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An Integrative Bayesian Modeling Approach
to Imaging Genetics

Francesco C. STINGO, Michele GUINDANI, Marina VANNUCCI, and Vince D. CALHOUN

In this article we present a Bayesian hierarchical modeling approach for imaging genetics, where the interest lies in linking brain connectivity
across multiple individuals to their genetic information. We have available data from a functional magnetic resonance imaging (fMRI) study
on schizophrenia. Our goals are to identify brain regions of interest (ROIs) with discriminating activation patterns between schizophrenic
patients and healthy controls, and to relate the ROIs’ activations with available genetic information from single nucleotide polymorphisms
(SNPs) on the subjects. For this task, we develop a hierarchical mixture model that includes several innovative characteristics: it incorporates
the selection of ROIs that discriminate the subjects into separate groups; it allows the mixture components to depend on selected covariates;
it includes prior models that capture structural dependencies among the ROIs. Applied to the schizophrenia dataset, the model leads to the
simultaneous selection of a set of discriminatory ROIs and the relevant SNPs, together with the reconstruction of the correlation structure of
the selected regions. To the best of our knowledge, our work represents the first attempt at a rigorous modeling strategy for imaging genetics
data that incorporates all such features.

KEY WORDS: Bayesian hierarchical model; Functional magnetic resonance imaging; Markov random field; Neuroimaging; Single-
nucleotide polymorphism; Variable selection.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a com-
mon tool for detecting changes in neuronal activity. It measures
blood oxygenation level-dependent (BOLD) contrast that de-
pends on changes in the regional cerebral blood-flow (rCBF).
fMRI has become very popular in the neuroimaging field due
to its relatively low invasiveness, absence of radiation exposure,
and relatively wide applicability.

Statistical methods play an important role in the analysis of
fMRI data and have generated a growing literature (see e.g.,
Lazar 2008; Lindquist 2008, for reviews on methods). Dimen-
sion reduction techniques, such as principal component analysis
(PCA) and independent component analysis (ICA), and cluster-
ing algorithms are routinely applied to imaging data as a way
of mapping connectivity. In the fMRI literature, connectivity
refers to parts of the brain that show similarities and/or that inter-
act with each other. In particular, anatomical connectivity deals
with how different brain regions are physically connected; func-
tional connectivity is defined as the association, or correlation,
between fMRI time series of distinct voxels or regions; while ef-
fective connectivity is the directed influence of one brain region
on others (Friston 1994). Because of the high-dimensionality
of the data, that is, the large number of voxels, studies often
perform region-based analyses, by looking at specific regions
of interest (ROIs), or by dividing the entire brain into ROIs, for
example, by parcellating the brain into anatomical regions (see,
e.g., Tzourio-Mazoyer et al. 2002). Bayesian approaches have
recently found successful applications in the fMRI field (Smith
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et al. 2003; Woolrich et al. 2004, 2009; Penny, Trujillo-Barreto,
and Friston 2005; Bowman et al. 2008; Guo, Bowman, and Kilts
2008). Also, nonparametric Bayesian methods that cluster brain
regions on the basis of their connectivity patterns have been
proposed (Jbabdi, Woolrich, and Behrens 2009). Compared to
other inferential approaches and algorithmic procedures com-
monly used in the analysis of fMRI data, Bayesian methods
allow for a direct assessment of the uncertainties in the parame-
ters’ estimates and, perhaps more importantly, the incorporation
of prior knowledge, such as on spatial correlation among voxels
and/or ROIs, into the model.

In this article we consider a problem of imaging genetics,
where structural and functional neuroimaging is applied to
study subjects carrying genetic risk variants that relate to a
psychiatric disorder. Our work, in particular, is motivated by a
dataset on subjects diagnosed with schizophrenia and healthy
controls, collected as part of the Mind Clinical Imaging Con-
sortium (MCIC; Chen et al. 2012), where we have available
measurements on fMRI scans and single nucleotide polymor-
phism (SNP) allele frequencies on all participants. The fMRI
data were collected during a sensorimotor task, a block-design
motor response to auditory stimulation. The resulting images
were realigned, normalized, and spatially smoothed as custom-
ary, to remove most nontask-related sources of variability from
the data (Ashby 2011; Chen et al. 2012). Here, the fMRI in-
formation is further summarized in individual contrast images
of ROI-based summary statistics, as follows. For each partici-
pant, we fit a multiple regression incorporating regressors of the
stimulus and its temporal derivative plus an intercept term. The
resulting coefficient estimates can be used to build individual
synthetic brain maps capturing the stimulus effect at each voxel.
The maps are then superimposed to a fixed template atlas, for
example, the MNI space automated anatomical labeling (AAL)
atlas (Tzourio-Mazoyer et al. 2002), and additionally segmented
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into automatically labeled ROIs. Summary statistics, as the me-
dian or maximum intensity values, can be computed over the
voxels included in each region (Kim et al. 2005; Etzel, Gazzola,
and Keysers 2009). In addition to the fMRI data, we also have
available measurements on SNP allele frequencies on all sub-
jects. We use the genetic data as potential covariates that may
affect brain function, in both healthy controls and patients with
schizophrenia.

The goal of our analysis is to detect local activations, that
is, areas of increased BOLD signal in response to a stimu-
lus, by selecting a subset of ROIs that explain the observed
activation patterns, and to identify SNPs that might be rele-
vant to explain such activations. Understanding how connec-
tivity varies between schizophrenic and control subjects is of
utmost importance for diagnostic purposes and therapeutic in-
terventions. The ability to link the imaging and genetic com-
ponents in the participants’ subgroups could lead to improved
diagnostic tools and therapies, as it is now generally recog-
nized that brain connectivity is affected by genetic character-
istics (Colantuoni et al. 2008; Liu et al. 2009). Indeed, Chen
et al. (2012) found evidence of a significant correlation be-
tween fMRI and SNP data. These authors use a two-step pro-
cedure involving a combination of PCA and ICA techniques,
whereas we propose to study the association between spatial
patterns and genetic variations across individuals within the co-
herent probabilistic framework offered by Bayesian hierarchical
models.

We develop a hierarchical mixture model that includes several
innovative characteristics. First, it incorporates the selection of
ROIs that discriminate the subjects between schizophrenic pa-
tients and healthy controls, allowing for a direct assessment of
the uncertainties in the estimates of the model selection parame-
ters. Second, it allows the group-specific distributions to depend
on selected covariates, that is, the SNP data. In this sense, our
proposed model is integrative, in that it combines the observed
brain activation patterns with the subjects’ specific genetic in-
formation. Third, it incorporates prior knowledge via network
models that capture known dependencies among the ROIs. More
specifically, it employs spatially defined selection process pri-
ors that capture available knowledge on connectivity among
regions of the brain, so that regions having the same activation
patterns are more likely to be selected together. Furthermore,
our hierarchical formulation accounts for additional correlation
among selected ROIs that may not be captured by the network
prior. Applied to the schizophrenia dataset, the model allows
the simultaneous selection of a set of discriminatory ROIs and
the relevant SNPs, together with the reconstruction of the de-
pendence structure of the selected regions. To the best of our
knowledge, our work represents the first attempt at a rigorous
modeling strategy for imaging genetics data that incorporates
all such characteristics.

The remainder of the article is organized as follows: In Sec-
tion 2, we introduce our modeling framework and its major
components. We describe posterior inference and prediction in
Section 3. In Section 4, we first assess performances of our
proposed model on simulated data and then investigate results
on data from our case study on schizophrenia. We conclude the
article with some remarks in Section 5.

Figure 1. Graphical formulation of the proposed probabilistic
model, as described in Section 2.

2. HIERARCHICAL BAYESIAN MODEL

In its most general formulation, we depict our proposed model
as a hierarchical mixture model including selection of discrim-
inating features (e.g., ROIs), mixture components that depend
on selected covariates (e.g., SNP), and network priors that cap-
ture structural dependencies among the features. The graphical
formulation of the model is illustrated in Figure 1 and its major
components are described below. We also summarize the hier-
archical formulation of our full model in Figure 2 at the end of
this section.

2.1 A Mixture Model With Feature Selection

We represent the ROI-based summaries of BOLD signal in-
tensity as measurements {xij , i = 1, . . . , n, j = 1, . . . , p} on
a set of p features (the anatomical ROIs) on n subjects. We
envision that some of the features could discriminate the n sub-
jects into, say, K separate groups (e.g., schizophrenia cases and
healthy controls). Therefore, we introduce a latent binary vector
γγγ = (γ1, . . . , γp) such that γj = 1 if the jth feature is discrim-
inatory and γj = 0 otherwise. By employing a discriminant
analysis framework, we model the data as a mixture model of
the general type

fk(xij |γj ) = (1 − γj ) f0(xij ; θ0j ) + γj f (xij ; θkj ), (1)

k = 1, . . . , K , where f0(xij ; θ0j ) describes the distribution of
the “null” model for the nondiscriminatory features, while
f (xij ; θkj ) is the distribution of the measurements on the dis-
criminatory features for subjects in group k. In this article, we
assume Gaussian distributions for the mixture components, that
is, f0(xij ; θ0j ) = N (0, σ 2

0j ) and f (xij ; θkj ) = N (μkj , σ
2
kj ). With-

out loss of generality, we also assume that the measurement data
are centered across all subjects within each feature.

Our model formulation follows an approach to feature selec-
tion in mixture models that was introduced by Tadesse, Sha,
and Vannucci (2005) and Raftery and Dean (2006). These au-
thors formulated clustering in terms of a finite mixture of Gaus-
sian distributions with an unknown number of components and
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then introduced latent variables to identify discriminating fea-
tures. Kim, Tadesse, and Vannucci (2006) proposed an alterna-
tive modeling approach that uses infinite mixture models via
Dirichlet process priors. Also, Hoff (2006) adopted a mixture of
Gaussian distributions where different clusters were identified
by mean shifts and where discriminating features were identi-
fied via the calculation of Bayes factors. Stingo, Vannucci, and
Downey (2012) extended the approach by Tadesse, Sha, and
Vannucci (2005) and Raftery and Dean (2006) to the discrim-
inant analysis framework. Building a feature selection mecha-
nism into mixture models is a more challenging problem than
in general linear settings, where the latent indicator vector γγγ

is used to induce mixture priors on the regression coefficients.
In mixture models, only the observed elements of the matrix X
guide the selection and γγγ is used to index the contribution of
the different features to the likelihood terms of the model, as in
our formulation (1).

Let us now denote features indexed by γj = 1 as X(γ ), and
those indexed by γj = 0 as X(γ c). While the former set defines
a mixture distribution across the n samples, the latter favors
one multivariate normal distribution across all samples. Follow-
ing the finite mixture model formulation by Tadesse, Sha, and
Vannucci (2005), we can write our model for sample i as

xi(γ c)|· ∼ N (0,���(γ c))

xi(γ )|gi = k, · ∼ N (μμμk(γ ), ���k(γ )), (2)

with gi = k if the ith sample belongs to group k. In the su-
pervised setting, also known as discriminant analysis, in ad-
dition to the observed vectors xi’s, the number of groups K
and the classification labels gi’s are also available and the
aim is to derive a classification rule that will assign further
cases to their correct groups (see Section 3.1). Here we as-
sume diagonal variance-covariance matrices, that is, ���k(γ ) =
Diag(σ 2

k1, . . . , σ
2
kpγ

), with pγ the number of nonzero elements

in the vector γγγ , and ���(γ c) = Diag(σ 2
01, . . . , σ

2
0(p−pγ )), and then

impose inverse-gamma priors on the variance components,
σ 2

kj ∼ IG(σ 2
kj ; ak, bk), k = 0, 1, . . . , K . Even though we make

this simplifying assumption at this stage of the hierarchy, our
proposed model is still able to capture structural dependencies
via the specification of the prior model for the mean components
that we describe in Section 2.3.2.

2.2 Covariate-Dependent Characterization
of the Mixture Components

We allow the mixture components of model (2) to depend
on a set of covariates. Let us denote with Zi = (Zi1, . . . , ZiR)T

the set of available covariates for the ith individual. We model
the means of the discriminating components as subject-specific
parameters

μμμik(γ ) = μμμ0k(γ ) + βββT
k(γ ) Zi , k = 1, . . . , K, (3)

where μμμ0k(γ ) is a baseline process that captures brain connectiv-
ity (described in detail in Section 2.3.2) and βββk(γ ) is a R × pγ

matrix of coefficients describing the effect of the covariates on
the observed measurements. More in detail, our model formu-
lation uses component-specific parameters that determine how
covariates, and other relevant spatial characteristics, affect the

observed measurements xi(γ ), on the n subjects, given the se-
lected features. In this respect, the classification of the n subjects
in K groups is driven by the subjects’ covariates. In particular,
in our application to the schizophrenia dataset the model relates
the subjects’ brain activity to available information on genetic
covariates.

We want to allow different covariates to affect the individ-
ual mixture components. For this we introduce spike and slab
priors on βββk(γ ). First, we define a binary latent indicator δrk ,
r = 1, . . . , R, such that

δrk =
{

1 with probability wrk

0 with probability 1 − wrk.

If δrk = 1, then the rth covariate is considered relevant to explain
the observed measurements in the kth mixture component. In
this case, we allow the corresponding vector βββrk(γ ) to be sampled
from a multivariate normal prior distribution. Otherwise, the rth
covariate does not affect the response data and the corresponding
regression coefficient vector βββrk(γ ) is set to 0 for component k.
We choose a conjugate setting and write the prior on the rth row
vector βββrk(γ ), for the kth component, as

βββrk(γ ) ∼ (1 − δrk)I0(βββrk(γ )) + δrkN (b0k(γ ), h���k(γ )), (4)

where I0(βββrk(γ )) is a vector of point masses at zero and h > 0
some suitably large-scale parameter to be chosen. Large values
of h correspond to a prior well spread out over the parameters
space, and typically encourage the selection of relatively large
effects. We refer to the articles by Smith and Kohn (1996),
Chipman et al. (2001), and O’Hara and Sillanpaa (2009) for
discussions on the choice of this parameter. A Bernoulli prior
on δrk , with parameter wrk , completes our selection prior model
on the covariates,

P (δδδ|w) =
K∏

k=1

R∏
r=1

w
δrk

rk (1 − wrk)1−δrk .

In our applications, we fix the hyperparameters wrk . Alterna-
tively, one can place a Beta hyperprior on these parameters.

Notice that our setting allows individual covariates to have
differential effects (βββr1(γ ), . . . , βββrK(γ )) on the selected features.
In the application to the schizophrenia dataset, our integrative
model allows the selection of SNPs that are implicated in the
differential activation patterns observed in patients and healthy
controls. Thus, a SNP can be correlated to a discriminatory ROI
for subjects in one group, and hence help understanding the ac-
tivation patterns for that group, and not be correlated to the same
discriminatory ROI in the other group. This may happen if the
selected ROI shows heterogeneous activation levels, explained
by the selected SNP, in one group but not in the other. Our model
also allows a SNP to be associated to differential activations in
both groups.

2.3 Networks for Structural Dependencies

We still need to specify priors on the feature selection vector
γγγ and on the baseline process μμμ0k(γ ). For those parameters, we
employ prior models that capture information on dependence
structures.
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2.3.1 A Markov Random Field for Feature Selection. The
selection of the discriminatory features in our model (2) is driven
by the latent variables γj ’s. Here we impose a spatial process
on γj that takes into account network dependencies among the
features, so that dependent features are more likely to be se-
lected together. The network structure is determined a priori on
the basis of available information. In particular, in our appli-
cation to the schizophrenia dataset knowledge is available on
the anatomical arrangement of the ROIs. We therefore construct
a symmetric matrix S that captures spatial connectivity, with
element {sij = 1} if ROI i and ROI j are directly connected
in the network and with {sij = 0} otherwise. Although we do
not pursue this option here, we notice that one could extend
the definition of the matrix S to allow for entries sij ∈ IR+,
that is, continuous weights, to incorporate knowledge on phys-
ical distance between features, similarly to what is routinely
done in “auto-logistic models” (Besag 1974) and spatial con-
ditional (CAR) and simultaneous (SAR) autoregressive models
(Banerjee, Gelfand, and Carlin 2003).

We model spatial dependencies via an Ising prior model on
the γj ’s. This is a type of Markov random field (MRF), where
the distribution of a set of random variables follows Markov
properties that can be described by an undirected graph. Smith
et al. (2003) and Penny, Trujillo-Barreto, and Friston (2005) first
used MRF models as prior distributions for the coefficients of
voxel-based generalized linear models for fMRI data. Ising mod-
els have also recently found useful applications in genomics, to
capture regulatory networks (see e.g., Li and Zhang 2010; Stingo
et al. 2011; Telesca et al. 2012). In a MRF, variables are repre-
sented by nodes and relations between them by edges. The Ising
model is characterized by the following probabilities

P (γj |γi, i ∈ Nj ) = exp(γjF (γj ))

1 + exp(F (γj ))
, (5)

where F (γj ) = e + f
∑

i∈Nj
(2γi − 1) and Nj is the set of direct

neighbors of feature j in the network. The parameter e controls
the sparsity of the model, while higher values of f encourage
neighboring features to take on the same γj value. The global
MRF distribution for γγγ can be defined up to its normalizing
constant as

P (γγγ |e, f ) ∝ exp
(
e1T

pγγγ + f γγγ T Sγγγ
)
, (6)

where 1p is the unit vector of dimension p and S is the matrix
capturing a priori likely connections among the nodes, as de-
scribed above. Note that if a feature does not have any neighbor,
then its prior distribution reduces to an independent Bernoulli,
with parameter exp(e)/[1 + exp(e)], a prior often adopted in the
Bayesian variable selection literature.

Following the articles by Li and Zhang (2010) and Stingo,
Vannucci, and Downey (2012), we treat e and f as fixed hy-
perparameters. Although the parameterization is somewhat ar-
bitrary, some care is needed in deciding whether to put a prior
distribution on f . In particular, allowing f to vary can lead to a
phase transition problem, that is, the expected number of vari-
ables equal to 1 can increase massively for small increments
of f . This problem can happen because Equation (5) can only
increase as a function of the number of γi’s equal to 1. In vari-
able selection, especially when p is large, phase transition leads
to a drastic change in the proportion of included variables. An

empirical estimate of the phase transition value can be obtained
using the algorithm proposed by Propp and Wilson (1996) and
the values of e and f can then be chosen accordingly. In this
article, we first set e to a small value that reflects our belief in
a sparse model. This value can be chosen based on the logistic
transformation of e in the case of no neighbors, as a lower bound
of the prior probability of feature selection. As for f , any value
of f below the phase transition point can be considered a good
choice, with values closer to the phase transition point leading
to higher prior probabilities of selection for those nodes whose
neighbors are already selected, particularly in a sparse network.

2.3.2 Component-Specific Dependencies. We complete our
model with a prior specification on the baseline process μμμ0k(γ ) in
model (3). This component is a random effect capturing relevant
characteristics of the selected features that affect the observed
measurements xi(γ ), on the n subjects, and that are not explained
by the effects of the selected covariates. In our application to
the schizophrenic dataset, we use this baseline process to cap-
ture additional effects on activations among selected ROIs that
are not explained by the genetic covariates. In particular, we
look at μμμ0k(γ ) as a way to capture general relationships among
selected features. Correlation among distant ROIs is in fact a
well-described phenomenon in the fMRI literature, in addition
to the dependence based on proximity, which, in our model, is
captured by the MRF prior on γγγ (Friston 1994).

We assume μμμ0k(γ ) a realization of a multivariate normal dis-
tribution,

μμμ0k(γ ) ∼ Npγ
(νννk(γ ), h1


0k(γ )), k = 1, . . . , K, (7)

for some fixed-scale parameter h1 > 0, and assume the preci-
sion matrix 


−1

0k(γ ) to come from a Wishart distribution, that is,

0k(γ )|δk, Q ∼ IW (dk, Q). Alternatively, a more general scaled
inverse Wishart can be used (Gelman and Hill 2007, sec.
13.3). Notice how we define, again, component-specific param-
eters. This allows us to estimate component-specific dependence
structures. A normal distribution on νννk(γ ) completes the prior
specification.

Figure 2 summarizes the hierarchical formulation of our full
model.

3. POSTERIOR INFERENCE

For posterior inference, our primary interest is in the selection
of the discriminating features and of the covariates that affect
the observed measurements, as captured by the selection vec-
tors γγγ and δδδ. We also want to do inference on the dependence
structure among the selected features. Here we design a MCMC
algorithm that explores the model space for configurations with
high posterior probability. These algorithms are commonly used
in Bayesian variable selection settings, and have been success-
fully employed in genomic applications with very large num-
ber of variables (George and McCulloch 1993, 1997; Brown,
Vannucci, and Fearn 1998; Tadesse, Sha, and Vannucci 2005;
Stingo et al. 2011). Clearly, with large dimensions, exploring the
posterior space is a challenging problem. A typical strategy re-
lies on exploiting the sparsity of the model, that is, the belief that
most of the variables are not related to the underlying biologi-
cal process. Such algorithm allows then to explore the posterior
space in an effective way, quickly finding the most probable
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880 Journal of the American Statistical Association, September 2013

Figure 2. Hierarchical formulation of the proposed probabilistic
model. X denotes the n × p matrix of ROI-based measurements, Z
is the n × R matrix of covariates, g is the vector of indicators of the
individual group memberships, and γ is the latent binary vector of
discriminatory features.

configurations, that is, those corresponding to sets of variables
with high posterior probability, while spending less time in re-
gions with low posterior probability.

As it is typical in the implementation of MCMC methods for
variable selection, to speed up the convergence of the MCMC
we integrate out some of the model parameters from the poste-
rior distribution, specifically the variance components in model
(2), the regression coefficients in model (3) for selected co-
variates, and the hyperparameters of the distribution (7) of the
model intercepts. Therefore, we focus on the marginal posterior
distribution of (γγγ , δδδk , μμμ0k(γ )). We detail the MCMC implemen-
tation in the Appendix. Here, we succinctly describe our MCMC
algorithm by the following three steps:

1. A Metropolis-Hastings step on γγγ : This step is based on the
marginal posterior distribution of γγγ conditioned upon δδδ

and the μμμ0k(γ )’s. It consists of randomly choosing between
changing the value of a single γj , from 0 to 1 or from 1
to 0, and swapping two γj ’s (with opposite values). This
step may imply a change in the dimensionality of the
matrices 


0k(γ ), which have been integrated out, while the
parameter space of γγγ , that is, {0, 1}p, remains constant.

2. A Metropolis-Hastings step for δδδk: Similarly to the pre-
vious step, for each of the K components we randomly
choose between changing the value of a single δrk , from 0
to 1 or from 1 to 0, and swapping two δrk’s with opposite
values.

3. A random walk Metropolis-Hastings step on the μμμ0k(γ )’s:
Given the selected features, we update μμμ0k(γ ) by propos-

ing new values for all μ0kj included in the model at
that particular iteration, according to μNew

0kj = μOld
0kj + ε,

with ε ∼ N (0, v2) for j = 1, . . . , pγ and k = 1, . . . K ,
for some fixed choice of the proposal parameter v (for
details on this step, see the Appendix).

Posterior inference can be performed based on the MCMC
output by calculating the marginal posterior probabilities of the
individual γj ’s and δrk’s. A simple strategy is to compute Monte
Carlo estimates by counting the number of appearances of each
feature/covariate across the visited models. Important features
and related covariates can be selected as those with highest
posterior probabilities. Samples from the posterior distribution
of μμμ0k(γ ) can then be used to infer correlation between selected
features for each of the K groups.

Our model also allows inference on the variance components
in model (2) and the regression coefficients of the selected co-
variates in model (4). More specifically, post-MCMC estimates
of those parameters can be obtained by sampling (βββkj (δk), σ

2
kj )

jointly from

p
(
σ 2

kj |X, Z, γγγ , δδδk, μμμ0k(γ )

) ∼ IG(a′
k, b

′
k),

with a′
k = ak + nk/2 and

b′
k = bk + (

xjk − 1nk
μ0jk

)T (
h−1Ink

+ Zk(δk)ZT
k(δk)

)−1

× (
xjk − 1nk

μ0jk

)
/2,

and where nk is the frequency of the kth group. Then,

p
(
βββkj (δk)|X, Z, γγγ , δδδk, μμμ0k(γ ), σ

2
kj

)
∼ N

(
VVV k ZT

k(δk)(xjk − 1nμ0kj ), σ 2
kjVVV k

)
,

with VVV k = (ZT
k(δk)Zk(δk) + h−1I|δk |)

−1 and |δδδk| = ∑R
r=1 δrk . The

μ0kj ’s can be either set to a fixed value, like the posterior Monte
Carlo mean, or integrated out in a Monte Carlo fashion via
composition sampling (see Banerjee, Gelfand, and Carlin 2003).
Uncertainty on these parameters can be assessed via Bayesian
credible intervals (CIs). Notice that, since our setting allows
individual covariates to have differential effects on the selected
features, some of those effects may not be significant in the final
inference (e.g., if the 95% Bayesian CIs of the corresponding β

coefficients contain 0).

3.1 Prediction

Our modeling formulation allows prediction of new samples
based on the selected features and covariates. The predictive
distribution of a new observation xf |zf is used to classify the
new sample into one of the K possible groups. Here xf is the
p × 1 vector of the observed features and zf is the R × 1 vector
of the observed covariates for a new sample. Given a subset of
selected ROIs, indicated by γγγ ∗, and component-specific subsets
of selected SNP, indicated by δδδ∗

k’s, the predictive distribution of
the new observation xf

(γ ∗)|zf

(δ∗
k ) for class k is

pk

(
xf

(γ ∗)

∣∣zf

(δ∗
k )

)
= 1

(2π )nk/2
|V∗

k |−
1
2

∣∣∣zf T

(δ∗
k )z

f

(δ∗
k ) + V∗−1

k

∣∣∣− 1
2 (b′

k)a
′
k(

b
f
k

)a
f
k



(
a

f
k

)

(a′

k)
, (8)
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where

a
f
k = a′

k + 1/2,

V∗
k = (

ZT
k(δ∗

k )Zk(δ∗
k ) + h−1I|δk |

)−1
,

b
f
k = bk + (xjk(γ ∗) − 1nk

μ0jk)T Zk(δ∗
k )V∗

k

× (
V−1

k − V−1
k

(
ZT

k(δ∗
k )Zk(δ∗

k ) + V−1
k

)−1
V−1

k

)
× V∗

kZT
k(δ∗

k )

(
xjk(γ ∗) − 1nk

μ0jk

)
/2 +

(
xf

jk(γ ∗) − μ0jk

)2

2
(
1 + zf

(δ∗
k )Vkzf T

(δ∗
k )

) .

In model (8) the μ0kj ’s are assumed to be set to a fixed
value, for example the posterior Monte Carlo mean or median.
Alternatively, one can perform a Monte Carlo integration of the
μ0kj ’s using the values sampled within the MCMC algorithm. In
our experience, we have not noticed any significant difference
between the two approaches.

The probability that a future observation, given the observed
data, belongs to the group k is then

πk(gf |X, Z) = p(gf = k|xf , X, zf , Z),

where gf is the group indicator of the new observation. By
estimating the probability πk = P (gi = k) that one observation
comes from group k as π̂k = nk/n, the previous distribution can
be written in closed form as

πg(gf |X, Z) =
pk

(
xf

(γ ∗)

∣∣zf

(δ∗
k )

)
π̂k∑K

i=1 pi

(
xf

(γ ∗)

∣∣zf

(δ∗
k )

)
π̂i

, (9)

with pk(xf
(γ ∗)|zf

(δ∗
k )) the predictive distribution defined in model

(8), and the new sample can be classified based on this distri-
bution, for example by assigning it to the group that has the
highest posterior probability. The plug-in estimate π̂k = nk/n

can be formally justified as an approximation under a nonin-
formative Dirichlet prior distribution for π and training data
exchangeable with future data, meaning that observations from
training and validation sets arise in the same proportions from
the groups (see e.g., Fearn, Brown, and Besbeas 2002).

4. APPLICATIONS

4.1 Simulation Studies

We investigate the performance of our model using simulated
data. We consider simulated scenarios mimicking the charac-
teristics of the real data that motivated the development of the
model, where some of the ROIs appear to be highly correlated.
We focus on situations where most of the measurements are
noisy and test the ability of our method to discover relevant
features in the presence of a large amount of noise. The SNP
data record the number of copies of the minor allele at each
locus for each individual, as a sequence of {0,1,2} values indi-
cating the three possible genotypes at each SNP: major allele
homozygote, heterozygote, and minor allele homozygote (see
e.g., Servin and Stephens 2007, for a description of this addi-
tive coding). In our simulations, we considered the same dataset
used in the experimental data described in Section 4.2. This
choice was made to preserve realistic patterns of correlation
(also known as “linkage disequilibrium”) across multiple SNPs.
The simulation comprised a total of R = 50 covariates (SNP),

only two of which were used to generate the measurements
(activation profiles), as described below.

We generated a sample of 200 observations from a mixture of
K = 2 multivariate normal densities, induced by four variables
(features), as

xi ∼ I[1≤i≤n1]N4
(
μμμ01 + BT

1 Zi , ���1
)

+ I[n1<i≤200]N4
(
μμμ02 + BT

2 Zi , ���2
)
,

with xi = (xi1, . . . , xi4)T , for i = 1, . . . , 200, and where I[.] is
the indicator function. The first n1 = 150 samples were from the
first component of the mixture, the last n2 = 50 from the second.
We then randomly divided the samples into a training set of 100
observations and a validation set of the same size. We set the
elements of the 4 × 1 vector μμμ01 to 0.8 and those of μμμ02 to −0.8.
The (2 × 4) regression coefficient matrix Bk = (βββk1, . . . , βββk4)
determines the effects of the true covariates on the simulated
activation profiles. We set B1 = 0.8 · 12×4 and B2 = 0.8 · 12×4.
The covariance structure among the relevant features was chosen
by setting the off-diagonal elements of ���1 and ���2 to 0.5 whereas
the diagonal elements were set to 1. Note that the data-generating
process differs from our proposed model, where the correlation
structure among the features is modeled at a hidden level via the
baseline component. In addition to the four relevant features, we
generated 100 noisy ones from a multivariate normal distribution
centered at zero, with variances equal to 1 and off-diagonal
elements of the covariance matrix equal to 0.1.

Our simulation comprises a total of 104 features and 50 co-
variates. We aim at finding the four discriminating features and
the two covariates that truly relate to the response measurements.
We are also interested in capturing the correlation structure
among selected features. Our full prior model and the related
hyperparameters are summarized in Figure 1. We report the
results obtained by choosing, when possible, hyperparameters
that lead to weakly informative prior distributions. In particular,
we specified the priors on σ 2

0j and σ 2
kj by setting a0 = ak = 3,

the minimum integer value such that the variance is defined,
and b0 = bk = 0.1. Using the same rationale, we set dk = 3,
the minimum value such that the expectation of ���k exists, and
Q = c Ip with c = 0.1. As for the β vectors of regression co-
efficients, we set the prior mean to b01 = b02 = 0. Similarly,
we set m10 = m20 = 0. We then set h to 4 and h1 to 1, to ob-
tain fairly flat priors over the region where the data are defined;
larger values of these hyperparameters would encourage the se-
lection of only very large effects whereas smaller values would
encourage the selection of smaller effects. As for the feature
selection indicator, γγγ , we set e = −3, which corresponds to
setting the expected proportion of features a priori included in
the model to 5% of the total number of available ones. In this
simulation study, we did not use any network structure on the
prior distribution of γγγ , which correspond to set f = 0. This is
also equivalent to assuming p(γγγ ) as a product of independent
Bernoulli distributions with expected value equal to 0.05. Fi-
nally, regarding the prior on the covariate selection indicator δδδ,
we set wrk = 0.05, which corresponds to setting the proportion
of covariates expected a priori in the model to 5%. Parameters
e and wr influence the sparsity of the model.

We ran three MCMC samplers for 30,000 iterations with the
first 1000 discarded as burn-in. As starting points of the chain,
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Figure 3. Simulation study: marginal posterior probabilities of inclusion for features (left) and covariates (middle and right).

we considered three different pairs of discriminatory ROIs
and significant SNPs. More specifically, we assumed different
starting counts of included ROIs and SNPs, that is, 2 ROIs and
2 SNPs, 10 ROIs and 5 SNPs, and 15 ROIs and 10 SNPs, re-
spectively. The actual ROIs and SNPs initially included were
randomly selected from the set of available features and co-
variates. To assess the agreement of the results between the
two chains, we looked at the correlation between the marginal
posterior probabilities for ROI selection, p(γj |Z, X), and SNP
selection, p(δlk|Z, X) for k = 1, 2. These indicated good con-
cordance between the three MCMC chains, with pairwise cor-
relation coefficients ranging from 0.999 to 1 for ROIs and from
0.997 to 0.998 (k = 1) and from 0.993 to 0.999 (k = 2) for
SNPs. Concordance among the marginal posterior probabilities
was confirmed by looking at scatterplots of the marginal prob-
abilities across each pair of MCMC chains (figures not shown).
We also used the Gelman and Rubin’s convergence diagnostics
(Gelman and Rubin 1992) to assess the convergence of the pa-
rameters μ0kj ’s to their posterior distributions. Those statistics
were all below 1.1, ranging from 1.0051 to 1.0212, clearly indi-
cating that the MCMC chains were run for a satisfactory number
of iterations.

We then computed marginal posterior probabilities for feature
and covariate selection, p(γj = 1|Z, X) and p(δrk = 1|Z, X),
respectively. These are displayed in Figure 3, for all 104 fea-
tures and the 50 covariates. All four relevant features were cor-
rectly identified by our model, with high posterior probability
(> 0.98), while noisy features showed posterior probabilities
smaller than 1%. In addition, the two relevant covariates were
also selected for the first group, with p(δr1 = 1|Z, X) > 0.92,
and one relevant covariate was selected for the second group,
with p(δr2 = 1|Z, X) > 0.99. Sensitivity analyses with differ-
ent choices of e and wrk indicated that the posterior inference is
quite robust. Specifically, our selection results were practically
invariant when we let e vary between −3.5 and −2, which is
equivalent to an a priori expected proportion of included fea-
tures between 3% and roughly 10%, and wrk vary between 3%
and 10%. Regarding the other hyperparameters of the model, we
noticed that smaller values of h would encourage the inclusion

of smaller effects and that setting this parameter to 1 would lead
to the inclusion of a few false positive covariates.

Posterior distributions of the intercept parameters μμμ01 and
μμμ02, given the selected features, indicated that parameters char-
acterizing the two groups are clearly different. For example,
Figure 4 shows the posterior distributions of the elements μ011

and μ021, corresponding to the first selected feature. These dis-
tributions were obtained from the MCMC output conditioning
upon the inclusion of the four relevant features. Similar plots
were obtained for other selected features (not shown).

We estimated the dependence structure among selected fea-
tures by looking at the posterior correlations among the corre-
sponding intercepts, calculated based on the MCMC samples.
These were

Corrμμμ01
=

⎛
⎜⎜⎜⎝

1.0000 0.5480 0.5916 0.4426

0.5480 1.0000 0.6075 0.4848

0.5916 0.6075 1.0000 0.4930

0.4426 0.4848 0.4930 1.0000

⎞
⎟⎟⎟⎠

and

Corrμμμ02
=

⎛
⎜⎜⎜⎝

1.0000 0.5322 0.5740 0.5379

0.5322 1.0000 0.5075 0.4535

0.5740 0.5075 1.0000 0.4924

0.5379 0.4535 0.4924 1.0000

⎞
⎟⎟⎟⎠

for Groups 1 and 2, respectively. These estimates show that our
model is indeed able to capture correlation structure among se-
lected features. Furthermore, we summarized the distance of the
estimated correlation matrices from the true ones using the RV-
coefficient, a measure of similarity between positive semidefi-
nite matrices (Robert and Escoufier 1976; Smilde et al. 2009).
The RV coefficient RV ∈ (0, 1) may be considered as a gen-
eralization of the Pearson’s coefficient of determination. For
both Groups 1 and 2, we got values very close to 1, that is,
RV = 0.994 for Corrμμμ01

and RV = 0.997 for Corrμμμ02
, suggest-

ing good agreement with the true correlation structures.
Finally, we assessed predictive performance. We used the four

selected features and the three selected covariates, 2 for the first
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Figure 4. Simulation study: density Kernel estimate of the posterior distribution of μ011 and μ021. The online version of this figure is in color.

group and 1 for the second one, and classified the observations
in the validation test using formula (9). Our model led to a
misclassification of 26% of the subjects. Figure 5 shows the
posterior probabilities of membership in Group 1 for the 100
observations in the validation set, with the numbers 1 and 2
indicating the actual group membership. Units are sorted, from
the highest to the lowest, within each group. Units within the
boundaries of the dashed line are misclassified and provide a
visual representation of the misclassification rate, whereas units

above and below the solid line are correctly classified in Group
1 and Group 2, respectively. To assess the variability of our
prediction result, we repeated our procedure over 100 splits of
the data into training and validation sets. We obtained an average
misclassification error of 25.2% of the units, with a 95% CI of
(17,36)%.

For comparison, we looked into approaches that use a
two-step approach, by (1) first classifying subjects based on
the feature (ROIs) data only, and (2) then applying variable

Figure 5. Simulation study: posterior probabilities of membership in Group 1 for the 100 observations in the validation set. The numbers 1
and 2 indicate the actual group membership. Units within the boundaries of the dashed line are misclassified; units above and below the solid
line are correctly classified in Groups 1 and 2, respectively.

D
ow

nl
oa

de
d 

by
 [

Fo
nd

re
n 

L
ib

ra
ry

, R
ic

e 
U

ni
ve

rs
ity

 ]
 a

t 0
6:

43
 3

0 
Se

pt
em

be
r 

20
13

 



884 Journal of the American Statistical Association, September 2013

selection in linear models that regress the discriminatory fea-
tures on the genetic covariates. In Step 1, we looked at the
prediction performances of the method for Bayesian variable
selection in probit models by Sha et al. (2004), that use the x
data and a binary response indicating the group membership of
the samples. Averaging over 100 splits we obtained a misclas-
sification error of 24.8%, with a 95% CI of (19,32)%. Also, an
alternative classification method, based on support vector ma-
chine (SVM; Cristianini and Shawe-Taylor 2000), resulted in a
misclassification error of 27.8%, with a 95% CI of (21,36)%. In
Step 2, to avoid selection biases, we used the truly discrimina-
tory features as response variables. We applied the method by
Guan and Stephens (2011), separately for each group of subjects
and each feature, and compared the results with our joint esti-
mation method. Recall that our method identified three true and
no false significant SNPs. In general, the method by Guan and
Stephens (2011) led to more false positives (FP). For example,
a threshold of 0.5 on the marginal posterior probability of in-
clusion led to two true positives (TP) and two FP for feature 13
in the control group and feature 20 in the schizophrenia group,
and two TP and one FP for feature 83 in the control group and
feature 13 in the schizophrenia group. These results suggest that
our joint selection scheme performs comparably to single-step
methods in retrieving true discriminatory features but leads to a
more reliable identification of the true significant SNPs.

4.2 Case Study on Schizophrenia

Schizophrenia is a severe psychiatric disorder that disrupts
normal thinking, speech, and behavior. It has a strong genetic
component with heritability estimated up to 80% based on fam-
ily and twin studies (Cardno and Gottesman 2000). Recently,
there have been increasing efforts to use fMRI and examine
genetic variation to study potential schizophrenia biomarkers,
to better understand the pathology of schizophrenia (see e.g.,
Colantuoni et al. 2008; Liu et al. 2009; Meda et al. 2010, among
others). Here we have available imaging data on activation pro-
files captured with fMRI during a sensorimotor task for n = 210
subjects, of which n1 = 118 are healthy controls and n2 = 92
are subjects affected by schizophrenia. Participant recruitment
and data collection were conducted by the MCIC, a collabora-
tive effort of four research teams from Boston, Iowa, Minnesota,
and New Mexico. Prior to inclusion in the study, all healthy par-
ticipants were screened to ensure that they were free of any
medical, neurological, or psychiatric illnesses, including any
history of substance abuse. Additional information, including
participants demographics, can be found in the article by Chen
et al. (2012).

The original fMRI data were collected from all participants
at four MCIC sites during a sensorimotor task, a block-design
motor response to auditory stimulation. The data were then pre-
processed in SPM5 (http://www.fil.ion.ucl.ac.uk/spm). To cor-
rect for the subject movements during the experiment, im-
ages were realigned using the INRIAlign algorithm by Freire,
Roche, and Mangin (2002). Data were then spatially normal-
ized into the standard Montreal Neurological Institute space
(Friston et al. 1995a) and resliced to 3 × 3 × 3 mm, resulting
in 53 × 63 × 46 voxels. Spatial smoothing was further applied
with a 10 mm Gaussian kernel. Following the article by Chen

et al. (2012), a multiple regression model was fit to the data
from each participant, incorporating regressors of the stimulus
and its temporal derivative plus an intercept term. The resulting
regression coefficient values were used to create stimulus-on
versus stimulus-off contrast images, which are sometimes also
referred to as statistical parametric maps (Friston et al. 1995b).
All the voxels with missing measurements were excluded. In
this work, we additionally segmented the individual contrast
images into p = 116 ROIs according to the MNI space AAL
atlas by Tzourio-Mazoyer et al. (2002). Finally, we summa-
rized activations in each region by computing the median of
the statistical parametric map values for that region. The in-
dividual region-based summary statistics were also centered
by subtracting the overall mean within the region. In addi-
tion to the imaging data, we have available measurements on
R = 81 genetic covariates (SNP) for each participant in the
study. The SNPs were selected by accessing the schizophre-
nia research forum (http://www.schizophreniaforum.org/) and
identifying SNPs that had been previously implicated in
schizophrenia.

The goal of the MCIC study was to identify a subset of
ROIs with discriminating activation patterns and a set of SNPs
that are relevant to explain the ROI’s activations. Chen et al.
(2012) applied a two-step procedure involving PCA and ICA
and found a significant correlation between fMRI data and the
genetic covariates in both cases and controls. Here we use our
unified modeling framework to relate the patterns of observed
brain activity in subjects with different conditions to the individ-
uals’ specific genome. Our model jointly infers discriminating
activation patterns and identifies genetic features related to those
patterns.

We split the observations into a training set and a validation
set. Given the high complexity of the scientific problem we want
to study, we decided to allocate a larger number of the obser-
vations to the training set. Specifically, we randomly assigned
174 participants to the training set and 36 participants to the
validation set. To obtain a training set with enough information
on both groups, we followed a balanced allocation scheme and
randomly assigned to this set 87 subjects from the control group
and the same number of subjects affected by schizophrenia.

For this data analysis, we constructed a spatial network among
ROIs based on the physical location of the regions in the brain.
The spatial coordinates, in a three-dimensional space, of the
centroids of the individual regions allowed us to calculate a
distance matrix among ROIs, based on the Euclidean distance.
Given such matrix we constructed a spatial network by including
an edge in the network if the distance between the correspond-
ing pair of ROIs was less than a given threshold. We selected the
threshold value such that the average number of neighbors was
approximately five, therefore reproducing an overall connectiv-
ity close to the one of a three-dimensional lattice structure. We
used the resulting network for the specification of the MRF prior
(6) on γγγ . The result is a spatially based selection process of the
ROIs that enables sparsity in the resulting network structure.

Results we report below were obtained by combining the out-
puts from three MCMC chains. For each chain, we randomly
selected different discriminatory ROIs and significant SNPs as
starting points. More specifically, we initially assumed 2 ROIs
and 2 SNPs, 10 ROIs and 5 SNPs, and 15 ROIs and 10 SNPs as
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Figure 6. Schizophrenia dataset: marginal posterior probabilities of inclusion for ROIs for f = 0.1 (o) and f = 0.5 (+).

initial counts of selected features and SNPs. We used 200,000
iterations with a burn-in of 1000 iterations. We set the hyperpa-
rameter of the MRF that controls the sparsity at the ROI level to
e = −4.5, which corresponds to setting the proportion of ROIs
expected a priori to be included in the model to at least 1.1%
of the total number of ROIs. We considered two values for f ,
setting this parameter to either 0.1 or 0.5, representing a very
small or a moderate effect of the prior information, respectively.
For example, for f = 0.1 the prior probability of inclusion of
an ROI with five of its neighbors already selected is 1.8%, that
is, 1.6 times the prior probability of an ROI that does not have
any of its neighbors selected, while for f = 0.5 the same proba-
bility is 11.9%, that is, 10.8 times the probability of an ROI with
no neighbors selected. These small-to-moderate effects allow
the data to mostly drive the selection. For the SNP selection,
we set wr = 0.1, indicating that a priori approximately 10%
of the SNPs are expected to be selected. In addition, although
several susceptibility genes have been identified from linkage
and association studies, the associations between a diagnosis
of schizophrenia and individual polymorphisms have been of-
ten found weak (Harrison and Owen 2003; Duan, Sanders, and
Gejman 2010). We therefore set h∗

1 = 1, favoring the selection
of small SNP effects. For the other hyperparameters, we used
the same settings as described in Section 4.1.

The trace plots for the number of included ROIs and SNPs
showed good mixing (figures not shown). The MCMC samplers
mostly visited models with 10–15 ROIs and 1–3 SNPs, indi-
cating that the data mostly determine the amount of sparsity
in the model, since overall the numbers of selected ROIs and
SNPs were not close to the corresponding expected numbers a
priori. We assessed the agreement of the results between any
pair of chains by looking at the correlation coefficients between

marginal posterior probabilities for ROI selection, p(γj |Z, X),
and SNP selection, p(δlk|Z, X) for k = 1, 2. These indicated
good concordance between the three MCMC chains, with pair-
wise correlation coefficients ranging from 0.998 to 0.999 for
ROIs and from 0.998 to 0.999 (k = 1) and from 0.994 to 0.998
(k = 2) for SNPs, in the case f = 0.5; and from 0.996 to 0.998,
from 0.997 to 0.999, and from 0.998 to 0.999, respectively,
for f = 0.1. Also, the Gelman and Rubin’s statistics, calcu-
lated on the sample values of the μ0kj ’s, ranged from 1.0001
to 1.0043, indicating that our chains converged to the posterior
distribution.

Posterior probabilities for all ROIs and SNPs are summarized
in Figures 6 and 8, respectively. These probabilities can be used
to prioritize the relevant ROIs and SNPs for further experimental
work. Brain regions with high posterior probability are listed
in Table 1, both for f = 0.5 and f = 0.1. As it is evident
from the table, the lists of selected ROIs under the two settings
largely overlapped. A threshold of 0.5 on the marginal posterior
probabilities selected a subset of five ROIs in the case f = 0.5
and four ROIs for f = 0.1. This threshold corresponds to an
expected false discovery rate (Bayesian FDR) of 4.8% for f =
0.5 and 3.1% for f = 0.1, which we calculated according to the
formulation suggested by Newton et al. (2004). The increase in
the posterior probability of ROI 5 in the first row of Table 1 is an
effect of the MRF prior, since ROI 5 is connected to ROIs 21, 27,
and 28. The selected ROIs, shown in Figure 7, were all mid-line
frontal regions, and mostly connected in the MRF prior. The
frontal superior orbital, olfactory, and rectus regions have all
reported schizophrenia deficits (see Nakamura et al. 2008; Diaz
et al. 2011; Langdon et al. 2011, among many others). The left
frontal region included the Brodmann area 10, identified by the
cross-hair in Figure 7, which is often implicated in schizophrenia
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Table 1. Schizophrenia dataset: list of selected ROIs and SNPs and corresponding posterior probabilities

ROI Name p(γj |ZZZ, X) for f = 0.1 p(γj |ZZZ,X) for f = 0.5

ROI 5 Frontal Sup Orb L 0.37 0.77
ROI 21 Olfactory L 1.00 1.00
ROI 22 Olfactory R 1.00 1.00
ROI 27 Rectus L 0.95 1.00
ROI 28 Rectus R 0.93 0.99

Schizophrenia

SNP Name p(δ2l |ZZZ,X) for f = 0.1 p(δ2l |ZZZ, X) for f = 0.5

SNP 25 rs1934909 0.52 0.48
SNP 31 rs875462 0.93 0.84
SNP 44 rs17101921 0.86 0.86

Control

SNP Name p(δ1l |ZZZ,X) for f = 0.1 p(δ1l |ZZZ, X) for f = 0.5

SNP 16 rs6794467 0.98 0.99
SNP 50 rs2421954 0.99 0.99
SNP 70 rs2270641 0.99 0.99

Figure 7. Schizophrenia dataset: map of brain network for the identified ROIs. The highlighted regions are the orbital part of the superior
frontal gyrus (ROI 5, coded as “1,” spanning superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus), the olfactory cortex (ROIs 21
and 22, coded as “2,” spanning subcallosal gyrus and anterior cingulate), and the gyrus rectus (ROIs 27 and 8, coded as “3,” spanning medial
frontal gyrus, rectal gyrus, and superior frontal gyrus). The online version of this figure is in color.
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Figure 8. Schizophrenia dataset: marginal posterior probabilities of inclusion for SNPs for f = 0.1 (o) and f = 0.5 (+).

(Vogeley et al. 2003; Camchong et al. 2008; Schneiderman et al.
2011).

Posterior inference on the intercept parameters μμμ01 and μμμ02,
given the selected features, and estimates of their correlations
can give us indication on characteristic features of the two
groups of participants and on dependence structures among
selected ROIs suggesting new activation patterns. Estimated
correlations for the case f = 0.5 were

Corrμ01 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0000 0.0149 0.0267 0.0295 0.0328

0.0149 1.0000 0.0246 0.0293 0.0235

0.0267 0.0246 1.0000 0.0373 0.0506

0.0295 0.0293 0.0373 1.0000 0.0539

0.0328 0.0235 0.0506 0.0539 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Corrμ02 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0000 0.3532 0.3403 0.3310 0.3562

0.3532 1.0000 0.4509 0.4193 0.4227

0.3403 0.4509 1.0000 0.3617 0.4024

0.3310 0.4193 0.3617 1.0000 0.3818

0.3562 0.4227 0.4024 0.3818 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎠

for control and schizophrenic groups, respectively, showing
higher correlations among ROIs in the schizophrenic group.
This finding is consistent with previous work in fMRI, which
has shown less unique brain activity in cases versus controls, and
supports the presence of a generalized cognitive deficit (Calhoun
et al. 2006). Similar correlations were obtained for f = 0.1.

Table 2 reports estimates and 95% CIs of the regression coef-
ficients βjk corresponding to the selected SNPs, for the selected
ROIs (case f = 0.5), in the two groups of participants. Again,
our findings are supported by other studies in the literature.

Among those SNPs identified in the schizophrenia group, SNP
25 is in gene DISC1 on chromosome 1, a gene that is disrupted in
schizophrenia (Kang et al. 2011; Kim et al. 2012). Also, SNP 31
in gene DTNBP1 on chromosome 6 has been found associated
with schizophrenia (Duan et al. 2007). Interestingly, Colantuoni
et al. (2008) reported age-related changes in the expression of
putative schizophrenia genes, including DISC1 and DTNBP1,
in the human prefrontal cortex, including Brodmann area 10.
SNP 44 is on chromosome 10 and it has also been associated to
schizophrenia (O’Donovan et al. 2009). This locus was identi-
fied via a genome-wide association study (GWA) analysis and
has not yet been assigned to a specific gene. As for the control
group, SNP 16 is in gene CLDN11 on chromosome 3 and SNP
70 in gene SLC18A1 on chromosome 8. Both genes are impli-
cated in the functioning of the central nervous system (CNS;
Lohoff et al. 2008a, b; Lal-Nag and Morin 2009). Together with
the peripheral nervous system, the CNS has a fundamental role
in the control of behavior.

Estimates of the regression coefficients reported in Table 2
inform us on the effects of the selected SNPs on the activations
of the selected ROIs. The corresponding 95% CIs, also reported
in the same table, allow us to assess uncertainty on those param-
eters. As emphasized at the end of Section 2.2, a meaningful
interpretation of these regression coefficients needs to take into
account the nature of the dependent variable in the regression
models, which is the set of discriminatory ROIs in the two
groups. An interesting feature of our results is that, while ef-
fects are all significant across selected ROIs in the control group,
differential effects are clearly indicated in the schizophrenia
group. For example, SNP 25 (rs1934909 in gene DISC1) has a
significant effect on the Rectus L ROI only and SNP 31
(rs875462 in gene DTNBP1) on the Olfactory ROIs only. A
close look at the alleles’ frequencies of the selected SNPs in the
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Table 2. Schizophrenia dataset: posterior mean (and 95% CI) of regression coefficients βjk for the
selected SNPs on the selected ROIs (f = 0.5)

ROI Name Schizophrenia group Control group

SNP 25 SNP 16
ROI 5 Frontal Sup Orb L 0.0714 (−0.0794, 0.2221) −0.1854 (−0.3175, −0.0534)
ROI 21 Olfactory L 0.0659 (−0.1029, 0.2347) −0.2819 (−0.4444, −0.1193)
ROI 22 Olfactory R 0.0664 (−0.1041, 0.2368) −0.2779 (−0.4172, −0.1386)
ROI 27 Rectus L 0.2341 (0.0443, 0.4238) −0.2712 (−0.4394, −0.1031)
ROI 28 Rectus R 0.1662 (−0.0202, 0.3527) −0.2915 (−0.4347, −0.1483)

SNP 31 SNP 50
ROI 5 Frontal Sup Orb L 0.0192 (−0.0631, 0.1016) 0.2054 (0.0541, 0.3568)
ROI 21 Olfactory L 0.1416 (0.0494, 0.2338) 0.3275 (0.1412, 0.5137)
ROI 22 Olfactory R 0.1392 (0.0461, 0.2324) 0.2471 (0.0874, 0.4068)
ROI 27 Rectus L 0.1022 (−0.0015, 0.2059) 0.2245 (0.0318, 0.4172)
ROI 28 Rectus R 0.0753 (−0.0266, 0.1771) 0.2449 (0.0808, 0.4090)

SNP 44 SNP 70
ROI 5 Frontal Sup Orb L 0.1013 (−0.0987, 0.3014) 0.1824 (0.0356, 0.3292)
ROI 21 Olfactory L 0.2002 (−0.0239, 0.4243) 0.2487 (0.0680, 0.4293)
ROI 22 Olfactory R 0.2293 (0.0031, 0.4556) 0.2797 (0.1249, 0.4346)
ROI 27 Rectus L 0.2398 (−0.0120, 0.4917) 0.2913 (0.1044, 0.4781)
ROI 28 Rectus R 0.2585 (0.0111, 0.5060) 0.2663 (0.1071, 0.4254)

schizophrenia and control groups revealed that the selection is
not driven by differences in genotype variation within groups.
These findings call for further experimental validation.

Our model also showed good predictive performance. For
f = 0.5, using all five selected ROIs and the selected SNP,
the model misclassified 12 of the 36 samples, that is, 33% of
the validation set. Similarly for the case f = 0.1. As with the
simulation study, we compared our results with methods that
use a two-step approach, first classifying subjects based on the
imaging data only, and then applying variable selection in re-
gression models that regress the discriminatory ROIs on the
genetic covariates. In the first step, the method by Sha et al.
(2004) misclassified 14 out of the 36 samples, that is, 39%, and
the SVM method 11 out of the 31 samples, that is, 69%. In the
second step, we used the five ROIs selected by our method as re-
sponse variables and applied the method by Guan and Stephens
(2011) separately for each group of subjects and each ROI. Us-
ing a threshold of 0.5 on the marginal posterior probability of
inclusion, none of the SNPs were identified in the control group,
while in the schizophrenia group the method selected SNP9 for
ROI5 (p = 0.53), SNP47 for ROI21 (p = 0.77) and SNP21 for
ROI22 (p = 0.62).

5. CONCLUDING REMARKS

We have presented a hierarchical modeling framework for
the analysis of data that arise in imaging genetics. Focusing on
the relationships between genetic factors and brain functional
patterns, we have analyzed data from a study where the inter-
est lies in identifying brain regions (ROIs) with discriminating
activation patterns between schizophrenic patients and healthy
controls, and in relating the observed activation patterns with
available genetic information on the subjects (SNPs). As pat-
terns of brain connectivity in fMRI scans are known to be related

to the subjects’ genome, the ability to model the link between
the imaging and genetic components could indeed lead to im-
proved diagnostics and therapeutic interventions. Overall, our
results have confirmed the complex nature of genetic effects on
the functional brain abnormality in schizophrenia. Particularly,
the identified SNPs have implicated the DISC1 and DTNBP1
genes, associated to schizophrenia, as well as genes associated
with the central nervous system, and appear to be related mainly
to the frontal regions including the Brodmann area 10.

The hierarchical model we have developed has several in-
novative characteristics: It is integrative, in that it combines
activation patterns with genetic information on the subjects; it
achieves the simultaneous selection of a set of discriminatory
regions and relevant SNPs; it employs spatially based selection
process priors that capture available knowledge on connectivity
among regions of the brain, so that regions having the same
activation patterns are more likely to be selected together. An
additional feature of our model is that it takes into account cor-
relation among selected ROIs, as captured by the covariance
matrices of the distribution of the intercept parameters.

Our integrative model aims at selecting SNPs that are impli-
cated in the differential activation patterns observed in patients
and healthy controls. In our analysis, we have considered a rel-
atively small set of SNPs that were already known to be of
interest based on previous studies. Typically, the initial list of
potentially interesting SNPs can be the result of GWA studies,
where the outcome, that is, the known phenotype (disease/not
disease), is related to the genetic covariates (SNPs) in a lo-
gistic model. Our model can then be used to determine if the
selected SNPs are additionally significantly associated to an al-
teration of the normal brain functions. Clearly, discovery of new
associations between SNPs and the disease under study is also
possible with our model. In such situations, analyses with large
number of SNPs can be tackled by considering gene-based
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summaries of SNP data. Indeed, more and more GWA studies
confirm the involvement of aggregates of common SNPs that
collectively account for a substantial proportion of variation in
risk to the disorder (see Purcell et al. 2009, for a schizophrenia
study).

Several extensions of our model are worth investigating. First,
we can learn about the fixed hyperparameters. For example, we
can assume prior distributions for the parameters of the Ising
model, as in the articles by Liang (2010) and Stingo et al. (2011),
as well as the scale parameters of the spike and slab priors (4), as
sometimes done in Bayesian variable selection (Chipman et al.
2001; Scott and Berger 2010). Second, extensions to mixture
models for clustering the subjects are possible. In particular, in-
finite mixture models can be fit based on the Dirichlet process,
as in the article by Kim, Tadesse, and Vannucci (2006), or based
on the probit stick-breaking process proposed by Chung and
Dunson (2009) for a mixture of univariate regression models,
which also incorporates selection of the covariates. Furthermore,
even though our method already suggests connections among
distant features that can form new activation patterns, a more
formal approach could assume μμμ0k(γ ) to be a realization of a net-
work of connected components (nodes) that describes general
relationships among the selected features as

μμμ0k(γ )|Gk(γ ) ∼ Npγ
(νννk(γ ), 


0k(γ )), k = 1, . . . , K, (10)

with Gk(γ ) the graph encoding the relationships (see Dobra,
Lenkoski, and Rodriguez 2011). This would allow us to es-
timate component-specific networks among selected ROIs. Fi-
nally, another interesting avenue is to extend our model to handle
data observed at different time points. Hidden Markov models
can be employed. For example, in an application to genomic
data, Gupta, Qu, and Ibrahim (2007) considered a hierarchi-
cal Bayesian hidden Markov regression model for determining
groups of genes being influenced by separate sets of covariates
over time.

APPENDIX: MCMC ALGORITHM

We start by writing the expression of the marginal posterior distribu-
tion of (γγγ , δδδk, μμμ0k(γ )) explicitly. The dimension of μμμ0k(γ ) varies depend-
ing on the number of nonzero components in γγγ . This type of issues has
been traditionally addressed in the context of transdimensional MCMC
algorithms. In this article, we follow the hybrid Gibbs/Metropolis
approach discussed by Dellaportas, Forster, and Ntzoufras (2002),
based on the article by Carlin and Chib (1995), and assume a
pseudo-prior for the parameter μμμ0k(γ c) of the nonselected features, that
is, μμμ0k(γ c ) ∼ N (0, 


0k(γ c )), where 


0k(γ c ) = diag(σ 2

pγ +1, . . . , σ
2
p ), with

σ 2
j ∼ IG(ãj , b̃j ), j = pγ + 1, . . . , p. Alternatively, methods based on

mixtures of singular distributions could be usefully employed in this
setting (Petris and Tardella 2003; Gottardo and Raftery 2008). For
a review of available transdimensional MCMC algorithms, we refer,
among others, to Frühwirth-Schnatter 2006, chap. 5, and the discussion
in the literature by Fan and Sisson (2011).

The unnormalized full conditionals can be derived from the con-
ditional independencies of our model (see Figure 1). Let μμμ0k =
(μμμ0k(γ ), μμμ0k(γ c )). Then, the joint marginal posterior distribution of

(γγγ , δδδk, μμμ0k) is

p(γγγ , δδδk, μμμ0k|X, Z)

∝
∏

j :γj =0

p(xj (γ c )|γγγ )
∏

j :γj =1

K∏
k=1

p
(
xjk(γ )

∣∣Zk(δk ), μ0jk, δδδ, γγγ
)

×
K∏

k=1

⎡
⎣p(μμμ0k(γ )|γγγ )

∏
j :γj =0

p(μ0jk(γ c )|γγγ )

⎤
⎦p(γγγ )p(δδδ)

with

p(xj (γ c)|γγγ ) =
(

1√
2π

)n

(a′

0)


(a0)

b
a0
0

b′
0
a′

0
,

p
(
xjk(γ )|Zk(δk), μ0jk, δδδ, γγγ

)
=

(
1√
2π

)nk 
(a′
k)


(ak)

bk
ak

b′
k
a′
k

∣∣Zk(δk )ZT
k(δk ) + h−1Ink

∣∣ ,
p(μμμ0k(γ )|γγγ ) = π− pγ

2 h
∗ −pγ

2
1

× |Q|(dk+pγ +1)/2

|Q + (μμμ0k − m0k)(μμμ0k − m0k)T |(dk+pγ )/2


((dk + pγ )/2)


((dk + pγ + 1)/2)
,

p(μ0jk(γ c)|γγγ ) =
(

1√
2π

)
b̃

ãj

j

b̃
′ã′

j

jk


(ã′
j )


(ãj )
,

and where h∗
1 = 2h1, Zk(δ) is the nk × |δδδk| data matrix of the selected

covariates, nk is the number of subjects allocated to the kth component,
and |δδδk| = ∑R

r=1 δrk , and with

b′
0 = b0 + xT

j xj

2
,

a′
0 = a0 + n/2,

b′
k = bk + (

xjk − 1nk
μ0jk

)T (
h−1Ink

+ Zk(δk )ZT
k(δk )

)−1

× (
xjk − 1nk

μ0jk

)
/2,

a′
k = ak + nk/2,

ã′
j = ãj + 1/2,

b̃′
jk = b̃j + (μ0jk − m0jk)2

2
,

for k = 1, . . . , K and j = pγ + 1, . . . , p, with xj the n × 1 vector
of the observed values for feature j and xjk the nk × 1 vector of the
observed values for feature j and group k.

Our MCMC algorithm comprises the following three steps:

1. A Metropolis-Hastings step on γγγ : It consists of randomly choos-
ing between changing the value of a single γj (either 0 to 1 or 1 to
0) and swapping two γj ’s (with opposite values). The transition
from the current value γγγ O to the proposed value γγγ N is accepted
with probability

min

⎡
⎣

⎛
⎝ ∏

j :γj =0

p(xj (γ c)|γγγ N )
∏

j :γj =1

K∏
k=1

p(xjk(γ )|μ0jk, δδδ, γγγ
N )

×
K∏

k=1

⎡
⎣p(μμμ0k(γ )|γγγ N )

∏
j :γj =0

p(μ0jk(γ c)|γγγ N )

⎤
⎦p(γγγ N )

⎞
⎠

/ ⎛
⎝ ∏

j :γj =0

p(xj (γ c)|γγγ O )
∏

j :γj =1

K∏
k=1

p(xjk(γ )|μ0jk, δδδ, γγγ
O )

×
K∏

k=1

⎡
⎣p(μμμ0k(γ )|γγγ O )

∏
j :γj =0

p(μ0jk(γ c)|γγγ O )

⎤
⎦p(γγγ O

⎞
⎠), 1

⎤
⎦ .
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2. A Metropolis-Hastings step for δδδk: Similarly to the previous step,
for each of the K components we randomly choose between
changing the value of a single δrk and swapping two δrk’s with
opposite values. The transition from the current value δδδO

k to the
proposed value δδδN

k is accepted with probability

min

[∏
j :γj =1 p

(
xjk(γ )

∣∣μ0jk, δδδ
N
k , γγγ

)
p

(
δδδN

k

)
∏

j :γj =1 p
(
xjk(γ )

∣∣μ0jk, δδδ
O
k , γγγ

)
p

(
δδδO

k

) , 1

]
.

3. A random walk Metropolis-Hastings step on the μμμ0k(γ )’s: We
update μμμ0k(γ ) by proposing new values for all μ0kj included in the
model at that particular iteration, according to μN

0kj = μO
0kj + ε,

with ε ∼ N (0, v2) for j = 1, . . . , pγ and k = 1, . . . K , for some
fixed choice of the proposal parameter v. The transition from
μO

0kj to μN
0kj is accepted with probability

min

[
p

(
xjk(γ )

∣∣μN
0jk, δδδ, γγγ

)
p

(
μμμN

0k(γ )

∣∣γγγ )
p

(
xjk(γ )

∣∣μO
0jk, δδδ, γγγ

)
p

(
μμμO

0k(γ )

∣∣γγγ ) , 1

]
.

Note that in all three steps the proposal distribution is symmetric
and therefore does not appear in the Metropolis-Hastings acceptance
ratio.

[Received May 2012. Revised May 2013.]
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