are so different from all
the others. The divergence scores for Gly and Pro
clearly separate these distributions from the others,
which is expected.Without a side-chain group, Gly is
flexible and populates all quadrants of the map. In
contrast, Pro is restricted in ϕ, since the side chain
makes a covalent bond with the backbone nitrogen.
Their difference from all the other distributions, even
within each class, is very evident in Fig. 3, where a
tree diagram shows the similarity relationship bet-
ween the four secondary structure classes. Figure 3
clearly shows that the H class exhibits the smallest
divergences between residues, which clusters at
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0.021 in Table 1. T, C, and E classes cluster at 0.045,
0.048, and 0.051, respectively. The All class has the
highest value at 0.064.
In general, the amino acids group, in certain cases,

according to similar biophysical characteristics, but
there are some interesting exceptions. Since it
combines all the secondary structure types, the All
class will be used as a reference point. The All class
produced six clusters, and they will be described
from the most different to the most similar (bottom
up). The two singleton clusters are Gly and Pro, as
expected. Next is a group that combines the residues
with planar delocalized rings (aromatics Phe, Trp,
and Tyr with imidazole His) with the hydroxyl-
containing residues (Ser, Thr, and again Tyr) and
Cys. For reasons made clearer in the discussion of
the clusters within secondary structure classes, this
cluster is named the aromatic group. Asn and Asp
make up the next cluster and are similar in shape
and chemistry, differing by a replacement of an
oxygen in Asp by an amide in Asn. Asp is usually
charged, while Asn is polar. Following known
conventions, this group is termed the AsX group.
For the same reason, Gln and Glu also group
together, but always with other amino acids. The
reason for this is that the Gln distribution is more
similar to the Met distribution, while the Glu
distribution is more similar to the Arg distribution.
This group usually also includes Lys and sometimes
Leu. This resulting group is a mix of hydrophobic
(Leu, Ala, and Met), polar (Gln), and charged (Arg
and Lys) residues. Structurally, they are mostly
longer side chains, except for Ala, and none is
branched at the Cβ, although this also pertains to
other previous clusters; thus, this group will be
termed the long cluster. The most similar cluster
consists of the hydrophobic Ile and Val, and will be
termed nonpolar/β-branched. Both are branched
at their side-chain Cβ atoms, but differ in that Ile
is longer by a methylene group. Surprisingly, the
other Cβ-branched residue Thr is not in this group,
although Thr is very different chemically with a hy-
droxyl group.
In comparison to previous classifications, our clus-

ters shown in Table 1 are similar to the Gly and Pro
singletons and the AsX group, but there are signi-
ficant differences. For the smaller structure set and
20°×20° binning,15 Ile and Val are found grouped
like ours, but His and Cys are singletons, and one
large cluster combines our aromatic and long clus-
ters together. This is most likely due to the smaller
sample size available at the time of the study, where
certain distributions did not have enough data to
show their true distribution. For the study based on
a larger structure set and/or a broader 10°×10°
binning,14 there are similarities where our results
concur on the singletons of Gly and Pro, as well as
the AsX group (Table 1). We differ in that our
analysis does not include Thr with Ile and Val, but
instead clusters with the hydroxyl-containing resi-
dues. The long cluster is similar, but ours also
includes Ala, Gln, and Met. We also include all the
aromatics together. These differences are due pri-



Fig. 3. Unrooted tree diagram-
ming the relationship between the
density-estimated Ramachandran
distributions of the four secondary
structure classes H (helix), E (sheet),
C (coil), and T (turn). The tree was
drawn with the DrawTree program
from the Phylip package26, where
the lengths of the branches are an
indication of the divergence dis-
tance between two distributions.
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marily to our smaller sampling bins that capture
finer details. In addition, we were more rigorous in
our structure set, so that we could avoid oversamp-
ling especially in the helical area. As can be clearly
seen, the helical region contains most of the density
in the All distributions and, therefore, can dominate
any comparisons. For this reason, we performed the
same analysis using the four secondary structure
classes.
For the four secondary structure classes, Gly and

Pro are always independent clusters as a result of
our cutoff criteria, but this is reasonable considering
their very dissimilar distributions. Although Gly can
have very broad distributions, Gly can be restrained
especially in the H class, where Gly is most similar to
the Glu distribution at 0.042. In the T class, the Gly
distribution produces its worst comparisons, with
Pro at 0.514 andVal at 0.465. Being restricted inϕ, the
Pro distributions are very different and are no more
similar than 0.137 in the Tclass with Ala. In addition,
except for the C class, where it is the third worst, the
Pro distributions are involved in the highest diver-
gences for all classes, where the overall worst value
is 0.517 between Ile and Pro in the E class.
Among those remaining, the most consistent

clusters across the four secondary structure classes
are the nonpolar, β-branched, and AsX clusters. The
nonpolar/β-branched pair is strongly similar in H
and T classes. In C class, they are the second most
similar; in E class, they are interestingly joined by
Leu. In the E, C, and T classes, AsX clusters as the
pair, but in the H class, it is joined by Ser. The
aromatic class splits into the T and C classes as Phe,
Tyr, His, and Cys. In the H class, the aromatic class is
composed of only His, Phe, and Tyr; in the E class,
the aromatic class joins the long class. The long class
is the same as in the T class, but loses Ala and Ser in
the H and C classes. Interestingly, the long and
aromatic clusters are joined in the E class. As for
other interesting clusters, the Ala distribution's
strong helical content puts it in a singleton cluster
in the H class. For E and C classes, Ala pairs with
Ser, although these are small and only differ by the
addition of a single hydroxyl to Ser. In the H and T
classes, Thr and Trp are independent of the aromatic
cluster. Since Thr is β-branched and Trp is large,
these could be considered bulky. In the C class, Trp
joins the long cluster and Thr is a singleton mostly
because Thr has such a broad distribution with a
strong density around ψ values of 170°.
Overall, this clustering of amino acid Ramachan-

dran distributions between the various secondary
structure classes suggests the following general
groupings: nonpolar/β-branched (Ile and Val), AsX
(Asn and Asp), long (Met, Gln, Arg, Glu, Lys, and
Leu), aromatic (Phe, Tyr, His, and Cys), small (Ala
and Ser), bulky (Thr and Trp), and, lastly, the single-
tons of Gly and Pro. Althoughmost stay within their
group, a number (Ala, Cys, Leu, Ser, Trp, and Thr)
cluster differently, depending on secondary struc-
ture class.

Clustering between classes

Using the distance divergence, the amino acid
distributions from each of the four secondary
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structure classes were also clustered against each
other, and the results are shown by the tree diagram
in Fig. 3. Except forH class, Gly and Pro distributions
separate themselves from the other amino acids, yet
somewhat follow the secondary structure classes.
The most different are the Gly distributions in C, E,
and T classes that group together and away from all
the other distributions. Although also separate from
the other amino acids, the Pro distributions mimic
the overall class distributions in that E and C classes
are closer together, and H and T classes are closer
together.
For the remaining 18 amino acids, the secondary

structure classes group together. As stated before,
the H class is the most similar cluster and even in-
cludes Gly. The T class is more similar to the H class
than to the E class or the C class. Likewise, the E and
C classes are more similar to each other than to the H
class or the T class. The clusters described in Table 1
can clearly be seen in this diagram. In each secon-
dary structure class, the nonpolar/β-branched and
AsX clusters clearly group together and away from
the other groups. In addition, the diversity in dis-
tributions based on secondary structure types can be
seen. While the broadest class looks to be the T class,
the E-class distributions of Asn and Asp actually
cluster closer to the C class, which explains why the
E class is the broadest. It is interesting to note that
there is no more overlap between secondary struc-
ture classes. This result indicates how distinct these
types of protein structure are even though they
sample similar regions of torsion angle conforma-
tional space.
Conclusion

As shown in Figs. 1 and 2, the Bayesian nonpara-
metric density estimation allows us to provide a rea-
sonable approximation of a Ramachandran distri-
bution especially when the data are sparse. This
result is particularly satisfying, as our density
estimations were made without including periodi-
city. Comparisons to a periodic treatment that we are
now developing show no significant differences for
the data analyzed in this paper (K. Lennox, D. Dahl,
M. Vannucci & J. Tsai, Density estimation for protein
conformation angles using a Bivariate von Mises
distribution and Bayesian nonparametrics, unpub-
lished results) (see Materials and Methods). Using a
distance divergence metric, the distributions can
now be consistently compared and clustered for all
20 amino acids, as well as for their respective
secondary structure classes. The result is a higher-
resolution scheme for classifying amino acids based
on their differences in sampling backbone conforma-
tional space. Although calculation of main-chain
torsion angles examines a regular polymer of
repeating atoms, the similarities/differences
between the plots must be attributed to the indivi-
dual influences of side-chain functional groups on
their respective backbones. As with any knowledge-
based clustering, the data dictate the results, which
do not always follow expectations. For example, the
groupings themselves do not suggest that two amino
acids such as Thr and Trp are similar in chemistry,
but the analysis shows that they both affect the
backbone in the same manner. The theme for the
clusters seems to be less about their chemistry and
more about their shape or sterics. It follows that the
principal effect of the side-chain group on the
backbone is steric, since the chemistry (polarity/
charge) would be difficult to bring to bear on a resi-
due's own main-chain atoms. Therefore, this analy-
sis shows that side chains affect the backbone accord-
ing to seven types: nonpolar/β-branched (Ile and
Val), AsX (Asn and Asp), long (Met, Gln, Arg, Glu,
Lys, and Leu), aromatic (Phe, Tyr, His, and Cys),
small (Ala and Ser), bulky (Thr and Trp), and, lastly,
the singletons of Gly and Pro. As with any cate-
gorization of amino acids, there are caveats such as
the behaviors of Ala, Cys, Leu, Ser, Trp, and Thr in
certain secondary structure classes.
These results certainly do not take the place of the

most common classification of protein side chains.
In particular, these results have very little bearing on
the nonlocal tertiary environment that is effected
upon amino acid change. Instead, these results can
explain why point mutations in many cases have no
effect on the structure or function of a protein. In
other words, the results from our clustering pro-
vide the explanation that the side-chain functional
groups affect their backbone conformations in a
similar fashion. For example, in terms of substitu-
tion matrices such as BLOSUM62,27 our clustering
helps to explain the somewhat surprising yet fav-
orable substitution pairs such as Glu/Lys, Ala/Ser,
and His/Tyr. In fact, similar work has been used to
create amino acid substitution matrices,15,16 which
have been useful for identifying structurally similar
regions between proteins. In this work, we are
focused more on the structural implications of these
results and find that amino acids substitutions do
not drastically perturb the allowable backbone con-
formational space upon mutation, excluding Gly
and Pro. On the contrary, the closeness of the dis-
tributions, as seen in Fig. 3, implies that mutation to
another residue changes the range of possible main-
chain conformations at a position and allows protein
structures the potential for evolutionary change.
Such conclusions have impact not only on the
understanding of protein evolution but also on the
use of amino acid substitutions in protein structure
prediction (specifically template-based modeling),
as well as protein design.
Materials and Methods

In biochemistry, a torsion angle or a dihedral angle is
defined by four atoms connected by three covalent bonds
and describes the rotation around the central bond of the
outer two bonds with respect to each other. Because the
backbone of a protein structure in its most simplest form
can be described as a covalent polymer made up of three
repetitive atoms per residue (nitrogen N, α carbon Cα, and



756 Clustering in Ramachandran Space
carbonyl carbon C), torsion angles must involve more than
one residue. For reference, the i subscript refers to the
relative position in the protein chain. There are three
backbone torsion angles. The ϕ angle consists of the atoms
Ci−1, Ni, Ci

α, and Ci. The ψ angle consists of the atoms Ni,
Ci
α, Ci, and Ni+1. The last angle ω consists of the atoms Ci

α,
Ci, Ni+1, and Ci+1

α . The first two angles range over 360°, but
the convention is to report values between −180° and 180°.
The third torsion angle ω is usually fixed at 0° (less so) and
180° (more so) due to resonance and partial double bond
characteristics.28 For this reason, our study will not in-
clude statistics on ω and will concentrate on the variation
found in residue ϕ,ψ torsion angles.

Data set

Our data set of nonhomologous structures was gener-
ated from the PISCES server29 generated from the May 20,
2003 release of the PDB, using the following criteria: per-
cent identity ≤50%, resolution of 0.0–2.5 Å, and R-factor
b1. Only X-ray entries were considered. The resulting list
of 6702 separate protein chains is available upon request.

Structural analysis

A C program that calculates the backbone ϕ,ψ torsion
angles of residues in a protein chain in the following
manner was written. To avoid complications from varia-
tions in bond angles, the actual torsion angle is calculated
as the angle between the normals of two planes, as
performed classically.1 The ϕ angle is computed between
the normal-to-plane made by three atoms Ci−1, Ni, and Ci

α

and the normal-to-plane made by the three atoms Ni, Ci
α,

and Ci. The ψ angle is calculated between the normals
made by the Ni, Ci

α, Ci plane and the Ci
α, Ci, Ni+1 plane.

Since no residue precedes the first residue, it lacks a ϕ
angle. Similarly, the last residue lacks a ψ angle without a
residue following it. Therefore, these residues were
excluded from the calculation. The output consists of the
amino acid, its ϕ,ψ torsion angle pair, and secondary
structure as defined by the Definition of Secondary Struc-
ture for Proteins program.30 The normal eight classes were
condensed into four: helices (H), sheets (E), coils (C), and
turns (T). This output was used as the raw data from
which all statistics were calculated.

Data binning

The binning method estimates the torsion angle density
as simply a bivariate step function whose value is constant
in 5°×5° squares. Its value within the square is propor-
tional to the number of ϕ,ψ pairs in the data set that fall
into that square. Since each axis range spans 360°, there are
a total of (360/5)2=5184 squares.

Nonparametric Bayesian density estimation

The backbone torsion angles ϕ,ψ calculated from the
PDB and classified based on amino acid and secondary
structure type (see above) can be viewed as samples from
the joint distribution of the ϕ,ψ torsion angles. We esti-
mated the joint distribution of the ϕ,ψ torsion angles using
Bayesian nonparametric density estimation.31,32 For a par-
ticular grouping of torsion angles based on amino acid
and secondary structure, suppose we have n entries in the
PDB (i.e., n pairs of angles measured in degrees ranging
from −180° to 180°). We propose the following Dirichlet
process mixture model:

ðfi;ciÞjAi;EifFððfi;ciÞjAi;EiÞ ð1Þ

AijGðAÞfGðAÞ ð2Þ

EijHðEÞfHðEÞ ð3Þ

GðAÞfDPðD0G0ðAÞÞ ð4Þ

HðEÞfDPðH 0H0ðEÞÞ; ð5Þ

where DP(mC(x)) denotes the Dirichlet process,33 with
mass parameter m and centering distribution C(x). The
distributions F, G0, and H0 are given as:

Fððfi;ciÞjAi; EiÞ ¼ N2ððfi;ciÞjAi;EiÞ ð6Þ

G0ðAÞ ¼ N2ðAjA0; E0Þ ð7Þ

H0ðEÞ ¼ Wi2ðEja0;h0Þ; ð8Þ

where N2(x|m,p) denotes the bivariate normal distribu-
tion, with mean m and variance p−1 for the random vector
x, and Wi2(x|α,β) denotes the two-dimensional Wishart
distribution with mean α/β.
Density estimation is accomplished by estimating μi, the

mean vector for the ith observation, and λi, the precision
matrix (i.e., the inverse of the covariance matrix) for the ith
observation. We fit the model using standard methods for
Bayesian inference. In particular, we used Gibbs sampling
to update the model parameters (μ's and λ's) and updated
the allocation of observations using the auxiliary Gibbs
sampler with one auxiliary variable.34

Parameter settings

The model described in Nonaparametric Bayesian
Density Estimation requires choosing values for the six
hyperparameters. The mass parameters η0 and τ0 were
both set to 1 (implying, e.g., that, for n=94, the μ's and the
λ's will cluster into about 5.1 clusters each). The
hyperparameter μ0 is set to (0,0), and λ0 is a diagonal
matrix whose elements are 1/1802. This provides for a
diffuse centering distribution G0(μ), since the most
extreme angle of −180° or 180° is only 1 SD from the
mean. Finally, α0 is set to 1, and β0 is a diagonal matrix
whose diagonal elements are 202. This provides for a
diffuse centering distribution H0(λ).
Convergence was assessed by running two independent

chains from initial states chosen from the prior states. The
first 5000 iterations from each chain were discarded as
burn-in, and output from the two chains was pooled to
yield 40,000 samples.

Predictive inference

From the Gibbs sampling output, the posterior pre-
dictive density of a new (ϕ,ψ) pair was obtained.31 Briefly,
at each iteration of the sampler, new μ and λ values were
drawn from their posterior distribution, and the resulting
multivariate normal density was evaluated on a fixed two-
dimensional grid with steps of 5°. Averaging over the
iterations yielded an estimate of the height of the joint
density at that point. The conditional distribution of one of
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the angles given the other was obtained by linear inter-
polation of the two closest sets of grid values. Figure 1
shows representative images of the bivariate density ge-
nerated using our density estimation model.
Although this approach does not directly account for

the periodic nature of torsion angle data, we are confident
in our fits as most of the data are typically far away from
the boundary at 180°/−180°. At the boundary, we require
two mixture components to model the data at the −180°/
180° boundary. We are currently developing a newer
model that will account for this periodicity (K. Lennox, D.
Dahl, M. Vannucci & J. Tsai, Density estimation for protein
conformation angles using a Bivariate von Mises distribu-
tion and Bayesian nonparametrics, unpublished results);
however, initial comparisons show no strong differences
for the data analyzed in this article besides needing an
extra component to represent the density at this boundary.

Distance of divergence

The similarity of two densities P and Q was assessed
using the Jensen–Shannon divergence:

1
2

DKL PjjPþQ
2

� �
þDKL QjjPþQ

2

� �� �
; ð9Þ

where

DKL PjQð Þ ¼
X
i

P ið Þlog PðiÞ
QðiÞ : ð10Þ

Theminimum for the Jensen–Shannon divergence is 0 for
exactly matching densities. Therefore, distances closer to 0
indicate that the two densities closely match, and those
farther from 0 indicate that the two densities match poorly.

Clustering

The density-estimated torsion angle distributions were
clustered using the above Jensen–Shannon divergence
score as distance. We used an agglomerative approach to
clustering that only added a new member if its distance
was lower than all others, which is in the same spirit as an
average linkage clustering. This was performed because
the distance divergence similarity is not associative. For
example, A being similar to B and B being similar to C do
not directly imply that A and C would also have a low
divergence distance.
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