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A novel wavelet-based thresholding method for the

pre-processing of mass spectrometry data that

accounts for heterogeneous noise
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In recent years there has been an increased interest in using protein mass spectroscopy to dis-
criminate diseased from healthy individuals with the aim of discovering molecular markers for
disease. A crucial step before any statistical analysis is the pre-processing of the mass spectrom-
etry data. Statistical results are typically strongly affected by the specific pre-processing tech-
niques used. One important pre-processing step is the removal of chemical and instrumental
noise from the mass spectra. Wavelet denoising techniques are a standard method for denoising.
Existing techniques, however, do not accommodate errors that vary across the mass spectrum,
but instead assume a homogeneous error structure. In this paper we propose a novel wavelet
denoising approach that deals with heterogeneous errors by incorporating a variance change
point detection method in the thresholding procedure. We study our method on real and simu-
lated mass specrometry data and show that it improves on performances of peak detection
methods.
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1 Introduction

In recent years, applications of protein MS technologies in
biomedical research have flourished. Popular technologies to
produce MS data include SELDI-TOF MS and MALDI-TOF
MS. Broadly speaking, a mass spectrum plots the time-of-

flight on the x-axis and ion counts on the y-axis. Alternatively,
time-of-flight can be transformed to molecular weight over
charge (m/z) and ion counts into a signal intensity. Peaks
constitute the most important features of a single spectrum.
In proteomic studies the goal is often to identify peaks relat-
ed to specific outcomes, such as different malignancies or
clinical responses. Proteins corresponding to the selected
peaks can then be identified via additional experimental
work.

MS data consist of tens of thousands of measurements
and are inherently noisy. Major sources of noise stem from
interference from the matrix material and sample con-
taminations (chemical noise) and the physical characteristics
of the machine (electrical noise), [1–3]. Typically, pre-proces-
sing is done before any statistical analysis and includes
baseline subtraction, denoising, normalization, peak detec-
tion, and peak alignment. The quality of the results of any
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subsequent statistical analysis heavily depends on these pre-
processing steps, and especially on the denoising. Several
denoising algorithms employing wavelet techniques have
been developed, see for example Coombes et al. [4], Qu et al.
[5] and Randolph and Yasui [6].

Our work is motivated by the observation that noise in
MS data is mainly generated by chemical and electrical
influences that tend to affect different m/z ranges differently.
Experimental factors that contribute to this noise variation
include laser inefficiency and spatial differences in total pro-
tein and matrix material content, i.e. inhomogeneity of the
sample. Figure 1 displays the SELDI-TOF spectrum of a
cancer patient collected for a biomarker discovery study on
ovarian cancer (see Section 3.1 for details) and clearly shows
that the noise component affects the lower m/z range more
strongly. Heterogeneous noise can also be observed in Fig. 1
of Coombes et al. [4]. These plots support our motivation for a
denoising procedure that takes into account the hetero-
scedasticity of the noise. Most of the existing procedures for
MS data, however, assume homoscedastic noise across the
m/z range. One exception is the work of Chen et al. [7] who
accommodates heteroscedastic noise by applying a global
thresholding procedure to segments of the data, with the
number of segments determined by the user.

Here we propose a novel wavelet denoising method that
makes use of a variance change point detection algorithm to
accommodate the heteroscedasticity of noise in the MS data.
Our method is a block-thresholding procedure that first
identifies change points in the variance of the data and then
applies wavelet thresholding locally by computing the
threshold values based on segments identified by the change
points. For the location of the variance change points we use
an iterated cumulative sums of squares (ICSS) algorithm
adapted to wavelet packets, as recently proposed by Gabba-
nini et al. [8]. We then divide the wavelet coefficients into
subintervals identified by the change points and compute
local thresholds. We show that, when applied to SELDI-TOF
MS data from an ovarian cancer discovery study, our local
denoising procedure leads to improved subsequent perfor-
mances of peak detection algorithms. We also assess perfor-
mance of our procedure on simulated data.

The rest of the paper is organized as follows. Section 2
briefly discusses the proposed procedure that achieves local
wavelet thresholding by employing methods for variance
change point detection. In Section 3 we demonstrate our
approach on ovarian cancer MS data and we explore its per-
formance on simulated data. We close the paper with a dis-
cussion in Section 4. The technical details about the

Figure 1. Ovarian cancer data:
Plots of one MS spectrum in the
time domain (a) and m/z domain
(b).
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wavelet transforms and the variance change detection algo-
rithm are described in the Supporting Information and the
Appendix (Section 6) at the end of the paper.

2 Methods

We first describe our procedure for local wavelet threshold-
ing of MS data. Details of the methods are available in Sec-
tion 6 and Supporting Information.

2.1 Wavelet denoising

Wavelets are families of orthonormal bases that can be used
to parsimoniously represent functions. Following the semi-
nal work of Donoho and Johnstone [9, 10], wavelet thresh-
olding has successfully been used in various applications to
remove noise and recover the true signal. This is accom-
plished by applying a wavelet transform to the data and then
mapping wavelet coefficients that fall below a threshold to 0
(hard thresholding) or shrinking all coefficients toward 0
(soft thresholding). One can also opt between a global or an
adaptive thresholding rule. The former applies the same
threshold, i.e. identical cut-off value, to all wavelet coeffi-
cients, whereas the latter uses a threshold that depends on
the resolution level of the wavelet transform. An inverse
wavelet transform is then applied to the thresholded coeffi-
cients, leading to a smoothed estimate of the signal.

For MS data, both traditional discrete wavelet transforms
(DWT), see Mallat [11], and undecimated transforms, such as
the maximal overlap discrete wavelet transform (MODWT)
of Percival and Walden [12], have been used, see Coombes et
al. [4] and Kwon et al. [13]. When using undecimated coeffi-
cients, hard thresholding has better denoising performance.
A commonly used thresholding rule is the universal global
threshold of Donoho and Johnstone, defined as

l ¼ ŝ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log n
p

(1)

where the estimate ŝ of the noise standard deviation is com-
puted based on the median absolute deviation (MAD) of the
coefficients at the finest level of the wavelet transform

ŝ ¼
ffiffiffi

2
p

MAD=:6745 (2)

where MAD = median()w – median(w))) and w the vector of
wavelet coefficients at the finest level. Coombes et al. [4]
investigated performances of global thresholds of the type
l ¼ C � ŝ with C a user-defined constant that depends on
the data to be analyzed. Here we also investigate the mod-
ification proposed by [14] to accommodate data con-
taminated by correlated noise, which amounts to using level-
dependent thresholds of the type

lj ¼ ŝj
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log n
p

(3)

where ŝj ¼
ffiffiffi

2
p

median()wj – median(wj)))/.6745 with wj the
vector of wavelet coefficients at level j.

2.2 Local thresholding algorithm

We work with raw, un-processed, MS data. The first step of
our local thresholding procedure identifies the location of
change points in the variance of the data. The procedure is
based on the iterated cumulative sums of squares algorithm
of Inclán and Tiao [15] for the location of variance changes in
a set of uncorrelated observations. This procedure was
adapted to wavelet decompositions of long memory data by
Whitcher et al. [16] and generalized to short-memory data
and to wavelet packets by Gabbanini et al. [8]. A binary seg-
mentation of the data allows the procedure to detect multiple
change points. The procedure can be applied to any pattern
of variance changes. The details of the procedure are given in
Section 6.

Having found the locations of the variance change
points, we then proceed by applying wavelet thresholding
locally, by estimating the noise variance in the different seg-
ments identified by the variance changes. We use universal
thresholds of type (1), i.e.,

ls ¼ ŝs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log ns
p

(4)

where ns is the number of wavelet coefficients that belong to
segment s and ŝs the estimate of the noise standard deviation
in the same segment. We also investigate level-dependent
thresholds of type (2), i.e.,

ls
j ¼ ŝj;s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log ns
p

(5)

with ŝj,s the estimate of the noise standard deviation at level j
in segment s.

We now summarize the proposed local wavelet thresh-
olding procedure step by step:

(i) Compute the wavelet transforms of the data. In this
paper we got better qualitative denoising with undecimated
transforms over standard decimated discrete wavelet trans-
forms. These transforms do not impose restrictions on the
length of the data points and are shift-invariant, i.e., they are
not affected by the starting position of the signal. We there-
fore used maximal overlap discrete wavelet transforms
(MODWT). We also recommend Daubechies’ wavelets with 3
to 4 vanishing moments. See Section 3.3. for additional dis-
cussion.

(ii) Test for presence of variance change points by apply-
ing the ICSS algorithm (see Section 6) based on the discrete
wavelet packet transforms (DWPT) coefficients. For the
results here reported we used the Ljung-Box test with lag 10
in order to identify the wavelet packet to which apply the
ICSS test. The procedure does not require any other user-
defined parameter. For the variance change test we recom-
mend to choose a fixed significance level of a = 0.01. If the
null hypothesis (no variance change) is rejected, the loca-
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tions of the variance change points can then be found using
the maximal overlap discrete wavelet packet transforms
(MODWPT) coefficients.

(iii) Divide the MODWT coefficients in segments
according to the locations at which variance changes have
been detected.

(iv) Compute a local threshold value for each segment
using either Eq. (4) or Eq. (5).

(v) Threshold the wavelet coefficients by hard or soft
thresholding rule. For the data analyzed in this paper we
obtained satisfactory results by thresholding the finest four
levels.

(vi) Reconstruct the denoised signal by inverse wavelet
transform.

3 Data examples

We briefly describe the SELDI-TOF MS data from an ovarian
cancer biomarker discovery study and compare the perfor-
mances of the proposed wavelet denoising method with the
standard algorithm of Coombes et al. [4] that uses a global
threshold. We then present results on simulated MS data.

3.1 Ovarian cancer data

Serum samples from women diagnosed with ovarian cancer
and women hospitalized for other conditions, collected at the
Mayo Clinic between 1980 and 1989, were analyzed by
SELDI-TOF MS using the CM10 chip type [17]. The Pro-
teinChip Biomarker System (Ciphergen Biosystems) was
used for protein expression profiling. Serum samples were
analyzed by scientists blinded to disease status at Ciphergen
Biosystems. A detailed description of the samples and exclu-
sion criteria can be found in Moore et al. [18].

Similarly to an earlier analysis, Kwon et al. [13], we used
the 50 samples obtained after 1986, whose serum was freeze-
thawed a single time. For this paper we used the raw data,
i.e., the actual ion counts measured on the TOF scale. We
discarded m/z values lower than 2000, due to very large
noise, and m/z values greater than 15 000, because all the
intensities in this range were very low. We applied wavelet
thresholding to the data in the TOF domain, since the raw
intensities obtained from the detector are taken at evenly
spaced time intervals (in micro-seconds) in such domain.

In Fig. 1, we plot one raw mass spectrum in both time
and m/z domain. The conversion between TOF and m/z is

based on the equation
m=z
U

= sign(t – to) ?a?(t – to)
2 1 b, where

t denotes the TOF, U = 25 000, a = 3.36E8, b = 0.00235, and t0

= 3.7071 E – 7. A single spectrum has 21 551 data points.

3.2 Wavelet denoising for ovarian cancer data

A closer look reveals the heterogeneous nature of the data
collected in this study. This is clearly visible in Fig. 1, as
already highlighted in Section 1, and supported by Fig. 2a,
which displays estimated standard deviations of the noise for
four randomly chosen spectra. These estimates were
obtained by running a MAD smoother with window size
1500 on the finest MODWT coefficients and show a clear
decreasing trend as the TOF values increase. Figures 1 and 2
indicate, in particular, that the high frequency components
of the spectrum reduce in variance as the TOF values
increase. With such noise pattern, standard schemes for
wavelet thresholding result either in under-smoothness in
the small TOF range or in over-smoothness in the large TOF
range. For illustrative purposes, Fig. 2a, shows the corre-
sponding threshold values ls of type (4) calculated on seg-
ments of the data corresponding to the locations of the

Figure 2. Ovarian cancer data:
Estimated standard deviations
for 4 MS spectra obtained by
running a MAD smoother with
window size 1500 on the finest
MODWT coefficients (a) and cor-
responding threshold values ls

(b).
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variance change points identified by our procedure. Similar
plots can be obtained with the level-dependent thresholds of
type (5). It appears that the threshold values approximate the
estimated SDs with a piecewise constant curve. The observed
percent change in the threshold value over the 2000 – 15 000
m/z range varies between 78% and 82% for the four spectra.

Figure 3 shows a comparison between global wavelet
thresholding, with three different threshold values, and our
local wavelet thresholding, all applied to the same spectrum
shown in Fig. 1. Plots in the left column show the 2000 –
2300 m/z range and plots in the right column the 13 000 –
15 000 m/z range. Plots (a) and (b) refer to denoising with
global wavelet thresholding and threshold given by 306ŝ
with ŝ computed as in Eq. (2). Plots (c), (d) and (e), (f ) show
the same thresholding with a threshold of 106ŝ and 66ŝ,
respectively. This is the recommended range for C suggested
by Coombes et al. [4] for SELDI data. In plots (c) and (e) most
of the noise in the lower m/z region has not been removed,
while in plots (b) and (d) peaks have been reduced in inten-
sity. For comparison, plots (g) and (h) show the same portion
of the spectrum denoised with our local thresholding
scheme and threshold computed as in Eq. (5). The procedure
clearly achieves a better removal of the noise while preserv-
ing the peaks.

3.3 Peak detection

We applied the local thresholding procedure to each of the 50
raw mass spectra. For each spectrum, the variance change
point detection method detected a number of change points
ranging from 3 to 26. The average number of variance
changes was 8. We then applied the local wavelet threshold-

ing to each raw mass spectrum based on the identified seg-
ments. We obtained best performances by using thresholds
computed as in Eq. (5). Using PROcess package in Bio-
conductor we subtracted the baseline from the denoised
mass spectra by fitting a monotone local minimum curve to
the data. We finally applied a peak detection procedure to the
baseline-subtracted spectra. Peak detection is a crucial step
in the identification and quantification of proteins in mass
spectra. It is to be expected that a more careful preprocessing
of the spectra would result in improved performances of
peak detection methods.

We used the peak detection method implemented in the
SpecAlign software of Wong et al. [19] and available
at PHYSCHEM.OX.AC.UK/,JWONG/SPECALIGN. This
method has three user-defined inputs: baseline cutoff value,
window size, and height ratio. The baseline cutoff value is
the fraction of baseline under the cutoff that should be
ignored for peak detection. We used the cutoff value 2. The
method finds local maxima within a window. We chose a
default window size of 31. The height ratio is the ratio be-
tween the intensity of a peak maximum and its minimum,
i.e., the base of the peak and it is a measure of the signal-to-
noise ratio (SNR). We used the value 2. Smaller window sizes
and/or height ratios would result in more detected peaks.
Our setting is somewhat more conservative than the default
setting in SpecAlign.

Following the approach suggested by Morris et al. [20], we
looked at peak detection based on the mean spectrum. In
addition, we removed peaks with less than 9 000 000 actual
ion count. This value corresponds to an intensity value of 1,
which is the recommended threshold in peak detection in
order to reduce the inclusion of noisy peaks.

Figure 3. Ovarian cancer data:
Sample spectrum denoised with
global thresholding and three
different thresholds (306ŝ,
106ŝ, and 66ŝ ), plots (a)-(f),
and with our local thresholding,
plots (g)(h). Left column shows
the 2000 – 2300 m/z range, right
column the 13 000 – 15 000 m/z
range.

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



3024 D. Kwon et al. Proteomics 2008, 8, 3019–3029

When applied to spectra denoised with our local thresh-
olding, the peak detection method detected 59 peaks over the
entire m/z range. When spectra were denoised with the
global thresholding of Coombes et al. [4], and C = 30,10,6,
instead, the detection method identified 48, 51 and 53 peaks,
respectively. Fig. 4 shows the detected peaks, on the mean
spectra, for the low range of m/z values from 2000 to 4000. In
Fig. 4, plots (a), (b) and (c) show results obtained on spectra
smoothed with the approach of Coombes et al. [4] and the
three chosen thresholds, while plot (d) refers to our
approach. The vertical bars indicate the detected peaks.
There are 12, 10, 10 and 14 detected peaks in plots (a), (b), (c),
and (d) respectively. As expected, our thresholding proce-
dure, which takes into account the heterogeneity of the
noise, leads to improved detection performances in the lower
m/z part of the spectrum, where the noise has a larger var-
iance. Between 10 000 and 15 000 m/z range we detected 8
peaks, while when using the Coombes et al. approach we
found 5, 7, and 7 peaks from different C values, respectively.
In Fig. 4 three noticeable peaks were missed by both the
Coombes et al. method and our method. This is due to the
relatively conservative setting we chose for SpecAlign.

Results presented here did not show much sensitivity to
the choice of the wavelet family. Wavelets with higher num-
bers of vanishing moments are more regular and lead to

smoother approximations. On the other hand the support of
the wavelets increases with the regularity and boundary
effects may arise in the DWT, so that a trade-off is often nec-
essary. We reanalyze the data with our method using Haar
wavelets, Daubechies with 3 and 4 vanishing moments, and
least asymmetric wavelets with 8 vanishing moments. Except
for Haar wavelets all families show very similar denoising
and detection performances (results not shown). Haar wave-
lets resulted in the detection of 55 peaks.

To assess an effect of our denoising procedure on the re-
producibility of peak detection algorithms we computed fre-
quencies of detection of single peaks in individual spectra.
Mass spectra exhibit shifts along the horizontal axis between
replicate spectra. The instruments typically have an accuracy
of 0.1 to 0.3% on the m/z scale. Thus, detected peaks that
have masses within the percentage accuracy are considered
identical. When counting frequencies of detection on the
aligned spectra we therefore considered identical peaks that
had m/z measurements within 0.2% of each other. For each
of the 59 peaks identified by our method Fig. 5 reports his-
tograms showing the number of spectra on which the peak is
detected. As in the previous figures, plots (a), (b) and (c) refer
to results obtained on spectra smoothed with the approach of
Coombes et al. [4] and three different thresholds (306ŝ,
106ŝ, and 66ŝ, respectively), while plot (d) refers to our

Figure 4. Ovarian cancer data: Compar-
ison of global (plots (a), (b), and (c)) and
local (plot (d)) thresholding schemes.
Vertical lines represent the locations of
the detected peaks.
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Figure 5. Ovarian cancer data: Comparison of
global, plots (a), (b), and (c), and local, plot (d),
thresholding schemes. Histograms show the
number of peaks found in multiple spectra.

approach. The 59 peaks on the x-axis are ordered according to
their m/z value. In general, we notice higher frequencies in
plot (d) for almost all peaks, and in particular for those in the
lower m/z range.

3.4 Simulation study

We conclude the paper with a small simulation study to
investigate the performances of our local wavelet threshold-
ing procedure. We consider two different scenarios, one
where the noise variance is constant, and one where the var-
iance decreases monotonically with the m/z value. The sec-
ond scenario resembles the ovarian cancer MS spectra ana-
lyzed in the previous section. We used the SPlus software of
Coombes et al. [21] to simulate 50 MS spectra spread over the
m/z range from 2000 to 15 000Da. We considered 50 peaks.
The number of peaks in a spectrum varied from 23 to 38. On
average a spectrum had 31 peaks. Figure 6 shows one of 50
simulated spectra. The top plot displays a simulated spec-
trum with baseline, the middle plot shows the spectrum with
additive noise and constant variance, and the bottom plot
represents the spectrum with additive noise and hetero-
scedastic variance.

Performances after denoising were computed in terms of
mean squared error (MSE)

MSEi ¼
1
M

X

M

j¼1

ðf̂ i
j � f i

jÞ
2; i ¼ 1; :::; 50;

where f̂ i and f i are the i-th denoised and true spectrum,
respectively, and M is the number of data points in the i-th
spectrum. Figure 7 shows MSEs for two thresholding
approaches, a global thresholding with threshold l = 306ŝ,
106ŝ, and 66ŝ, and our local threshold approach with
thresholds of type (4). Results are given for the hard thresh-
olding rule, which showed the best performance. The plots
in the upper row, (a) and (b), are for constant variance sce-
nario and the plots in the middle row, (c) and (d), for mono-
tonic decreasing variance. Plots (a) and (c) show MSEs over
the whole m/z range, and (b) and (d) for the 2000 – 5000 m/z
range. In the constant variance setting the two methods gave
quite similar results (with C = 6). In the monotonic decreas-
ing variance setting our local wavelet thresholding method
performed better than the global method. In addition, since
the analysis of real data has suggested possibly correlated
errors, we also repeated the simulation study by using auto-
regressive errors and monotonic decreasing variance.
Results are shown in plots (e) and (f) of Fig. 7 and have been
obtained using the level-dependent thresholds proposed by
Johnstone and Silverman [14] for correlated errors. Again,
our method shows quite good performances.

In order to assess the effect of the denoising procedure
on peak detection performances, we first removed the base-
line by using the algorithm implemented in SpecAlign with
window size 10. Then we selected peaks from the mean
baseline-corrected spectrum. We counted the number of fal-
sely declared peaks and missed true peaks. We report here
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Figure 6. Simulated MS data: (a) true
spectrum, (b) spectrum with additive
noise with constant variance, and (c)
spectrum with additive noise with a
monotonic decreasing variance.

results for the case of white noise errors. In the constant
variance scenario, all methods missed two true peaks (one of
them under 6000 m/z) with no false positives. In the mono-
tonic decreasing variance scenario, our method missed two
peaks (one under 6000 m/z), while the method of Coombes
et al. [20] missed two, five and four peaks with C = 30, C = 10
and C = 6, respectively. We found no falsely declared peaks
for either methods in the two scenarios.

4 Discussion

In mass spectrometry data, intensities in the low m/z range
are typically associated to noise with a larger variance than
intensities in the higher m/z range. Here we have proposed a
wavelet denoising procedure that accounts for the hetero-
geneous nature of the error term by incorporating a variance
change point detection algorithm. Our method is data adap-
tive and gives better denoising performance. We have shown
in simulation and on real data that our denosing procedure
leads to improved performances of peaks detection algo-
rithms. In particular, it results in a higher number of detect-
ed peaks in the low m/z range and in a higher reproducibility
of the results. Both Gaussian white noise and correlated

errors have been investigated. In the simulation study we
have assumed monotonic decreasing error variance. This
assumption, however, is not critical and was used only to
obtain simulated data that would resemble the real data an-
alyzed in this paper. Another approach, a rescale scheme
with global thresholding (similar to Malyarenko et al. [22]),
would be computationally more efficient than our procedure.
When the noise variance in the MS data is monotonically
decreasing, the rescaling produces a nearly constant variance
across the spectrum, and it performs similarly to our proce-
dure for C = 6, while it had inferior performance for C = 30
and C = 10 (data not shown). However, for any other pattern
of variance heterogeneity our method resulted in improved
performance, as measured by the MSE, for all choices of C in
the global thresholding.

When applying the variance change test we have
employed a binary segmentation procedure in order to use
the test in a sequential manner. Although different from a
simultaneous multiple tests setting, this procedure may
result in an inflation of the overall a. In particular, due to the
sequential nature of the variance change detection, the over-
all significance level of each individual change point may be
substantially larger than the originally chosen a [23]. How-
ever, when applying our local denoising procedure, a falsely
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Figure 7. Simulated MS data: Compar-
ison of global and local thresholding
schemes over the 2000 – 15 000 m/z
range ((a), (c) and (e)) and the 2000 –
5000 m/z range ((b), (d) and (f)). In each
plot, the first three boxplots refer to
Coombes et al. method with C = 30, C =
10, and C = 6, respectively, and the last
boxplot refers to our method. Plots in
the upper row, (a) and (b), are for the
case of a white noise error with constant
variance, plots in the middle row, (c) and
(d), for the case of a white noise error
and monotonic decreasing variance.
Plots in the bottom row, (e) and (f), refer
to the case of an autoregressive error
with monotonic decreasing variance.
Results have been obtained using uni-
versal thresholds for the white noise
error cases and the level-dependent
threshold of Johnstone and Silverman
[14] for the case of correlated errors.

detected variance change point implies that there will be two
consecutive segments with approximately the same thresh-
old value. While this increases the computational cost of the
procedure, it does not affect its performance.

Data files containing the unprocessed raw spectra used
in this paper and the Matlab codes to recreate the results can
be obtained from our website at http://dceg.cancer.gov/reb.
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6 Appendix

A Variance change point detection

We now summarize the variance change point detection al-
gorithm. The procedure is based on the ICSS algorithm of
Inclán and Tiao [15] that aims at testing and identifying var-
iance changes in a sequence of independent observations
from uncorrelated random variables {xt} with mean 0 and
variances s2

t , t = 1,...,T. Null and alternative hypotheses are
specified as

H0 : s2
1 ¼ s2

2 ¼ ::: ¼ s2
T versus

Ha : s2
1 ¼ ::: ¼ s2

k 6¼ s2
kþ1 ¼ ::: ¼ s2

T

We denote with Ck ¼
Xk

t¼1
x2

t the cumulative sum of
squares. The test statistic is defined as D = max(D1, D2)
where

Dþ ¼ max
1�k�T�1

kþ 1
T
� Pk

� �

D� ¼ max
1�k�T�1

Pk �
k
T

� �

Pk ¼
Ck

CT
; k ¼ 1; :::;T :

When the maximum absolute value of D exceeds a certain
predetermined value, then we estimate a change at point k* =
argmaxkD. Inclán and Tiao [15] showed that when the ran-
dom variables {xt} are independent, the asymptotic distribu-
tion of D is that of a Brownian bridge. Whitcher et al. [16]

adapted the ICSS algorithm to coefficients from discrete
wavelet transforms of long memory data, for which the
assumption of uncorrelated data is still reasonable. They
suggested to use at least a T = 128 sample size to conform
with the asymptotic distribution of D. They also obtained
predetermined values for D under the null hypothesis by
using the Monte Carlo simulation. Gabbanini et al. [8]
extended the ICSS procedure to DWPT and MODWPT. This
allowed them to analyze a broader class of data than just long
memory.

A.1 The binary segmentation procedure

The method described above, originally designed for the
location of single change points, can be extended to multi-
ple change points via the binary segmentation procedure
[15]. At the first stage of the procedure we test the null hy-
pothesis for the whole data. If we do not reject H0 we
declare that there is no change point in the whole sequence,
otherwise we divide the data into two sub-sequences as
determined by the change point located. At the second stage
we test the two sub-sequences and repeat the above proce-
dure until we do not find any further change point. Several
candidate change points may result from this procedure. At
the third stage we check these points as follows. For a given
possible change point we determine the sub-sequence be-
tween the previous possible change point and the next
change point and repeat the test. If we still reject H0 we
keep this point as a change point, otherwise we remove it
from the list of candidates. This confirmatory step helps to
reduce masking effect and to get more reliable change point
estimates.
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In order to take into account the sequential testing of
variance change points in the choice of the a-level, we
recommend to use a result by Chong (Theorem 3, [23]).
Under the null hypothesis of no change point, and with m
denoting the number of change points, Chong showed that
PH0 m¼0ð Þ m̂ ¼ kð Þ = F0(k)ak(1 2 a)k11 for a known constant
F0(k) and for a fixed level a that is the same for each test. We
therefore choose a such that

X

M

k¼1

PH0ðm̂ ¼ kÞ ¼
X

M

k¼1

F0ðkÞakð1� aÞkþ1 � 0:05

where M is the upper bound of the number of change points

and F0ðkÞ ¼
1

2kþ 1
C2kþ1

k with Cn
r ¼

n!

r!ðn� rÞ! : We used
M = 50.

A.2 Algorithm

The variance change point detection procedure we adopt
works as follows.

Step I: Apply the DWPT and MODWPT. The maximum
level of the transforms depends on the length of the data. It is
advisable to work with no less than 128 data points when
implementing the variance change test.

Step II: Choose a wavelet packet. The ICSS test for var-
iance changes requires un-correlated data. As suggested by
Gabbanini et al. [8], we use the Ljung-Box test [24] for auto-
correlation and select the DWPT packet with highest P-value
among those for which the null hypothesis of the test is not
rejected. The statistic for this test is defined as

Q ¼ nðnþ 2Þ
X

l

k¼1

r̂2ðkÞ
n� k

where r̂2ðkÞ is a squared correlation coefficient at lag k, l is
arbitrary chosen, and n is the length of data. Here we use a
lag of 10.

Step III: Apply the ICSS algorithm. We test for variance
changes with the ICSS algorithm using the coefficients of
the DWPT packet selected from Step II. If the null hypothe-
sis that no variance change occurs is rejected then we iden-
tify the location of the change point using the non-decimated
wavelet packet coefficients of the same packet.

Step IV: Test for multiple changes: Using the binary seg-
mentation procedure we repeat Steps I-III with subsequent
subseries until no further variance change point is found. We
also perform the additional confirmatory step on all identi-
fied potential change points by using subseries of data be-
tween adjacent points, as suggested by Inclán and Tiao [15].
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