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Brain graphs provide a useful way to computationally model the network structure of the connectome, and this
has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteris-
tics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of
functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence
increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we
investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach
that estimates the dynamic structure of graph theoreticalmeasures of whole-brain functional connectivity. In ad-
dition to extracting the stationary distribution and transition probabilities of commonly employed graph theory
measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be
used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method
and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal
lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global
integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be
more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal
stationarity of network topology may increase discriminatory power in discriminating between disease states.
Our results confirm and extend findings from other studies regarding the dynamic nature of functional
connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of
functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency
across investigations.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Connectomic analysis using graph theoreticalmethods is increasing-
ly found to be a powerful quantitativemethod for investigating complex
brain networks on the whole-brain level. Through the computation of
neurobiologically interpretable network measures, graph theory pro-
vides a mathematical framework through which topological properties
of the network may be studied, including aspects related to clustering,
efficiency, modularity, long-range connectivity, and small-worldness
(Rubinov and Sporns, 2010; Bullmore and Bassett, 2011). Its application
to functional data on resting state networks from functional MRI,
magnetoencephalography, and electroencephalography has provided
novel insights into various neurological and psychiatric diseases (Stam
and Reijneveld, 2007; Ponten et al., 2009; Vlooswijk et al., 2011;
Chiang and Haneef, 2014). Increasingly, studies are demonstrating the
utility of graph theory measures of functional connectivity for identify-
ing abnormalities in network connectivity and serving as clinical diag-
nostic markers and as markers of disease severity (Wilke et al., 2011;
Vlooswijk et al., 2010; Micheloyannis et al., 2006; Supekar et al., 2008).

Despite the large number of analyses of resting-state network con-
nectivity that use graph theory to explore network connectivity, the
majority rely on the assumption of temporal stationarity. In most
cases, the strength of inter-regional signal associations is calculated
using some measure of linear dependence, such as the synchronization
likelihood or a measure of correlation, over the entire scanning session.
The strength of these associations is then either analyzed as weighted
graphs or binarized into unweighted graphs (Bullmore and Bassett,
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2011). However, recent evidence increasingly shows that inter-regional
signal associations are dynamic over time, and are highly modulated by
attention,medications, and cognitive state (Chang andGlover, 2010). In
addition, (Honey et al., 2009) have found that resting state functional
connectivity exhibits a large degree of variability bothwithin and across
scanning sessions. (Ma et al., 2014) have also demonstrated that
functional connectivity fluctuates over time within scans, furthermore
finding that first-order temporal dynamics may approximate these dy-
namics. Although the reasoning behind the dynamic nature of resting-
state brain topology is a relatively new concept and under investigation,
it is thought to reflect the configuration of functional networks around a
stable anatomical skeleton (Deco et al., 2011). Computational modeling
and empirical work have demonstrated that, at shorter time scales,
these various functional network configurations may be spontaneously
visited around the same anatomical skeleton in the presence of local cell
dynamics (Deco et al., 2011). While some aspects of brain topology,
such as the level of small-worldness, may exhibit greater temporal sta-
tionarity in order to maintain a relatively constant optimum network
configuration, others, such as local measures, may be more susceptible
to local cell dynamics and more likely to traverse multiple configura-
tions. Various functional configurations may also exist in order to
allow flexibility to support different cognitive functions (Fair et al.,
2009).

Recently, studies have noted that conflicting results have arisen in
graph theory investigations of functional connectivity. Investigations
of clustering coefficient and characteristic path length, for example,
have variably found evidence of increase, decrease, or no change in
patients with epilepsy compared to controls (Chiang and Haneef,
2014; van Diessen et al., 2014). One contributing factor to current
inconsistencies in the literature may be small sample sizes and moder-
ate effect sizes (van Diessen et al., 2014). In light of recent evidence
that resting-state functional connectivity is in fact non-stationary,
however, another major factor may be greater temporal instability in
some topological characteristics than others, leading some investiga-
tions to capture the topology of particular functional network configu-
rations while other investigations may capture other topological
configurations. Understanding of temporal dynamics of graphmeasures
of network topology may help address these previous literature
inconsistencies.

The aim of this study is to identify which aspects of network topolo-
gy exhibit less within-scan temporal variability in resting state
networks, with the objective of evaluating which graph theory metrics
may be robustly estimated using static functional connectivity analyses.
To the best of our knowledge, this is the first attempt of quantifying
the relative temporal stationarity of graph theory metrics of brain
network topology in functional connectivity analysis. In particular, we
use a Bayesian hidden Markov model to estimate the transition
probabilities of various graph theoretical network measures using
resting-state fMRI (rs-fMRI) data.We propose two estimators of tempo-
ral stationarity, which can be used to quantitate different aspects of the
temporal stationarity of functional networks: the N-index, which is a
deterministically-based estimator of the number of change-points, and
the S-index, which is a probabilistically-based estimator that takes
into account stochastic variation in the estimated states. Based on the
estimated stationarity distribution and transition probabilities, we
evaluate the relative levels of temporal stationarity among various com-
monly investigated measures of brain network topology. Additionally,
we point to possible hierarchical extensions of our model which may
be used to aid in disease prediction, by showing that incorporating
temporal dynamics into investigations of brain connectivity may
increase discriminatory power of graph theory metrics.

2. Materials and methods

In order to determine which aspects of network topology are robust
under static functional connectivity analysis, we investigate commonly
employed graph theoretic measures in current literature using a Bayes-
ian hidden Markov model. We apply our proposed estimators to the
healthy control and temporal lobe epilepsy populations, and illustrate
that differences in temporal dynamics between epileptic and healthy
brain networks may be quantitated and may provide a potential diag-
nostic marker.

2.1. Participants

Participants consisted of 24 healthy controls (HC; average age,
32.50 ± 1.88 SE (y); age range/Q1/Q3, 19–64/27/35 (y); 8 females) and
32 patients with temporal lobe epilepsy (TLE; average age, 37.56 ± 1.86
SE (y); age range/Q1/Q3, 20–63/32/45 (y); 16 females; average epilepsy
duration, 18.79 ± 2.25 SE (y); epilepsy duration range/Q1/Q3, 2–45/6/31
(y)). Healthy control subjects had normal structural MRIs and no history
of neurologic illness or were taking neurologic medications. TLE patients
were recruited from the University of California, Los Angeles (UCLA) Sei-
zure Disorder Center. Diagnostic evaluation for all subjects included
video-EEGmonitoring, high-resolution MRI, FDG-PET scanning, and neu-
ropsychological testing. Written informed consent was obtained prior to
scanning for all subjects in accordance with guidelines from the UCLA In-
stitutional ReviewBoard. A two-sample t-testwith unequal variances and
Fisher exact test showed no significant difference in age or gender, re-
spectively at the α= 0.05 level of significance.

2.2. Image acquisition and pre-processing

Imaging was performed with a 3 T MRI system (Siemens Trio,
Erlangen, Germany). Functional imaging was performed with the fol-
lowing parameters: TR = 2000 ms, TE = 30 ms, FOV = 210 mm,
matrix = 64 × 64, slice thickness 4 mm, 34 slices. Subjects were
instructed to relax with eyes closed during imaging. No auditory stimu-
lus was present except for the acoustic noise from imaging. High-
resolution structural images were obtained during the same imaging
study with the parameters: TR = 20 ms, TE = 3 ms, FOV = 256 mm,
matrix = 256 × 256, slice thickness 1 mm, 160 slices. The images
were acquired in the axial plane using a spoiled gradient recalled
(SPGR) sequence for the anatomical images and an echo planar imaging
(EPI) sequence for the functional images. The imaging sessions included
multiple simultaneous EEG and fMRI recordings, each lasting 5 to
15 min. For resting state fMRI analysis, 20 min of BOLD fMRI data was
used for each subject. To limit the influences of motion, subjects were
checked to ensure that no subjects had a maximum translation of
N1.5 mm (HC, 0.24 ± 0.04 mm; TLE, 0.37 ± 0.04 mm). Resting-state
fMRI was performed for TLE patients after the comprehensive epilepsy
surgery evaluation and prior to epilepsy surgery. Patients remained on
their regular medications during the fMRI. None of the patients had a
seizure in the 24 h preceding the imaging. None of the patients had sei-
zures during the study as confirmed by the simultaneous EEG obtained
during fMRI. The EEG results were not included in the data analysis
other than to exclude seizures. Details of the simultaneous EEGmethods
have been described previously (Stern et al., 2011). Neuroimaging and
fMRI pre-processing steps are similar to that described previously
(Haneef et al., 2014). Preprocessing was performed using FSL (fMRIB
Software Library) version 5.0.7 (Oxford, United Kingdom, www.fmrib.
ox.ac.uk/fsl) (Woolrich et al., 2001; Forman et al., 1995) and included
head movement artifact correction (Jenkinson et al., 2002), nonbrain
tissue elimination (Smith, 2002), high-pass filtering (100 s), spatial
smoothing at 5 mm full-width half-maximum, and mean-based
intensity normalization as described previously for resting-state fMRI
analyses (Fox et al., 2005; Uddin et al., 2009). Excessive headmovement
was corrected using motion scrubbing through nuisance regression
(Power et al., 2012). We used the tool fsl_motion_outliers within
FSL to identify TRs that showed instantaneous changes in blood
oxygen level-dependent (BOLD) intensity that exceeded threshold
(75th percentile + 1.5× interquartile range). The average number of
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identified outliers per participant was 4.11% ± 2.65%. Tissue-type seg-
mentation was performed on each participant's structural image using
FAST (FMRIB's Automated Segmentation Tool) (Zhang et al., 2001), be-
fore being aligned to their respective BOLD images.White matter signal
and cerebrospinal fluid signals were obtained using the segmented
masks. The following were included as temporal covariates and
regressed out using linear regression: motion outliers, six motion pa-
rameters, white matter signal, cerebrospinal fluid signal, and their
associated derivatives. The residuals were then filtered through a low
pass filter (b0.1 Hz).

2.3. Functional network construction and graph theory metrics

Functional BOLD images were segmented into 90 regions of interest
using the automated anatomical labeling (AAL) atlas. Each BOLD image
was registered to the participant's high-resolution structural image
using FLIRT (FMRIB's Linear Image Registration Tool) (Jenkinson et al.,
2002; Jenkinson and Smith, 2001; Greve and Fischl, 2009), and the
high-resolution structural was registered to the standard MNI space
using FNIRT (FMRIB's Non-linear Image Registration Tool) (Anderson
et al.). The transformation matrix and warpfields were inverted, and
then applied to the 90 regions of interest to obtain ROI masks in each
individual's BOLD space. Functional connectivity between each pair of
nodes was computed as the Pearson correlation between the average
regional time series, using a sliding-window approach. A window size
of 44 s was used with 50% overlap to segment the original 300 volumes
in each region into 26 windows. The effect of window size has been in-
vestigated in (Allen et al., 2012), with a window size of 44 s found to
provide a good trade-off between the quality of covariance matrix esti-
mation and resolution of functional dynamics. (Shirer et al., 2012) found
that cognitive states can be correctly identifiedwith as few as 30–60 s of
data, with topological assessments estimated to stabilize for window
lengths greater than 30 s (Jones et al., 2012). Variation in window size
between30 s and 2min has been found to have little effect on functional
dynamics (Allen et al., 2012). Negative correlations were set to zero to
improve the reliability of graph theorymeasures (Wang et al., 2011). Bi-
nary undirected graphs were constructed by thresholding the correla-
tion matrix across a series of biologically plausible network densities
(Bullmore and Bassett, 2011), yielding a range of potential undirected
graphs of the brain's functional network. This procedure ensured that
between-group comparisons of graph theory metrics reflected differ-
ences in topological organization rather than differences in absolute
connectivity. This resulted in a non-random connection density range
of 0.37–0.50, in order to involve graphs that were fully connected for
all windows for all subjects (degree N1 for all nodes) and non-
random topological properties (Lynall et al., 2010). Network measures
were averaged across the non-random connection density range, with
the same range used in order to ensure comparability between
populations.

In this study, we investigate network characteristics related to
small-world index (σ), global integration (λ, normalized characteristic
path length; GE, global efficiency), local segregation (γ, normalized
clustering coefficient; LE, average local efficiency), and centrality (BC,
betweenness centrality; EC, eigenvector centrality). A vast number of
graph theorymeasures of network topology have been recently studied
in various neurological diseases. Themajority of these features relate to
various aspects of global network integration or local segregation
(Tononi et al., 1994; Tononi et al., 1998; Fristen, 1997). Another impor-
tant subset of features identifies nodes that have a strong influence on
the communication of the network, which are known as centrality or
hub measures. The simplest of these centrality measures is degree
centrality, which counts the number of edges connected to each node.
Other centrality measures capture more nuanced quantities, such as
eigenvector centrality, which identifies nodes that are connected to
other highly central nodes, or betweenness centrality, which captures
the number of shortest paths that pass through a node (van den
Heuvel and Sporns, 2013). In addition, presence of deviations from a
small-world configuration has been consistently found to characterize
various types of brain disease, including Alzheimer's disease, epilepsy,
brain tumors, and traumatic brain injury (Stam and Reijneveld, 2007).
Graph theory measures were calculated as in (Rubinov and Sporns,
2010) using the Brain Connectivity Toolbox in Matlab version R2014b.
Normalization of characteristic path length and clustering coefficient
was relative to a set of 500 randomly rewired graphs (Maslov and
Sneppen, 2002).

2.4. Bayesian hidden Markov model

A hiddenMarkov model is a state-space model with discrete hidden
states, which is able to capture sequential dependence structure in the
data. Indeed, HMMs have been successfully employed in the analysis
of data with such intrinsic structure, see (Guha et al., 2008) and
(Cassese et al., 2014) for examples on array comparative genomic hy-
bridization (CGH) data, and (Ma et al., 2014) for a frequentist applica-
tion on spatial functional connectivity.

We model the time-varying aspect of graph theory metrics by
treating the observed value of the graph theorymetric as the realization
of a time-varying hidden state, which we denote ξit. Let Xit

(g) denote the
value of graph theory metric g (g = 1,…, G), for subject i (i = 1, …, n)
during time t (t=1,…, T). For each timepoint t=1,…, T, Xit

(g) is obtain-
ed by computing the graph metric g on sliding windows centered at
time t. For simplicity, in the below we omit the index g.

From a mathematical point of view, a HMM comprises of two com-
ponents: a Markov chain with stochastic measurements on the hidden
states and, conditionally on the states, an independent emission distri-
bution (Fig. 1). In the context of our specific application, we choose a
first-orderHMMon the latent functional connectivity states. This choice
assumes that the probability of being in a specific hidden state at a
specific time point depends only on the hidden state at the previous
time point, as described in formula by

P ξit jξi1;…; ξi t−1ð Þ
� �

¼ P ξit jξi t−1ð Þ
� �

¼ aξi t−1ð Þξit ; ð1Þ

where A=(ahj) is a matrix of transition probabilities whose elements ahj
indicate the transition probability from state h to state j. The transition
matrix A has a unique stationary distribution πA = (πA(1), …, πA(K))
for states k = 1,…, K. We assume that the state of the first time point is
distributed as πA. As for the emission distribution, we assume that,
conditional on the hidden states, the observed graph theory metric
values are independent and follow a distribution with state-specific
parameters θj,
Xit jξit ¼ j � f Xit ; θ j

� � ð2Þ

where for graph theory metrics with support (−∞, ∞) we define
f(Xit; θj) = N (μj, σj

2). As discussed by (Rabiner, 1989), this density can
be used to approximate any finite continuous density function arbitrarily
closely. Therefore, the full likelihood can be factorized as

L X ξ ¼ jjð Þ ¼ ∏
n

i¼1
∏
T

t¼1
f Xit ; θ j
� �

: ð3Þ

Pulling together the likelihood in Eq. (3) and the Markov chain
in Eq. (1), the first-order HMM employed can be described by the
following factorization:

P X1;…;XT ; ξ1;…; ξTð Þ ¼ ∏
n

i¼1
L Xi1 ξi1jð ÞP ξi1ð Þ ∏

T

t¼2
L Xit ξitjð ÞP ξitjξi t−1ð Þ

� �
:

ð4Þ



Fig. 1. A hiddenMarkovmodel consists of a Markov chain with stochasticmeasurements on the hidden states (ξ1,…, ξT) and an independent emission distribution (X1,…, XT) conditional
on the states.
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As for the prior specification of our modeling approach, we assume
conjugate independent Dirichlet priors on the rows of the transition
probability matrix

ah � Dir α1;…;αKð Þ;

where K is the number of states. We further place conjugate vague
priors on the parameters of the emission distributions:

p μ j

� �
¼ N δ j; τ2j

� �
p σ2

j

� �
¼ IG c j;dj

� �

∀ j = 1, …, K. Note that here and throughout this paper IG denotes the
Inverse-Gamma distribution. Employing conjugate vague priors is
a common choice in the Bayesian literature to approximate non-
informative priors in the absence of prior information, following their
introduction by (Raiffa and Schlaifer, 1961).

2.4.1. MCMC algorithm and posterior inference
The joint posterior distribution of all parameters of interest can be

sampled employing a Metropolis-within-Gibbs sampling technique.
This combines Metropolis–Hastings steps as proposed by (Cassese
et al., 2014) for updating the transition probability matrix and statema-
trix with Gibbs steps for sampling the mean and variance of the hidden
states conditional upon the other parameters. Full details of the full con-
ditional distributions and MCMC implementation are provided in
Appendix A. Given the MCMC output, we perform inference on the
states, ξ, by calculating, for each ξit, the maximum a posteriori estimate
using the mode of the state values after burn-in. Posterior inference on
the transition matrix and emission parameters is performed through
the posterior mean to minimize squared error loss.

In our analysis, all hyperparameters were set to be non-informative,
with δj = 0 and αj = 1 ∀ j. Data were standardized through centering
and scaling prior to usage in the Gaussian emission distribution.
Therefore, we expect 99.7% of the data to fall within three stan dard de-
viations of the mean. Consequently, we set the prior variance of the

state means, τj, to ðXðnÞ−Xð1Þ
6 Þ2, where X(n) and X(1) are, respectively, the

maximum and minimum values observed in the data. As for the shape
and scale hyperparameters of the state-specific variances cj and dj, we
set these to yield a prior expectation of 0.5 and prior variance of 2 on
the distribution of σj

2. The MCMC chain was initialized with initial
values σj

(0) = 1 and μ j(0) set to equally spaced intervals from [−1, 1]
∀ j. We initialized ξ(0) by setting ξit(0) = j if the corresponding
Tj b Xit b Tj + 1, where T ¼ ½−∞; 1K ;

2
K ;…; K−1

K ;∞� . We initialized A(0);
from the initial value of ξ(0), by setting ahj

(0) to the proportion of transi-
tions from state h to state j in ξ(0). For each measure, we ran 50,000
MCMC iterations with the first 30,000 sweeps discarded as burn-in.

All code was written in R version 3.1.3. A software package to carry
out implementation will be made available at the corresponding
author'swebsite. Code is available upon request from the corresponding
author.
2.5. Statistical inference on relative temporal stationarity of graph theory
metrics

We propose two estimators of the relative temporal stationarity of
each graph theory metric: the N-index, which is a deterministically-
based estimator of the number of change-points, and the S-index,
which is a probabilistically-based estimator that takes into account sto-
chastic variation in the estimated states. To our knowledge, although
some investigation into general aspects of temporal stationarity in func-
tional connectivity has shown that functional connectivity fluctuates
over time (Ma et al., 2014; Allen et al., 2012), no attempt has yet been
made to provide quantitative estimates of the temporal stationarity of
specific aspects of graph topology. Furthermore, we allow for direct
comparison of relative temporal stationarity across measures or across
disease populations by proposing scalar indexes of stationarity. The
first estimator, the N-index, estimates the proportion of time that the
networkmeasure spends in stable states (i.e., not in change-points). Im-
portantly, we show that our proposed estimator is an unbiased and as-
ymptotically consistent estimator of the average proportion of time
spent in stable states. The second estimator, the S-index, provides a
weighted estimate of the stationarity of the dominant state, and takes
into account probabilistic variation of the hidden states.

1. N-index: This is proposed as the complement of themeanproportion
of change-points, where the number of change-points for a given
subject is estimated based on the posterior mode of posterior
samples of ξ, i.e.,
N ¼ 1−

1
n T−1ð Þ

Xn
i¼1

XT
t¼2

1
ξ̂it ≠ ξ̂i t−1ð Þ
� � ð5Þ

where ξ̂it denotes the posterior mode across the posterior samples
of ξit ∀ i, t. Due to estimation based on the posterior mode of ξ, the
N-index yields a deterministic estimator of the general stationarity
of the process. As shown in Appendix B, Eq. (5) provides an unbiased
and asymptotically consistent estimator of the average proportion of
time spent in a stable state. Similarly, for inference on the individual
subject level, Eq. (5) reduces to:

Ni ¼ 1−
1

T−1

XT
t¼2

1
ξ̂it ≠ ξ̂i t−1ð Þ
� �

:

2. S-index: The second estimator, the S-index, is proposed as the
weighted mean of the probabilities of remaining in the same state
from time t to time t+ 1, where weights are given by the stationary
distribution, i.e.,

S ¼
XK
j¼1

π̂ jâ j j ð6Þ

where π̂ ¼ ðπ̂ jÞ is the posterior mean of the stationary distribution,
and âjj denotes the jth diagonal element of the posterior mean
of the estimated transition probability matrix, Â. In contrast to the
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N-index, we propose the S index solely for inference on the group
level. In addition, whereas the N-index is based on deterministically
estimated states, the S-index is a probabilistic estimator which takes
into account the stochastic variation of the estimated states through
Eq. (6). The definition in Eq. (6) allows S to assume values in the in-
terval [0, 1]. The estimated S-index approaches 1 if the probability of
staying in the same state goes to 1, while the estimated S-index ap-
proaches 0 if the probability of transitioning to a different state
goes to 1. By weighting the probabilities by the stationary distribu-
tion, larger weight is assigned to states which occur more frequently
in the process. Thus, if the probability of remaining in a given state is
small for state j, but the graph theory metric spends little time in
state j, then less weight is given to this probability in computing
Eq. (6). Conversely, if the probability of remaining in a given state
is small for state j, and the graph theorymetric spends a large propor-
tion of time in state j, thenmore weight is given to this probability in
computing Eq. (6).

Whereas the N-index measures the frequency of change-points, the
S-index takes into account both the frequency of change-points as well
as whether the network measure has a dominant state or exists in
multiple states more equally. A network measure which has a low-
frequency of change-points as well as exists in a dominant state will
result in a high N-index and high S-index.

2.6. Model validation

The proposed method was tested on simulated data for n=30 sub-
jects and T = 300 time points. Model performance in accurately
predicting the transition probability matrix and hidden states was vali-
dated using the mean square error and misclassification error. Model
validation is shown in Appendix C.

2.7. Temporal dynamics and class separability

Our model provides a hierarchical modeling approach to estimating
temporal non-stationarity, which may be built upon to aid diagnostic
prediction. In particular, the likelihood in Eq. (2) may be extended to a
discriminant analysis context, allowing for probabilistic prediction of
disease status. Here, we illustrate the potential utility of individual
Fig. 2.Model fitting: DIC for different values of K. γ, clustering coefficient; GE, global efficiency
eigenvector centrality; NC, non-convergent solution. Crosses indicate non-convergent solution
differences in the temporal dynamics of graphmeasures to increase dis-
criminatory power. To obtain ameasure of the increase in discriminato-
ry power after accounting for temporal dynamics for various graph
measures, we evaluated two criteria for class separability. The first sep-
aration criterion is based on the well-known ratio of the within-class
scatter matrix and between-class scatter matrix, known as the Fisher
criterion:

J ¼ tr Σ−1
W ΣB

� �
; ð7Þ

where ΣB is the between-class scatter matrix and ΣW is the within-class
scatter matrix. Larger values of J generally indicate greater class separa-
bility, based on a larger between-class scatter relative to within-class
scatter. However, because the separability criterion in Eq. (7) is not
directly related to classification error (Choi and Lee, 2003), we adopted
a second measure, the Bhattacharyya distance, defined as:

BD ¼ 1
8

μ1−μ2ð ÞT Σ1 þ Σ2

2

� 	−1

μ1−μ2ð Þ þ 1
2

ln
Σ1 þ Σ2ð Þ=2j j
Σ1j j1=2jΣ2j1=2

where μi, Σi are the mean and covariance of class i, respectively. As
shown by (Lee and Choi, 2000), BD is a class separability measure that
yields the upper and lower bounds of Bayes classification error, with
higher values of BD yielding lower levels of classification error. Class
separability was assessed for three feature combinations: (1) the esti-
mated graph metric under the assumption of stationarity, (2) the N-
index of the graphmetric, and (3) the combined feature vector of the es-
timated graph metric and corresponding N-index.

3. Results

3.1. Model comparison

Themodel and proposed estimators were applied to two neurologic
populations of interest studied in brain connectivity research, healthy
controls and temporal lobe epilepsy patients. For each network mea-
sure, we explore HMM fits over a grid of values of K (K = 2, …, 6 in
our study) to find the number of states K yielding the best model fit.
Model fit for each value of K was assessed using the deviance
; LE, local efficiency; λ, path length; σ, small-world index; BC, betweenness centrality; EC,
s.



Fig. 3. Temporal stationarity of graph metrics of (a) healthy controls and TLE patients using N-index and (b) healthy controls and TLE patients using S-index. In (c), magnitude of
differences in temporal stationarity between healthy controls and TLE patients for the various graph metrics are shown.
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information criterion (DIC) and convergence of the state allocations to
the stationary distribution.Models with lower DIC indicate better good-
ness of fit and are generally preferable to models with higher DIC. The
DIC for each model is shown in Fig. 2. In our study, state allocations
showed convergence to a unique stationary distribution for K = 2. For
K N 2 states, trace plots for the following graph measures: BC (HC,
TLE), σ (HC, TLE), λ (HC, TLE), GE (HC), EC (HC), and γ (TLE) appeared
to switch between a few local optima, following a behavior consistent
with the artificial splitting of a single state into multiple states
(Zucchini and MacDonald, 2009). For γ (HC), LE (HC, TLE), and EC
(TLE), DIC was minimized for an HMM fit with K = 2 states. For GE
(TLE), DIC was minimized for an HMM fit with K = 3 states.

3.2. Relative temporal stationarity of graph metrics

The relative temporal stationarity of the different networkmeasures
among healthy controls and TLE patients based on estimated values of
N-index and S-index is shown in Figs. 3(a) and (b), respectively. Poste-
rior probabilities of the relative levels of temporal stationarity were es-
timated through Monte Carlo approximation and are shown in
Table E.1. Among healthy controls, small-world index was consistently
identified by both the N-index and S-index to exhibit the greatest tem-
poral stationarity among network measures (Figs. 3(a)–(b), Table E.1).
Global efficiency exhibited greater temporal stationarity than local effi-
ciency, while betweenness centrality exhibited greater stationarity than
eigenvector centrality. For global integrationmeasures, global efficiency
Fig. 4. Pie chart showing stationary distribution of (a) healthy controls; and (b) TLE patients
coefficient; LE, local efficiency; σ, small-world index; BC, betweenness centrality; EC, eigenvec
exhibited greater stationarity than characteristic path length. The esti-
mated stationary distribution for each network measure, which pro-
vides the equilibrium probability that the Markov chain is found in
each particular state, describes the expected long-run behavior of the
chain and is shown in Fig. 4. Among healthy controls, local segregation
measures (γ, LE) and eigenvector centrality demonstrated the least
amount of evidence for existence of a single dominant state, spending
roughly equal amounts of time in each state. In contrast, global integra-
tion measures (λ, GE), small-world index, and betweenness centrality
each demonstrated greater evidence for existence of a dominant state,
with greater than 0.70 probability of being found in a single dominant
state for each of these measures (Fig. 4).

TLE patients exhibited similar patterns in the relative temporal sta-
tionarity of each network measure, with two primary exceptions. First-
ly, TLE patients exhibited weaker evidence for a difference between
global efficiency and path length than healthy controls (Table E.1).
The second exception was with respect to clustering coefficient for
TLE patients, which was consistently identified as one of the least tem-
porally stationary network measures for healthy controls but to exhibit
great temporal stationarity for TLE patients (Fig. 3). Consistentwith this
observation, the stationary distribution of clustering coefficient for TLE
patients estimated that more than 90% of the scan was spent in a single
dominant state for clustering coefficient (Fig. 4). Global integration
measures (λ, GE), small-world index, and betweenness centrality each
were expected in the long-run to have greater than 0.70 probability of
being found in a single dominant state in TLE patients. Three-state and
. λ, normalized characteristic path length; GE, global efficiency; γ, normalized clustering
tor centrality.



Table 1
Class separability based on Fisher criterion for (a) graphmetric, (b)N-index, and (c) graph
metric +N-index; and based on Bhattacharyya distance for (d) graphmetric, (e)N-index,
and (f) graph metric + N-index. γ, clustering coefficient; σ, small-world index; BC,
betweenness centrality.

Fisher criterion Bhattacharyya distance

(a) (b) (c) (d) (e) (f)

γ 0.0440 8.0700 5.9309 0.0356 4.2482 4.4366
σ 0.0193 0.0658 0.0614 0.0357 0.0414 0.2111
BC 0.0060 0.1475 0.0062 0.00508 0.0745 0.1661
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two-state models for global efficiency among TLE patients were similar
with respect to the long-run proportion of time spent in the dominant
state (Fig. F.1).

3.3. Temporal dynamics and class separability

Here, we explore the potential diagnostic utility of incorporating
temporal dynamics into graph theory estimates. Fig. 3(c) shows the
magnitude of the difference in S-index and N-index between TLE and
controls, for various graph theory measures. Overall, the S-index and
N-index identified consistent differences in the temporal stationarity
of network measures between TLE patients and healthy controls, with
minor differences due to the probabilistic versus deterministic nature
of the estimators. Clustering coefficient demonstrated the largest differ-
ence in the level of temporal stationarity between healthy controls and
TLE patients. Small-world index and betweenness centrality also dem-
onstrated moderate differences in the level of temporal stationarity be-
tween disease and normal brain states (Fig. 3(c)). Differences between
TLE patients and healthy controls based on theN-index of clustering co-
efficient, small-world index, and betweenness centrality are shown in
Fig. 5(a). The ability of the N-index to capture individual differences in
temporal stationarity is shown for a few representative subjects in
Fig. G.1 (Appendix G). In particular, we see the group differences
apparent in Fig. 5(a) reflected on the individual subject level in
Fig. G.1. From Fig. 5(a), the N-index of clustering coefficient, small-
world index, and betweenness centrality was generally higher in TLE
compared to controls, with the greatest difference present in clustering
coefficient. This is apparent in Fig. G.1 on the individual subject level, as
a lower frequency of change-points and longer stretches of stationarity
among TLE patients than in healthy controls.

Class separability for each graphmeasure, as well as the correspond-
ing N-index of temporal stationarity, is shown in Table 1(a)–(b) and
(d)–(e), respectively. Table 1(c) and (f) show the class separability
when the N-index of the graph measure was used as a feature in addi-
tion to the estimated graphmeasure. We observed that the Fisher crite-
rion and Bhattacharyya distance yielded similar results, with increased
class separability observed between TLE and controls when temporal
Fig. 5. (a) Boxplots showing the estimated N-index for clustering coefficient (γ), small-wo
(b) Scatterplots showing the separation of pathological states based on the graph metric alone
and graph metric (bottom left panel). We note that when temporal dynamics are considered a
stationarity was taken into account. In particular, the Fisher criterion
for class separability was greater when the N-index was considered as
an additional feature along with the estimated graph metric for both
clustering coefficient and small-world index (Table 1). This indicates a
greater level of between-class relative to within-class scatter when the
N-indexwas considered as an individual feature. The Bhattacharyya dis-
tance between the classes increased as well for clustering coefficient,
small-world index, and betweenness centrality when the N-index was
considered as an individual feature, indicating better separability be-
tween the classes. Although the Fisher criterion failed to identify an in-
crease in class separability for betweenness centralitywhen theN-index
was taken into account, thismay reflect the closeness of the centroids of
the respective classes to the overall centroid.

The added contribution of the N-index to the original graph metric
in diagnostic prediction is visualized in Fig. 5(b). The bottom right
panel of Fig. 5(b) demonstrates the difficulty of differentiating the path-
ological classes when considered only with respect to the whole-brain
graph metrics. When temporal dynamics are considered, the patholog-
ical states exhibit much greater separability (Fig. 5(b), bottom left, top
left panels).

4. Discussion

In this study, we investigate the temporal stationarity of various
graph theoretical measures of network topology from resting-state
rld index (σ), and betweenness centrality (BC) for healthy controls and TLE patients.
(bottom right panel); N-index alone (upper left panel); and combination of the N-index
s an additional feature, the pathological states exhibit much greater separability.
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fMRI data. We propose two quantitative scalar estimators of temporal
stationarity, the S-index and N-index, which may be used to compare
different aspects of temporal stationarity across disease populations
or across network measures, while allowing for different levels of
probabilistic uncertainty through the two estimators. Our quantification
of the temporal stationarity of topological characteristics related to
small-world index, global integration, local segregation, and centrality
provides, to our knowledge, the first attempt to understand the tem-
poral dynamics of different aspects of brain network topology. We
show that several graph theoretical measures, including small-
world index, global integration measures, and betweenness central-
ity, may be more robust to an assumption of temporal stationarity in
functional connectivity analyses than others. In addition, we dem-
onstrate that subject-level differences in the temporal stationarity
of network topology may be useful as an additional marker of
abnormality.

4.1. Graph measures and temporal stationarity

Functional connections can be roughly classified into two categories:
long-range connections between different modules or clusters of neu-
rons, and local connections within modules or clusters of neurons.
While the former allows for integration of different sources of informa-
tion, the latter allows for local information processing (Sporns and Zwi,
2004). Network measures of global integration were observed here to
generally exhibit greater stationarity than network measures of local
segregation. This may reflect the organization of the resting-state
brain, in which the small-world architecture of the brain is thought
to have evolved in order to create systems that support efficiency in
both local and global processing (Latora and Marchiori, 2001). Since
long-range connections are generally thought to ensure the interaction
between distant neuronal clusters (Sporns and Zwi, 2004), a large
component of fluctuations between neuronal clusters (e.g., long-range
connections) may therefore occur downstream to fluctuations within
neuronal clusters (e.g., local connections), resulting in slightly greater
temporal stationarity among global relative to local connections.
Furthermore, while connectivity within local subgraphs may be
more susceptible to local cell dynamics and likely to fluctuate over
time, higher levels of local fluctuations may be expected to be asso-
ciated with lower levels of long-range fluctuations in order to main-
tain relatively constant net levels of temporal variability. Although
the concept of the brain network as a closed system has been
discussed previously (Latora and Marchiori, 2001), its potential im-
pact on the temporal dynamics of network topology remains rela-
tively unknown.

Small-world index was observed to be one of the topological net-
work measures exhibiting the greatest amount of stationarity on the
seconds time scale among healthy controls. This is perhaps unsurpris-
ing, as small-world index provides a measure of the level of optimality
of the network structure for synchronizing neural activity between
brain regions (Barabási et al., 2009; Barahona and Pecora, 2002) as
well as efficient information exchange (Latora and Marchiori, 2001),
and may be thus less likely to be affected over short increments of
time analyzedwithin a single scanning session. Itmay also be of interest
to note that the level of small-worldness of a network is based on the
ratio of clustering coefficient to characteristic path length. Therefore,
the fact that small-world index consistently exhibited greater levels of
temporal stationarity than both clustering coefficient and characteristic
path length among healthy controls indicates that clustering coefficient
and characteristic path length tended to fluctuate in the same direction
among healthy controls. In contrast, small-world index among TLE pa-
tients consistently exhibited greater levels of temporal stationarity
than characteristic path length, but lower levels of stationarity than
clustering coefficient. This indicates that there was a lower correspon-
dence between the tendency of clustering coefficient and characteristic
path length to fluctuate in the same direction among TLE patients.
(Bassett and Bullmore, 2006) suggested that an optimal balance
between global integration and local segregation, reflected by the
level of small-worldness, is needed to support efficient information
processing. It may be that dynamic increases (decreases) in local segre-
gation are normally accompanied by increases (decreases) in global in-
tegration in order to maintain an optimal level balance of network
integration and segregation in the healthy control population. Our
results suggest that the temporal correspondence between network
integration and segregation may be affected in pathology.

Among global integration measures, we found that global efficiency
exhibited greater temporal stationarity than characteristic path length
with high posterior probability among healthy controls. In contrast,
only weak evidence was present for such a relationship among TLE pa-
tients. While global efficiency is the average inverse shortest distance
between two generic nodes in the network and is a measure of parallel
efficiency, characteristic path length is the average shortest distance
between two generic nodes and a measure of sequential efficiency
(Latora and Marchiori, 2001). Our observation that global efficiency
exhibits greater temporal stationarity than characteristic path length,
therefore, suggests that the level of parallel efficiency of brain net-
works remains more constant over time than the level of sequential
efficiency. A similar phenomenon is observed in computer system
design, in which parallel computing systems exhibit greater fault tol-
erance than sequential computing systems, due to the redundancy
and ability for error checking and correction provided by parallel
compared to sequential streams (Döbel et al., 2012). Our interesting
observation confirms the similarity of construction principles among
brain and other networks.

4.2. Implications for inter-study replicability and temporal lobe epilepsy

The differences in temporal stationarity between different topologi-
cal characteristics identified here, with some measures tending to re-
main in a single state than others, may be one reason underlying the
inconsistencies between existing studies regarding the direction in
which topological characteristics are altered in disease. Here, we
found that clustering coefficient demonstrates the least amount of evi-
dence of the existence of a single dominant state in the healthy control
population, as quantified by its estimated stationary distribution, and
moreover spent the largest proportion of time in change-points, as
quantified through the N-index and S-index. Several review studies
have, in fact, observed that case–control studies investigating how clus-
tering coefficient is altered in disease using static connectivity analyses
have resulted in inconsistent conclusions. In temporal lobe epilepsy, for
example, (Chiang and Haneef, 2014) found that there exists a large
amount of variation in conclusions regarding the direction of alteration
of clustering coefficient in temporal lobe epilepsy relative to healthy
controls, with both increases (Bartolomei et al., 2013; Bernhardt et al.,
2011; Bonilha et al., 2012; Horstmann et al., 2010) and decreases
(Vlooswijk et al., 2011; Vaessen et al., 2011; Liao et al., 2010) identified.
(Bullmore and Sporns, 2009) also observed inconsistencies across stud-
ies investigating the directionality of altered clustering coefficient
among Alzheimer's disease relative to healthy controls, with both in-
creases (Stam et al., 2009) and decreases (Supekar et al., 2008) identi-
fied. Inconsistencies have generally been attributed to differences in
imagingmodalities, analyticmethods, or clinical heterogeneity between
studies. The temporal non-stationarity of clustering coefficient among
healthy controls found in our study, however, suggests that another rea-
son for current between-study inconsistencies may relate to the lack of
temporal stationarity of clustering coefficient. In particular, some stud-
ies may capture clustering coefficient of their healthy control sample
in one particular state, whereas other studiesmay capture clustering co-
efficient in another state. If this is the case, then utilization of statistical
methods which account for the dynamic nature of connectivity, rather
than assuming temporal stationarity, may be appropriate to attain bet-
ter estimated values of clustering coefficient. Betweenness centrality
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was also consistently more temporally stable than eigenvector central-
ity across models in both TLE and healthy subjects. The higher level of
temporal stationarity of betweenness centrality may lead to a higher
level of sensitivity in characterizinghub distributions based on static an-
alytic approaches. Betweenness centrality has been consistently impli-
cated in both localizing (Wilke et al., 2011) and lateralizing TLE
(Chiang et al., 2014; Zhang et al., 2011), whereas eigenvector centrality
has been less well implicated.

Notably clustering coefficient, while the least stable measure among
healthy controls, was themost temporally stablemeasure among TLE pa-
tients, surpassing even small-world index in temporal stationarity. We
postulate that this may relate to neuronal cell loss secondary to seizures
in TLE. A meta-analysis of focal epilepsies, for example, found that the
focal epileptic brain has a more segregated and less integrated network
(vanDiessen et al., 2014). This implies that nodes becomemore tightly in-
terconnected with immediate neighbors and less connected with nodes
outside their immediate neighborhood, with a more densely connected
neighborhood facilitating more stable local connections in TLE.

The proposed measures of temporal stationarity in this study facili-
tate future exploration of the ability of temporal stationarity levels of
different network measures to serve as diagnostic biomarkers. Here,
we found that considering the N-index of graph metrics in addition to
their estimated values may significantly increase the discriminant
power of classifiers between TLE patients and healthy controls. Future
investigation is needed in order to further evaluate the feature impor-
tance of these measures for prediction of diagnostic and prognostic
status.

4.3. Limitations

As mentioned in the Results section, the proposed model requires
the number of states in the HMM to be fixed a priori. We found that
two or three states optimally maximized the goodness of fit for
whole-brain graph theory metrics in our sample of temporal lobe epi-
lepsy patients and healthy controls. A separate study on the dynamics
of whole-brain functional connectivity in schizophrenic patients and
healthy controls also found that three states optimally maximized the
difference between within- and between-cluster variance (Ma et al.,
2014). Another study on young healthy controls found that seven states
optimally characterized whole-brain functional connectivity dynamics
(Allen et al., 2012). A third study also found that generalizability in
healthy controls drastically decreases after six or seven states, and
that gains in generalizability are generally reduced after three or four
states in simulated data (Eavani et al., 2013). The number of states K
in the HMM is not generalizable across populations and data types,
and K should be optimized for each individual dataset. In HMMs, there
have generally been two approaches employed for choosing the num-
ber of states K. The first approach is the one we have employed, in
which K is fixed a priori. The HMM model is fit over a grid of values of
K, and the model fit for each value of K is then assessed through a
goodness-of-fit criterion, such as the deviance information criterion
(Cui et al., 2015). The second approach uses Bayesian non-parametrics
(Fox et al., 2011; Airoldi et al., 2014), which has the advantage of
automatically learning the value of K but the disadvantage of the need
to explore transdimensional parameter spaces, thus adding to the
computational demands of the algorithm.

A practical issue in using HMMs is that the estimation of state-
specific parameters is subject to sample size constraints. The primary al-
gorithmic stability concern that arises as the number of states increases
is that a lower number of observations are expected to be assigned to a
specific state. This is equivalent of reducing the sample size for the esti-
mation of the transition matrix, the vector of state-specific means, and
the vector of state-specific variances. Therefore, the number of estima-
ble free parameters is constrained by the number of time points and
samples. Another computational concern is that the DIC must be com-
puted for each number of states. However, as each model is
independent of the other, computational speed-up may be attained
through parallel processing.

4.4. Future work

The results presented in this work suggest several lines of future
research. Firstly, we used the Pearson correlation coefficient to estimate
functional connectivity between nodes. Although this is the predomi-
nant method that has been used to estimate undirected graphs in
current resting-state fMRI studies, several other methods exist to esti-
mate undirected graphs, including graphical lasso (Friedman et al.,
2008), partial correlation coefficients, and a large number of other pos-
sible methods for quantifying associations. Each of these methods pro-
vides an approximation to the true unknown graphical structure of
the brain, and future studies may wish to evaluate whether some topo-
logical measures exhibit greater temporal stationarity under some esti-
mation procedures thanothers.Whether temporal stationaritymay also
be improved through usage of particular parcellation schemes or varia-
tions in graph theory metric calculation should also be explored.
Secondly, in order to facilitate comparisonwith current graph theory in-
vestigations, graphmetrics for each windowwere estimated by averag-
ing over the non-random connection density range, as the coefficient of
variation across thresholds for each graph measure was within the
range of within-subject variability described for fMRI data (Tjandra
et al., 2005). A straightforward extension of our model which avoids
this averaging step is to directly model the vector within the emission
distribution. Thirdly, we examined connectivity using a sliding window
approach with a window size of 44 s and 50% overlap. This choice was
based on previous studies, which have found that a shorter window
size of 44 s provides the ability to resolve temporal dynamicswhile pro-
viding a good tradeoff with the quality of covariance matrix estimation
(Allen et al., 2012). Varying window size between 30 s and 2 min has
been found to have relatively little impact on functional connectivity
dynamics other than the expected result of reducing the variability as-
sociated with longer timewindows (Allen et al., 2012). Lastly, to identi-
fy dynamic patterns of graph theoretical measures, we used a finite
HMMwith Gaussian emission distribution. Although HMMs are an effi-
cient way of recovering complex Markov processes in which hidden
states emit the observed data according to some probability distribu-
tion, they have several limitations includingdifficulty separating heavily
overlapped states. Of note, the overall higher DIC in TLE patients sug-
gests that the temporal dynamics of brain topology in TLE patients
may bemore complex than in healthy controls, whichmay be captured
by additional model parameters. Several extensions of the hierarchical
model proposed in this papermay be explored to improve inference, in-
cluding the use of Bayesian non-parametric methods to avoid a priori
specification of the number of states, or different emission distributions
in the HMM to accommodate graph theory measures with integer sup-
port spaces. Inference may also benefit from a larger number of time
points and the inclusion of additional subjects.
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Appendix A. MCMC algorithm

We employ Markov chain Monte Carlo (MCMC) methods to sample from the joint posterior distribution of {A, ξ, θj}. In particular, at
iteration (s):

1. Update A with Metropolis–Hastings step:
Propose ahnew ~ Dir (α1 + oh1,…, αK + ohK) where ohj∑

n
i¼1∑

T−1
t¼1 1fξit¼h ;ξiðtþ1Þ¼ jg, j=1,…, K, for all rows h. Jointly accept Anew = (a1new,…, aKnew)

with probability

min 1; ∏
n

i¼1

πAnew ξi1ð Þ
πAold ξ1ð Þ

" #
:

2. Update ξn�T with Metropolis–Hastings step. For each column t = 1, …, T:
(a) For each element ξit, i=1,…, n: If t=1, propose ξnewi1 � Cat ðπAðsÞ Þ. If t N 1, propose ξitnew from the current transition probability matrix A(s),

i.e.,

p ξnewit ¼ jjξ s−1ð Þ
i t−1ð Þ ¼ h

� �
¼ a sð Þ

h j ∀i ¼ 1;…;nt :

(b) For each element ξit, i = 1,…, nt, accept ξitnew with probability

min
p Xjξnew� �
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andwhere all transition probabilities in (A.1) are as given in the current transition probabilitymatrix A(s). Note that (A.1) is true for every t b T,
while for t = T the ratio simplifies to 1.
3. Update parameters of emission distributions:
(a) Update μ j, j = 1, …, K with Gibbs step: Draw

μ j � � Nj
Xn

i¼1

XT

t¼1
Xit1 ξit¼ jf g

h i
=σ2

j =τ
2
j

n j
� �
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j þ 1=τ2j

;
1

nj
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j þ 1=τ2j

0
@

1
A

∀ j = 1,…, K, where nj ¼ ∑n
i¼1∑

T
t¼11fξit¼ jg.

(b) Update σj
2, j=,…, K with Gibbs step: Draw

σ2
j




� � IG
nj

2
þ c j;

1
2

Xn
i¼1

XT
t¼1

Xit−μ j

� �2
1 ξit¼ jf g þ dj

 !

∀ j = 1,…, K, where nj ¼ ∑n
i¼1∑

T
t¼11fξit¼ jg:
4. Due to the invariance of the likelihood in Eq. (3) under permutations of the labels of the hidden states, label-switching occurs in hiddenMarkov
models.We account for label-switching by enforcing the identifiability constraint μ1 b μ2 b… b μK. In particular, we permute the values of ξ and
θj on-line to satisfy the above constraint.
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Appendix B. Proof of unbiasedness and asymptotic consistency of N-
It can be shown that Eq. (5) is anunbiased estimator of the average proportion of time spent in a stable state. In order to do so, it is enough to show
that

E N½ � ¼ E 1−
1

n T−1ð Þ
Xn
i¼1

XT
t¼2

1
ξ̂it≠ξ̂i t−1ð Þ
� �" #

¼ 1−
1

n T−1ð Þ
Xn
i¼1

XT
t¼2

E 1
ξ̂it≠ξ̂i t−1ð Þ
� �� 	

¼ 1‐
1

n T−1ð Þ
Xn
i¼1
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t¼2

ℙ ξ̂it ≠ ξ̂i t−1ð Þ
h i

:

Furthermore, the variance of Eq. (5) asymptotically goes to 0 as either the number of subjects n → ∞ or the number of time points T → ∞,
since

Var N½ � ¼ Var 1−
1

n T−1ð Þ
Xn
i¼1
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t¼2

1
ξ̂it≠ξ̂i t−1ð Þ
� �" #

¼ 1

n2 T−1ð Þ2
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� �� 	

¼ 1

n2 T−1ð Þ2
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t¼2

ℙ ξit ≠ξi t−1ð Þ
h i

1−ℙ ξit ≠ξi t−1ð Þ
h i� �

ðB:1Þ

which clearly goes to 0, since 1
n2ðT−1Þ2 → 0 faster than the summand goes to ∞. Note that the independence of indicators in (B.1) follows from

first-order Markov property.
Appendix C. Evaluation of performance using simulated data

Here, we evaluate the performance of the model through simulated data, and demonstrate the utility of our proposed stationarity measures, the
N-index and S-index, for quantifying aspects of temporal stationarity.

C.1. Simulation settings

In this section, we use simulated data to evaluate the performance of the Bayesian hidden Markov model for identifying hidden states and
transition probabilities for graph theory metrics. In order to assess performance of the model in accurately estimating transition probabilities, we
compute the mean square error of the estimated transition probabilities. We assess performance in accurately predicting the hidden states by
computing the misclassification error for the estimated hidden state matrix, ξ. In addition, we demonstrate the utility of the N-index and S-index
as quantitative measures for capturing the frequency of transitions between states.

In particular, we simulate data on graph theory metrics for n = 30 subjects and T = 300 time points. Using the silhouette index (Kaufman and
Rousseeuw, 2009), three states has been found to optimallymaximize the difference betweenwithin- and between-cluster variation for the strength
of functional connections (Ma et al., 2014). For each graph theory networkmeasure, these three states are ordered, lending to a natural interpretation
of these states as characterizing low, normal, and high levels of each network measure. Transitions between adjacent ordered states are expected to
be more likely than transitions between non-adjacent ordered states (e.g., low levels of network connectivity, for example, are more likely to
transition to a normal level of network connectivity before progressing to a high level of network connectivity). Based on these considerations, we
generate the simulated n × T matrix ξ of hidden states as follows:

1. Using the following transition probability matrix:

:75 :18 :07
:4 :002 :508
:7 :40 :59

2
4

3
5 ð10Þ

we follow (Guha et al., 2008) and (Cassese et al., 2014), and sample the first column (i.e., the hidden states of the n samples at the first time
point) from the initial probability vector πA, which is calculated as the normalized left eigenvector associated with the principal eigenvalue.

2. Given the first column of ξ, we sample all other columns from the transition probability matrix in (C.1).

Given ξ, we generate simulated values of X as in Eq. (2), where we fix μ1 =−0.5, μ2 = 0, μ3 = 0.5, σ1 = σ2 = σ3 = 0.1. The simulated data are
shown in Fig. C.1 (left) and the underlying transitionmatrix is shown in Fig. C.2 (left). Hidden states are shown in Fig. C.2 (right). To evaluate robust-
ness of our model to different levels of overlap between the states, we also evaluate a second scenario, with μ1 =−0.3, μ2 = 0, μ3 = 0.3, σ1 = σ2 =
σ3 = 0.1 (Fig. C.1, right).

Hyperparameters were set to be non-informative when possible. In particular, we set δj =0, τj =100, cj =2, dj =1∀ j, α1 = α2 = α3 = 1.
The MCMC chain was initialized with initial values μ1

(0)
= −1, μ2

(0)
= 0, μ3

(0)
= 1, and σ1

(0) = σ2
(0) = σ3

(0)
= 1. We initialized ξ(0) by setting

ξit(0) = j if the corresponding Tj b Xit b Tj + 1, where T = [−∞, − 0.5, 0.3, ∞] for the first scenario, and T = [−∞, − 0.2, 0.2, ∞] for the second
scenario. We initialized A(0) from the initial value of ξ(0), by setting ahj

(0)
to the proportion of transitions from state h to state j in ξ(0). We ran

1000 iterations with the first 500 sweeps discarded as burn-in. Convergence to the stationary distribution was assessed using the Raftery-Lewis
diagnostic.

C.2. Performance on simulated data

Fig. C.2(a) shows the performance of our model for estimating the transition probability matrix and graph theory states under the first
scenario. Performance under the second scenario, with a greater amount of overlap between the states, is shown in Fig. C.2(b). Predicted values



Fig. C.1. Simulated data: (left) Simulated values of graph theorymetric (μ1=−0.5, μ2=0, μ3=0.5) and (right) Simulated values of graph theorymetric (μ1=−0.3, μ2= 0, μ3=0.3), for
a sample subject.
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of the transition probabilities were close to the true transition probabilities, with a mean square error of 0.0013 under the first scenario, and a
mean square error of 0.0009 under the second scenario. Hidden states were also predicted with high accuracy for both small and large levels of
overlap between the states, with a misclassification error of 0.23% for the first scenario, and a misclassification error of 4.76% for the second
scenario.

Other parameters of interest, including the stationary distribution and measures of temporal stationarity, can also be inferred upon. In the
first scenario, the stationary distribution, π̂, was estimated from the normalized left eigenvector of the predicted transition probability matrix
Fig. C.2. Simulated data. (a) μ1 =−0.5, μ2 = 0, μ3 = 0.5: (left) True transition probability matrix, (Middle) Posterior mean estimated transition probability matrix (right) True and pos-
terior mode of predicted states for a sample subject. (b) μ1 = −0.3, μ2 = 0, μ3 = 0.3: (left) True transition probability matrix, (Middle) Posterior mean estimated transition probability
matrix (right) True and posterior mode of predicted states for a sample subject. For true and predicted states, first 30 time points shown are shown for simplicity.
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as π̂ ¼ ½0:446 0:205 0:349�. In other words, the subject would be expected in the long-run to spend 44.5% of time in State 1, 34.9% of time in State
3, and 20.5% of time in State 2. The N-index was estimated as 0.553, indicating that an estimated 55.3% of the time was spent in stable states.
The S-index was estimated on the scale of [0, 1] as 0.554, indicating that the weighted probability of only 0.554 for remaining in same state. As
seen from Figs. C.2(a) and (b), the proposed S-index appears to provide a good quantitative measure of the temporal stationarity of the dom-
inant states, as frequent transitions are observed to occur for this graph theory metric between states 1 and 3. Estimates of the stationary dis-
tribution and stationarity of graph theory metric remained robust under higher levels of overlap between the states, with an estimated
stationary distribution of π̂ ¼ ½0:445 0:213 0:342� , estimated N-index of 0.566, and estimated S-index of 0.543 under the scenario of
μ1 = −0.3, μ2 = 0, μ3 = 0.3.
Appendix D. Supplementary material for Section 3.1
Supplementary Fig. D.1. Example ofmodel fitting in the event ofmis-specification. Estimated probabilities of belonging to each state at each time point is shown for eigenvector centrality
of a given subject. (A) Theprobability of belonging to State 1 under the 3-state HMM is approximately equal to the probability of belonging to State 1 under the 2-state HMM,minus a small
constant c1. (B) The probability of belonging to State 2 under the 2-state HMM is approximately equal to the probability of belonging to State 2 under the 3-state HMM, plus a small
constant c2. The probability of belonging to State 3 under the 3-state HMM, c3, is composed of c1 and c2, and is small compared to the peaks in A and B.
Appendix E. Estimates of posterior probability of relative levels of temporal stationarity
Table E.1
Posterior probabilities of relative temporal stationarity for graph metrics. (a) Posterior probability of greater temporal stationarity in global efficiency than in path length; (b) posterior
probability of greater temporal stationarity in betweenness centrality than in eigenvector centrality; (c) posterior probability of greater temporal stationarity in global efficiency than
in local efficiency; (d) posterior probability of greater temporal stationarity in small-world index than in the other graph measures. λ, characteristic path length; GE, global efficiency;
γ, clustering coefficient; LE, local efficiency; σ, small-world index; BC, betweenness centrality; EC, eigenvector centrality.

HC TLE

(a) Global integration measures (GE vs. λ)
NGE N Nλ SGE N Sλ NGE N Nλ SGE N Sλ
0.81 0.78 0.54 0.52

(b) Centrality measures (BC vs. EC)
NBC N NEC SBC N SEC NBC N NEC SBC N SEC
0.90 0.87 0.994 0.993

(c) Efficiency measures (GE vs. LE)
NGE N NLE SGE N SLE NGE N NLE SGE N SLE
0.98 0.97 0.97 0.96

(d) Small-world index
Nσ N NZ Sσ N SZ Nσ N NZ Sσ N SZ

Z = γ 0.76 0.75 0.00 0.00
Z = GE 0.89 0.87 0.999 0.999
Z = LE 0.998 0.997 0.999 0.999
Z = λ 0.98 0.97 0.999 0.999
Z = BC 0.97 0.96 0.999 0.997
Z = EC 0.998 0.997 0.999 0.999
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Appendix F. Stationary distribution of global efficiency among TLE patients for 2- and 3-state models
Fig. F.1. Stationary distribution of global efficiency under (a) 3-state model and (b) 2-state model in TLE patients.
Appendix G. MAP estimates of ξ
Fig. G.1. Estimated states for clustering coefficient (γ), small-world index (σ) and betweenness centrality (BC), for individual healthy controls and TLE patients, based onMAP estimates of
ξ. A few representative subjects are shown. Other subjects were similar (not shown).
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