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Likelihood function and posterior distribution

For clarity purposes, in this section, we review the main components of our model, which we use in the MCMC
steps detailed in the next section.

Under model
Y∗ν = X∗νβν + ε∗ν, ε∗ν ∼ NT (0,Σ∗ν), (1)

the likelihood function is

f (Y∗|Θ) ∝
V∏
ν=1

|ψνΣαν |
− 1

2 exp
[
−

1
2

(Y∗ν − X∗νβν)
T (ψνΣαν )

−1(Y∗ν − X∗νβν)
]

where Θ = (β, γ, λ, ψ, α), Σαν is a diagonal matrix with each element set as (2αν )−m.

Let φ = (ψ, α). The full posterior distribution function is obtained via Bayes theorem as

π(Θ|Y∗) ∝ f (Y∗|Θ)π(β|γ)π(γ)π(λ)π(φ),

where

π(βν|γν = 1) ∝ τ−
1
2 exp

(
−
β2
ν

2τ

)
,

π(βν|γν = 0) = δ0,

π(γν|γ−ν) ∝ exp(γν(d + e
∑
k∈Nν

γk)),

π(λν) =
1

u2 − u1
I(u1,u2)(λν),

π(φν|φ−ν) =
η

η + V − 1
G0 +

1
η + V − 1

m∑
j=1

n jδφ∗j . (2)

In equation (2), φ∗1, . . . , φ
∗
m are the unique values of φi’s for i , ν, and n j are the frequencies of φ∗j in the vector

(φ1, . . . , φν−1, φν+1, . . . , φV ).
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MCMC algorithm

Update step for (β, γ)

The full conditional distribution of βν is

βν|Y∗ν , ψν, αν, γν = 1 ∼ N(µν, σ2
ν),

βν|Y∗ν , ψν, αν, γν = 0 ∼ δ0,

where

µν =
Y∗Tν (ψνΣαν )

−1X∗ντν
X∗Tν (ψνΣαν )−1X∗ντν + 1

, (3)

σ2
ν =

τν

X∗Tν (ψνΣαν )−1X∗ντν + 1
. (4)

We perform Add, Delete, Swap steps as in (?) to jointly update (β, γ):

1) Randomly choose among the three moves below.
i) Add: set γ∗ν = 1 and sample β∗ν from a N(µν, σ2

ν) proposal. Here µν and σ2
ν are as shown in Equations

(3) and (4). Position ν is randomly chosen from the set of ν′s where γν = 0 at the previous iteration.
ii) Delete: set γ∗ν = 0, β∗ν = 0. This results in voxel ν being excluded in the current iteration. Position ν

is randomly chosen from among those included in the model at the previous iteration.
iii) Swap: perform both an Add and Delete move.

The proposed value (γ∗, β∗) is accepted with probability

αβ,γ = min
{

1,
π(γ∗, β∗|Y∗, X∗, ψ, α)q(γ, β|γ∗, β∗)
π(γ, β|Y∗, X∗, ψ, α)q(γ∗, β∗|γ, β)

}
= min

{
1,

f (Y∗|β∗, γ∗, ....)π(β∗|γ∗)π(γ∗)
f (Y∗|β, γ, ....)π(β|γ)π(γ)

}
.

2) Repeat step (1) m times.
3) Sampling from N(µν, σ2

ν) for βν’s such that γν = 1.

When (β∗, γ∗) is obtained via the Add or Delete move, then

π(γ∗)
π(γ)

=
π(γ∗ν |γk, k ∈ Nν)
π(γν|γk, k ∈ Nν)

,

where Nν is the neighbor of voxel ν which is updated in the Add or Delete move.

When (β∗, γ∗) is obtained via the Swap move, if, say, voxels j and l are the ones to be updated, then

π(γ∗)
π(γ)

=
π(γ∗j |γk, k ∈ N j)π(γ∗l |γk, k ∈ Nl(− j))

π(γ j|γk, k ∈ N j)π(γl|γk, k ∈ Nl(− j))
,

where N j is the neighbor of voxel j and Nl(− j) is the neighbor of voxel l excluding voxel j.

Update step for λ

The full conditional distribution of λν is

λν|Y∗ν , βν, ψν, αν ∝

exp
[
−

1
2

(Y∗ν − X∗νβν)
T (ψνΣαν )

−1(Y∗ν − X∗νβν)
]

I(u1,u2)(λν).

We propose λ∗ν ∼ U(λν − hν, λν + hν), and the proposed value is accepted with the acceptance probability

aλ = min
{

1,
π(λ∗ν|Y

∗
ν , βν, ψν, αν)q(λν|λ∗ν)

π(λν|Y∗ν , βν, ψν, αν)q(λ∗ν|λν)

}
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Update step for (ψ, α)

Let φν = (ψν, αν). The full conditional distribution of φν is

π(φν|Y∗, φ−ν, β, λ, α) =

φ∗j w.p. b n j f (Y∗ν |λν, βν, αν, φν = φ∗j)
h(φν|Y∗ν , βν, λν, αν) w.p. b ηq0

where

b =
1

ηq0 +
∑m

j=1 n j f (Yν|λν, βν, φν = φ∗j)
,

q0 =

∫
G0(ψν, αν) f (Y∗ν |ψν, αν, βν, λν)dψνdαν

=

∫
(2π)−

T
2 × |Σαν |

− 1
2αa1−1

ν (1 − αν)b1−1×

Γ(a0 + T
2 )Γ(a1 + b1)ba0

0

(b0 + 1
2 (Y∗ν − X∗νβν)T Σ−1

αν
(Y∗ν − X∗νβν))Γ(a0)Γ(a1)Γ(b1)

dαν,

and

h(φν|Y∗ν , βν, λν) ∝ ψ
−a0−

T
2 −1

ν αa1−1
ν (1 − αν)b1−1|Σαν |

− 1
2×

exp

−b0 −
1
2 (Y∗ν − X∗νβν)

T Σ−1
αν

(Y∗ν − X∗νβν)
ψν

 .
Here φ∗j’s and n j are as defined in Equation (2).

Since q0 cannot be computed in closed form, we use algorithm 8 proposed by ? to update (ψ, α), which can be
described as follows:

We introduce an auxiliary parameter cν indicating which “latent cluster” is associated with φν. Suppose the
state of the Markov chain consist of c = (c1, . . . , cV ), and φ = (φc : c ∈ {c1, . . . , cV }), where φc = (ψc, αc), c and
φ can be updated as follows:

a) For ν = 1, . . . ,V: let k− be the number of distinct c−ν, where c−ν is a set of c j’s for j , ν, if cν ∈ c−ν, relabel these
c−ν with values in {1, . . . , k−}, then draw values independently from G0 for φk−+1; if cν < c−ν, relabel these c−ν
with values in {1, . . . , k−}, let cν have label k− + 1, then φk−+1 = φν. Draw a new value for cν from {1, . . . , k− + 1}
using the following probabilities:

π(cν = c|Y∗ν , c−ν, βν, λν, φ1, . . . , φk−+1) =

b n−ν,c
V−1+η

F(Y∗ν , φc) for 1 ≤ c ≤ k−

b η
V−1+η

F(Y∗ν , φc) for c = k− + 1

where n−ν,c is the number of c j for j , ν that are equal to c, and b is the appropriate normalizing constant.

b) For all c ∈ {c1, . . . , cV }: sample a new value from φc| all Y∗ν for which cν = c, that is, from the posterior
distribution based on the prior G0 and all the data points currently associated with latent cluster c. Since the
posterior distribution of φc is not in a closed form, we perform Metropolis-Hasting algorithm in this part to
approximate the distribution of φc. The procedure is as below: suppose the number of repeats of value φc is
nc, all the data points associated with class c is Y∗c = (Y∗ν1

, . . . ,Y∗νnc
)T , βc, λc are defined similarly, the posterior

distribution is

π(αc, ψc|Y∗c , βc, λc) ∝ ψ−
Tnc

2 −a0−1
c αa1−1

c (1 − αc)b1−1|Σαc |
−

nc
2 ×

exp

−b0 −
1
2
∑nc

i=1(Y∗νi − X∗νiβνi)
T Σ−1

αc
(Y∗νi − X∗νiβνi)

ψc


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Propose α∗c ∼ N(αc, σ
2
0), and ψ∗c ∼ N(ψc, σ

2
0), then compute the acceptance rate

aψ,α = min
{

1,
π(ψ∗c, α

∗
c |Y
∗
c , βc, λc)q(ψc, αc|ψ

∗
c, α

∗
c)

π(ψc, αc|Y∗c , βc, λc)q(ψ∗c, α∗c |ψc, αc)

}
The proposed value (ψ∗c, α

∗
c) is accepted with probability aψ,α.
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Event-related Design

Figure 1 shows the posterior activation map, and the posterior mean estimates for the parameters β and λ for the
event-related design in the simulation described in section 3.1 of the main text. Plot (a) in Figure 2 shows the resulting
clustering of the voxels for the event-related design. There are 3 clusters in plot (a). The posterior mean maps for the
parameter ψ and α are shown in plots (b) and (c) of Figure 2 for event-related design. We find the good estimates to
the true values of all the parameters.

(a)

Voxel

V
o
x
e
l

10 20 30

10

20

30

(b)

Voxel

V
o
x
e
l

10 20 30

10

20

30

(c)

Voxel

V
o
x
e
l

 

 

10 20 30

10

20

30

−2

−1

0

1

2

3

−4 0 4
−4

0

4

(d)

β

β

(e)

Voxel

V
o
x
e
l

 

 

10 20 30

10

20

30 0

2

4

6

8

0 2 4 6 8
0

2

4

6

8

(f)

λ

λ

2
Figure 1: Simulated data with event-related design: (a) True map of the activation indicators γ; (b) Posterior activation map obtained by assigning
value 1 to those voxels with p(γν = 1|y) > 0.8 and value 0 otherwise; (c) Posterior mean map of β; (d) Scatter plot of posterior mean estimates vs.
true values for β; (e) Posterior mean map for λ;(f) same as (d) for λ.
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Figure 2: Simulated data with event-related design: (a) Posterior clustering map - different colors correspond to different clustering allocations;
(b) Posterior mean map of ψ; (c) Posterior mean map of α.

A case study for fMRI data

Figure 3 shows the fit of the time series for one active voxel on each of the slices V1, V5, and PP. In the plot, the
continuous black curves represent the real time series and the dashed black curves represent the fitted response.
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Figure 3: Real fMRI data: Time series fitting for one active voxel on (a) V1, (b) V5, and (c) PP. The continuous black curves represent the real
time series and the dashed black curves represent the fitted response.
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