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Abstract
Given a probability measureP and a reference measureµ, one is often interested in the minimum
µ-measure set withP-measure at leastα. Minimum volume sets of this type summarize the regions
of greatest probability mass ofP, and are useful for detecting anomalies and constructing confi-
dence regions. This paper addresses the problem of estimating minimum volume sets based on
independent samples distributed according toP. Other than these samples, no other information is
available regardingP, but the reference measureµ is assumed to be known. We introduce rules for
estimating minimum volume sets that parallel the empiricalrisk minimization and structural risk
minimization principles in classification. As in classification, we show that the performances of
our estimators are controlled by the rate of uniform convergence of empirical to true probabilities
over the class from which the estimator is drawn. Thus we obtain finite sample size performance
bounds in terms of VC dimension and related quantities. We also demonstrate strong universal
consistency, an oracle inequality, and rates of convergence. The proposed estimators are illustrated
with histogram and decision tree set estimation rules.
Keywords: minimum volume sets, anomaly detection, statistical learning theory, uniform devia-
tion bounds, sample complexity, universal consistency

1. Introduction

Given a probability measureP and a reference measureµ, the minimum volume set (MV-set) with
mass at least 0< α < 1 is

G∗
α = arg min{µ(G) : P(G) ≥ α,G measurable}.

MV-sets summarize regions where the mass ofP is most concentrated. For example, ifP is a mul-
tivariate Gaussian distribution andµ is the Lebesgue measure, then the MV-sets are ellipsoids. An
MV-set for a two-component Gaussian mixture is illustrated in Figure 1. Applications of minimum
volume sets include outlier/anomaly detection, determining highest posterior density or multivari-
ate confidence regions, tests for multimodality, and clustering. See Polonik (1997); Walther (1997);
Scḧolkopf et al. (2001) and references therein for additional applications.

This paper considers the problem of MV-set estimation using a training sampledrawn from
P, which in most practical settings is the only information one has aboutP. The specifications to
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Figure 1: Minimum volume set (gray region) of a two-component Gaussian mixture. Also shown
are 500 points drawn independently from this distribution.

the estimation process are the significance levelα, the reference measureµ, and a collection of
candidate setsG .

A major theme of this work is the strong parallel between MV-set estimation and binary classi-
fication. In particular, we find that uniform convergence (of true probability to empirical probability
over the class of setsG ) plays a central role in controlling the performance of MV-set estimators.
Thus, we derive distribution free finite sample performance bounds in termsof familiar quantities
such as VC dimension. In fact, as we will see, any uniform convergencebound can be directly
converted to a rule for MV-set estimation.

In Section 2 we introduce a rule for MV-set estimation analogous to empirical risk minimization
in classification, and shows that this rule obeys similar finite sample size performance guarantees.
Section 3 extends the results of the previous section to allowG to grow in a controlled way with
sample size, leading to MV-set estimators that are strongly universally consistent. Section 4 intro-
duces an MV-set estimation rule similar in spirit to structural risk minimization in classification,
and develops an oracle-type inequality for this estimator. The oracle inequality guarantees that
the estimator automatically adapts its complexity to the problem at hand. Section 5 introduces a
tuning parameter to the proposed rules that allows the user to affect the tradeoff between volume
error and mass error without sacrificing theoretical properties. Section6 provides a “case study” of
tree-structured set estimators to illustrate the power of the oracle inequality for deriving rates of con-
vergence. Section 7 includes a set of numerical experiments that explores the proposed theory (and
algorithmic issues) using histogram and decision tree rules in two dimensions. Section 8 includes
concluding remarks and avenues for potential future investigations. Detailed proofs of the main
results of the paper are relegated to the appendices. Throughout the paper, the theoretical results are
illustrated in detail through several examples, including VC classes, histograms, and decision trees.
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1.1 Previous Work

All previous theoretical work on MV-set estimation has been asymptotic in nature, to our knowl-
edge. Our work here is the first to provide explicit finite sample bounds. Most closely related to this
paper is the pioneering work of Polonik (1997). Using empirical processtheory, he establishes con-
sistency results and rates of convergence for minimum volume sets which depend on the entropy
of the class of candidate sets. This places restrictions on the MV-setG∗

α (e.g, µ(G∗
α) is continu-

ous inα), whereas our consistency result holds universally, i.e., for all distributionsP. Also, the
convergence rates obtained by Polonik apply under smoothness assumptions on the density. In con-
trast, our rate of convergence results in Section 6 depend on the smoothness of the boundary ofG∗

α.
Walther (1997) studies an approach based on “granulometric smoothing,”which involves applying
certain morphological smoothing operations to theα-mass level set of a kernel density estimate. His
rates also apply under smoothness assumptions on the density, rather than more direct assumptions
regarding the smoothness of the MV-set as in our approach.

Algorithms for MV-set estimation have been developed for convex sets (Sager, 1979) and el-
lipsoidal sets (Hartigan, 1987) in two dimensions. Unfortunately, for more complicated problems
(dimension> 2 and non-convex sets), there has been a disparity between practical MV-set estima-
tors and theoretical results. Polonik (1997) makes no comment on the practicality of his estimators.
The smoothing estimators of Walther (1997) in practice must approximate the theoretical estima-
tor via iterative level set estimation. On the other hand, computationally efficient procedures like
those in Scḧolkopf et al. (2001) and Huo and Lu (2004) are motivated by the minimum volume
set paradigm, but their performance relative toG∗

α is not known. Recently, however, Muñoz and
Moguerza (2006) have proposed the so-called one-class neighbor machine and demonstrated its
consistency under certain assumptions. Our proposed algorithms for histograms and decision trees
are practical in low dimensional settings, but appear to be constrained by the same computational
limitations as empirical risk minimization in binary classification.

More broadly, MV-set estimation theory has similarities (in terms of the nature ofresults and
technical devices) to other set estimation problems, such as classification, discrimination analysis,
density support estimation (which corresponds to the caseα = 1), and density level set estimation,
to which we now turn.

1.2 Connection to Density Level Sets

The MV-set estimation problem is closely related to density level set estimation (Tsybakov, 1997;
Ben-David and Lindenbaum, 1997; Cuevas and Rodriguez-Casal, 2003; Steinwart et al., 2005; Vert
and Vert, 2005) and excess mass estimation problems (Nolan, 1991; Müller and Sawitzki, 1991;
Polonik, 1995). Indeed, it is well known that density level sets are minimum volume sets (Nunez-
Garcia et al., 2003). The main difference between density level sets and MV-sets is that the former
require the specification of a density level of interest, rather than the specification of the massα
to be enclosed. Since the density is in general unknown, it seems that specifying α is much more
reasonable and intuitive than setting a density level for problems like anomaly detection. Suppose
for example that one is interested in a reference measure of the formcµ, whereµ is Lebesgue
measure andc > 0. The choice ofc does not change the minimum volume set, but it does affect
the γ level set. Since there is no way a priori to choose the bestc, the invariance of the minimum
volume set seems highly desirable. To frame the same issue in a different way, supposeµ is uniform
on some set containing the support ofP. Then MV-sets are invariant to how the support ofµ is
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specified, while density level sets are not. Further advantages of MV-sets over level sets are given
in the concluding section.

Algorithms for density level set estimation can be split into two categories, implicit plug-in
methods and explicit set estimation methods. Plug-in strategies entail full densityestimation and
are the more popular practical approach. For example, Baillo et al. (2001) considers plug-in rules for
density level set estimation problems and establishes upper bounds on the rate of convergence for
such estimators in certain cases. The problem of estimating a density supportset, the zero level set,
is a special minimum volume set (i.e., the minimum volume set that contains the total probability
mass). Cuevas and Fraiman (1997) study density support estimation and show that a certain (density
estimator) plug-in scheme provides universally consistent support estimation.

While consistency and rate of convergence results for plug-in methods typically make global
smoothness assumptions on the density, explicit methods make assumptions on thedensity at or
near the level of interest. This fact, together with the intuitive appeal of nothaving to solve a
problem harder than one is interested in, make explicit methods attractive. Steinwart et al. (2005)
reduce level set estimation to a cost-sensitive classification problem by sampling from the reference
measure. The idea of sampling fromµ in the minimum volume context is discussed further in the
concluding section. Vert and Vert (2005) study the one-class support vector machine (SVM) and
show that it produces a consistent density level set estimator, based on the fact that consistent density
estimators produce consistent plug-in level set estimators. Willett and Nowak(2005, 2006) propose
a level set estimator based on decision trees, which is applicable to density level set estimation as
well as regression level set estimation, and related dyadic partitioning schemes are developed by
Klemel̈a (2004) to estimate the support set of a density.

The connections between MV-sets and density level sets will be important laterin this paper.
To make the connection precise the following assumption on the data-generating distribution and
reference measure is needed. We emphasize that this assumption is not necessary for the results in
Sections 2 and 3, where distribution free error bounds and universalconsistency are established.

A1 P has a densityf with respect toµ.

A key result relating density level and MV-sets is the following, stated withoutproof (see, e.g.,
Nunez-Garcia et al. (2003)).

Lemma 1 Under assumptionA1 there existsγα such that for any MV-set G∗α,

{x : f (x) > γα} ⊂ G∗
α ⊂ {x : f (x) ≥ γα}.

Note that every density level set is an MV-set, but not conversely. If,however,µ({x : f (x) = γα}) =
0, then the three sets in the Lemma coincide.

1.3 Notation

Let (X ,B ) be a measure space withX ⊂ R
d. Let X be a random variable taking values inX with

distribution P. Let S= (X1, . . . ,Xn) be an independent and identically distributed (IID) sample
drawn according toP. Let G denote a subset ofX , and letG be a collection of such subsets. LetP̂
denote the empirical measure based onS:

P̂(G) =
1
n

n

∑
i=1

I(Xi ∈ G) .
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Here I(·) is the indicator function. The notationµ will denote a measure1 on X . Denote by f
the density ofP with respect toµ (when it exists),γ > 0 a level of the density, andα ∈ (0,1) a
user-specified mass constraint. Define

µ∗α = inf
G

{µ(G) : P(G) ≥ α}, (1)

where the inf is over all measurable sets. A minimum volume set,G∗
α, is a minimizer of (1) when it

exists.

2. Minimum Volume Sets and Empirical Risk Minimization

We introduce a procedure inspired by the empirical risk minimization (ERM) principle for classifi-
cation. In classification, ERM selects a classifier from a fixed set of classifiers by minimizing the
empirical error (risk) of a training sample. Vapnik and Chervonenkis established the basic theoret-
ical properties of ERM (see Vapnik, 1998; Devroye et al., 1996), andwe find similar properties in
the minimum volume setting.

Let G be a class of sets. Givenα ∈ (0,1), denote

Gα = {G∈ G : P(G) ≥ α},

the collection of all sets inG with mass at leastα. Define

µG ,α = inf{µ(G) : G∈ Gα} (2)

and
GG ,α = arg min{µ(G) : G∈ Gα} (3)

when it exists. ThusGG ,α is the best approximation to the minimum volume setG∗
α from G .

Empirical versions ofGα andGG ,α are defined as follows. Letφ(G,S,δ) be a function ofG∈ G ,
the training sampleS, and a confidence parameterδ ∈ (0,1). Set

Ĝα = {G∈ G : P̂(G) ≥ α−φ(G,S,δ)}

and
ĜG ,α = arg min{µ(G) : G∈ Ĝα}. (4)

We refer to the rule in (4) as MV-ERM because of the analogy with empirical risk minimization in
classification. A discussion of the existence and uniqueness of the abovequantities is deferred to
Section 2.5.

The quantityφ acts as a kind of “tolerance” by which the empirical mass may deviate from the
targeted valueα. Throughout this paper we assume thatφ satisfies the following.

Definition 2 We sayφ is a (distribution free)complexity penaltyfor G if and only if for all distri-
butions P and allδ ∈ (0,1),

Pn

({
S: sup

G∈G

(∣∣∣P(G)− P̂(G)
∣∣∣−φ(G,S,δ)

)
> 0

})
≤ δ.

1. Although we do not emphasize it, the results of Sections 2 and 3 only require µ to be a real-valued function onB .
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Thus,φ controls the rate of uniform convergence ofP̂(G) to P(G) for G∈ G . It is well known that
the performance of ERM (for binary classification) relative to the performance of the best classifier
in the given class is controlled by the uniform convergence of true to empirical probabilities. A
similar result holds for MV-ERM.

Theorem 3 If φ is a complexity penalty forG , then

Pn
((

P(ĜG ,α) < α−2φ(ĜG ,α,S,δ)
)

or
(

µ(ĜG ,α) > µG ,α

))
≤ δ.

Proof Consider the sets

ΘP = {S: P(ĜG ,α) < α−2φ(ĜG ,α,S,δ)},
Θµ = {S: µ(ĜG ,α) > µ(GG ,α)},

ΩP =

{
S: sup

G∈G

(∣∣∣P(G)− P̂(G)
∣∣∣−φ(G,S,δ)

)
> 0

}
.

Lemma 4 With ΘP,Θµ, andΩP as defined above we have

ΘP∪Θµ ⊂ ΩP.

The proof is given in Appendix A, and follows closely the proof of Lemma 1 inCannon et al.
(2002). The theorem statement follows directly from this observation.

Lemma 4 may be understood by analogy with the result from classification that says R ( f̂ )−
inf f∈F R ( f ) ≤ 2supf∈F |R ( f )− R̂ ( f )| (see Devroye et al. (1996), Ch. 8). HereR and R̂ are

the true and empirical risks,̂f is the empirical risk minimizer, andF is a set of classifiers. Just
as this result relates uniform convergence to empirical risk minimization in classification, so does
Lemma 4 relate uniform convergence to the performance of MV-ERM.

The theorem above allows direct translation of uniform convergence results into performance
guarantees on MV-ERM. Fortunately, many penalties (uniform convergence results) are known. In
the next two subsections we take a closer look at penalties for VC classes and countable classes,
and a Rademacher penalty.

2.1 Example: VC Classes

Let G be a class of sets with VC dimensionV, and define

φ(G,S,δ) =

√
32

V logn+ log(8/δ)

n
. (5)

By a version of the VC inequality (Devroye et al., 1996), we know thatφ is a complexity penalty
for G , and therefore Theorem 3 applies.

To view this result in perhaps a more recognizable way, letε > 0 and chooseδ such that
φ(G,S,δ) = ε for all G ∈ G and all S. By inverting the relationship betweenδ and ε, we have
the following.
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Corollary 5 With the notation defined above,

Pn
((

P(ĜG ,α) < α−2ε
)

or
(

µ(ĜG ,α) > µG ,α

))
≤ 8nVe−nε2/128.

Thus, for any fixedε > 0, the probability of being within 2ε of the target massα and being less than
the target volumeµG ,α approaches one exponentially fast as the sample size increases. This result
may also be used to calculate a distribution free upper bound on the sample sizeneeded to be within
a given toleranceε of α and with a given confidence 1−δ. In particular, the sample size will grow
no faster than a polynomial in 1/ε and 1/δ, paralleling results for classification.

2.2 Example: Countable Classes

SupposeG is a countable class of sets. Assume that to everyG∈ G a numberJGK is assigned such
that

∑
G∈G

2−JGK ≤ 1. (6)

In light of the Kraft inequality for prefix2 codes (Cover and Thomas, 1991),JGK may be defined as
the codelength of a codeword forG in a prefix code forG . Let δ > 0 and define

φ(G,S,δ) =

√
JGK log2+ log(2/δ)

2n
. (7)

By Chernoff’s bound together with the union bound,φ is a penalty forG . Therefore Theorem 3
applies and we have a result analogous to the Occam’s Razor bound for classification (see Langford,
2005).

As a special case, supposeG is finite and takeJGK = log2 |G |. Settingε = φ(G,S,δ) and invert-
ing the relationship betweenδ andε, we have the following.

Corollary 6 For the MV-ERM estimatêGG ,α from a finite classG

Pn
((

P(ĜG ,α) < α−2ε
)

or
(

µ(ĜG ,α) > µG ,α

))
≤ 2|G |e−nε2/2.

As with VC classes, these inequalities may be used for sample size calculations.

2.3 The Rademacher Penalty for Sets

The Rademacher penalty was originally studied in the context of classificationby Koltchinskii
(2001) and Bartlett et al. (2002). For a succinct exposition of its basic properties, see Bousquet
et al. (2004). An analogous penalty exists for sets. Letσ1, . . . ,σn be Rademacher random variables,
i.e., independent random variables taking on the values 1 and -1 with equalprobability. Denote
P̂(σi)(G) = 1

n ∑n
i=1 σiI(Xi ∈ G). We define the Rademacher average

ρ(G ) = E

[
sup
G∈G

P̂(σi)(G)

]

2. A prefix code is a collection of codewords (strings of 0s and 1s) suchthat no codeword is a prefix of another.
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and the conditional Rademacher average

ρ̂(G ,S) = E(σi)

[
sup
G∈G

P̂(σi)(G)

]
,

where the second expectation is with respect the Rademacher random variables only, and condi-
tioned on the sampleS.

Proposition 7 With probability at least1−δ over the draw of S,

P(G)− P̂(G) ≤ 2ρ(G )+

√
log(1/δ)

2n

for all G ∈ G . With probability at least1−δ over the draw of S,

P(G)− P̂(G) ≤ 2ρ̂(G ,S)+

√
2log(2/δ)

n

for all G ∈ G .

The proof of this result follows exactly the same lines as the proof of Theorem 5 in Bousquet et al.
(2004), and is omitted.

AssumeG satisfies the property thatG ∈ G ⇒ G ∈ G , whereG denotes the compliment of
G. Then P̂(G)−P(G) = P(G)− P̂(G), and so the upper bounds of Proposition 7 also apply to
|P(G)− P̂(G)|. Thus we are able to define the conditional Rademacher penalty

φ(G,S,δ) = 2ρ̂(G ,S)+

√
2log(2/δ)

n
.

By the above Proposition, this is a complexity penalty according to Definition 2. The conditional
Rademacher penalty is studied further in Section 7 and in Appendix E, whereit is shown that̂ρ(G ,S)
can be computed efficiently for sets based on a fixed partition ofX (such as histograms and trees).

2.4 Comparison to Generalized Quantile Processes

Polonik (1997) studies theempirical quantile function

V̂α = inf{µ(G) : P̂(G) ≥ α},

and the MV-set estimate that achieves the minimum (when it exists). The only difference compared
with MV-ERM is the absence of the termφ(G,S,δ) in the constraint. Thus, MV-ERM will tend to
produce estimates with smaller volume and smaller mass. While Polonik proves only asymptotic
properties of his estimator, we have demonstrated finite sample bounds for MV-ERM. Moreover,
in Section 5, we show that the results of this section extend to a generalization of MV-ERM where
φ is replaced byνφ, whereν is any number−1≤ ν ≤ 1. Thus finite sample bounds also exist for
Polonik’s estimator (ν = 0).
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2.5 Existence and Uniqueness

In this section we discuss the existence and uniqueness of the setsGG ,α andĜG ,α. Regarding the
former, it is really not necessary that a minimizer exist. All of our results arestated in terms ofµG ,α,
which certainly exists. When a minimizer exists, its uniqueness is not an issue for the same reason.
Our results above involve onlyµG ,α, which is the same regardless of which minimizer is chosen.
Yet one may wonder whether convergence of the volume and mass to their optimal values implies
convergence to the MV-set (when it is unique) in any sense. A result in this direction is presented in
Theorem 10 below.

For the MV-ERM estimatêGG ,α, uniqueness is again not an issue because all results hold even
if the minimizer is chosen arbitrarily. As for existence, we must be more careful. We cannot make
the same argument as forGG ,α because we are ultimately interested in a concrete set estimate, not

just its volume and mass. Clearly, ifG is finite, ĜG ,α exists. For more general sets, existence must
be examined on a case-by-case basis. For example, ifX ⊂ R

d, µ is the Lebesgue measure, andG is
the VC class of spherical or ellipsoidal sets, thenĜG ,α can be seen to exist.

In the event that̂GG ,α does not exist, it suffices to let̂GG ,α be a set whose volume comes within

ε of the infimum, whereε is arbitrarily small. Then our results still hold withµ(ĜG ,α) replaced by

µ(ĜG ,α)−ε. The consistency and rate of convergence results below are unchanged, as we may take
ε → 0 arbitrarily fast as a function ofn.

3. Consistency

A minimum volume set estimator is consistent if its volume and mass tend to the optimal valuesµ∗α
andα asn→ ∞. Formally, define the error quantity

E (G) := (µ(G)−µ∗α)+ +(α−P(G))+ ,

where(x)+ = max(x,0). We are interested in MV-set estimators such thatE (ĜG ,α) tends to zero as
n→ ∞.

Definition 8 A learning ruleĜG ,α is strongly consistentif

lim
n→∞
E (ĜG ,α) = 0 with probability 1.

If ĜG ,α is strongly consistent for every possible distribution of X, thenĜG ,α is stronglyuniversally
consistent.

In this section we show that if the approximating power ofG increases in a certain way as a function
of n, then MV-ERM leads to a universally consistent learning rule.

To see how consistency might result from MV-ERM, it helps to rewrite Theorem 3 as follows.
Let G be fixed and letφ(G,S,δ) be a penalty forG . Then with probability at least 1−δ, both

µ(ĜG ,α)−µ∗α ≤ µ(GG ,α)−µ∗α (8)

and
α−P(ĜG ,α) ≤ 2φ(ĜG ,α,S,δ) (9)
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hold. We refer to the left-hand side of (8) as theexcess volumeof the classG and the left-hand side
of (9) as themissing massof ĜG ,α. The upper bounds on the right-hand sides are an approximation
error and a stochastic error, respectively.

The idea is to letG grow with n so that both errors tend to zero asn → ∞. If G does not
change withn, universal consistency is impossible. Either the approximation error will benonzero
for most distributions (whenG is too small) or the bound on the stochastic error will be too large
(otherwise). For example, if a class has universal approximation capabilities, its VC dimension is
necessarily infinite (Devroye et al., 1996, Ch. 18).

To have both stochastic and approximation errors tend to zero, we apply MV-ERM to a class
G k from a sequence of classesG 1,G 2, . . ., wherek = k(n) grows with the sample size. Given such
a sequence, define

ĜG k,α = arg min{µ(G) : G∈ Ĝ k
α}, (10)

where
Ĝ k

α = {G∈ G k : P̂(G) ≥ α−φk(G,S,δ)}
andφk is a penalty forG k.

Theorem 9 Choose k= k(n) andδ = δ(n) such that

1. k(n) → ∞ as n→ ∞

2. ∑∞
n=1 δ(n) < ∞

Assume the sequence of setsG k and penaltiesφk satisfy

lim
k→∞

inf
G∈G k

α

µ(G) = µ∗α (11)

and
lim
n→∞

sup
G∈G k

φk(G,S,δ(n)) = 0. (12)

ThenĜG k,α is strongly universally consistent.

The proof is given in Appendix B. We now give some examples that satisfy these conditions.

3.1 Example: Hierarchy of VC Classes

AssumeG 1,G 2, . . . , is a family of VC classes with VC dimensionsV1 <V2 < .. . . ForG∈ G k define

φk(G,S,δ) =

√
32

Vk logn+ log(8/δ)

n
. (13)

By taking δ(n) ≍ n−β for someβ > 1 andk such thatVk = o(n/ logn) the assumption in (12) is
satisfied. Examples of families of VC classes satisfying (11) include generalized linear discriminant
rules with appropriately chosen basis functions and neural networks (Lugosi and Zeger, 1995).
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3.2 Example: Histograms

AssumeX = [0,1]d, and letG k be the class of all sets formed by taking unions of cells in a regular
partition ofX into hypercubes of sidelength 1/k. EachG k has 2k

d
members and we may therefore

apply the penalty for finite sets discussed in Section 2.2. To satisfy the Kraftinequality (6) it suffices
to takeJGK = kd. The penalty forG∈ G k is then

φk(G,S,δ) =

√
kd log2+ log(2/δ)

2n
. (14)

By taking δ(n) ≍ n−β for someβ > 1 andk such thatkd = o(n) the assumption in (12) is satis-
fied. The assumption in (11) is satisfied by the well-known universal approximation capabilities of
histograms. Thus the conditions for consistency of histograms for minimum volume set estimation
are exactly parallel to the conditions for consistency of histogram rules for classification (Devroye
et al., 1996, Ch. 9). Dyadic decision trees, discussed below in Section 6,are another countable
family for which consistency results are possible.

3.3 The Symmetric Difference Performance Metric

An alternative measure of performance for an MV-set estimator is theµ-measure of the symmetric
difference,µ(ĜG ,α∆G∗

α), whereA∆B = (A\B)∪ (B\A). Although this performance metric has been
commonly adopted in the study of density level sets, it is less desirable for ourpurposes. First, unlike
with density level sets, there may not be a unique MV-set (imagine the case where the density ofP
has a plateau). Second, as pointed out by Steinwart et al. (2005), there is no known way to estimate
the accuracy of this measure using only samples fromP. Nonetheless, the symmetric difference
metric coincides asymptotically with our error metricE in the sense of the following result. The
theorem uses the notationγα to denote the density level corresponding to the MV-set, as discussed
in Section 1.2.

Theorem 10 Assume µ is a probability measure and P has a density f with respect to µ. Let
Gn denote a sequence of sets. If G∗

α is a minimum volume set and µ(Gn∆G∗
α) → 0 with n, then

E (Gn) → 0. Conversely, assume µ({x : f (x) = γα}) = 0. If E (Gn) → 0, then µ(Gn∆G∗
α) → 0.

The proof is given in Appendix C. The assumption of the second part of the theorem ensures
that G∗

α is unique, otherwise the converse statement need not be true. The proofof the converse
reveals yet another connection between MV-set estimation and classification. In particular, we
show thatE (Gn) bounds the excess classification risk for a certain classification problem. The
converse statement then follows from a result of Steinwart et al. (2005)who show that this excess
classification risk and theµ-measure of the symmetric difference tend to zero simultaneously.

4. Structural Risk Minimization and an Oracle Inequality

In the previous section on consistency the rate of convergence of the twoerrors to zero is determined
by the choice ofk= k(n), which must be chosen a priori. Hence it is possible that the excess volume
decays much more quickly than the missing mass, or vice versa. In this section we introduce a new
rule called MV-SRM, inspired by the principle of structural risk minimization (SRM) from the
theory of classification (Vapnik, 1982; Lugosi and Zeger, 1996), that automatically balances the
two errors.
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The results of this and subsequent sections are no longer distribution free. In particular, we
assume

A1 P has a densityf with respect toµ.

A2 for all α′ ∈ (0,1), G∗
α′ exists andP(G∗

α′) = α′.

Note thatA2 holds if f has no plateaus, i.e.,µ({x : f (x) = γ}) = 0 for all γ > 0. This is a commonly
made assumption in the study of density level sets. However,A2 is somewhat more general. It still
holds, for example, ifµ is absolutely continuous with respect to Lebesgue measure, even iff has
plateaus.

Recall from Section 1.2 that under assumptionA1, there existsγα > 0 such for any MV-setG∗
α,

{x : f (x) > γα} ⊂ G∗
α ⊂ {x : f (x) ≥ γα}.

Let G be a class of sets. Intuitively, viewG as a collection of sets of varying capacities, such
as a union of VC classes or a union of finite classes (examples are given below). Letφ(G,S,δ) be a
penalty forG . The MV-SRM principle selects the set

ĜG ,α = arg min
G∈G

{
µ(G)+2φ(G,S,δ) : P̂(G) ≥ α−φ(G,S,δ)

}
. (15)

Note that MV-SRM is different from MV-ERM because it minimizes a complexity penalized vol-
ume instead of simply the volume. We have the following oracle inequality for MV-SRM. Recall
E (G) := (µ(G)−µ∗α)+ +(α−P(G))+.

Theorem 11 Let ĜG ,α be the MV-set estimator in (15) and assumeA1 andA2 hold. With proba-
bility at least1−δ over the training sample S,

E (ĜG ,α) ≤
(

1+
1
γα

)
inf

G∈Gα

{
µ(G)−µ∗α +2φ(G,S,δ)

}
. (16)

Although the value of 1/γα is in practice unknown, it can be bounded by

1
γα

≤ µ(X )−µ∗α
1−α

≤ µ(X )

1−α
.

This follows from the bound 1−α ≤ γα · (µ(X )−µ∗α) on the mass outside the minimum volume set.
If µ is a probability measure, then 1/γα ≤ 1/(1−α).

The oracle inequality says that MV-SRM performs about as well as the setchosen by an oracle
to optimize the tradeoff between excess volume and missing mass.

4.1 Example: Union of VC Classes

ConsiderG = ∪K
k=1G

k, whereG k has VC dimensionVk, V1 < V2 < · · · , andK is possibly infinite.
A penalty forG can be obtained by defining, forG∈ G k,

φ(G,S,δ) = φk(G,S,δ2−k),

whereφk is the penalty from Equation (13). Thenφ is a penalty forG becauseφk is a penalty for
G k, and by applying the union bound and the fact∑k≥12−k ≤ 1. In this case, MV-SRM adaptively
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selects an MV-set estimate from a VC class that balances approximation and stochastic errors. Note
that instead of settingδk = δ2−k one could also chooseδk ∝ k−β,β > 1.

To be more concrete, supposeG k is the collection of sets whose boundaries are defined by poly-
nomials of degreek. It may happen that for certain distributions, the MV-set is well-approximated
by a quadratic region (such as an ellipse), while for other distributions a higher degree polynomial
is required. If the appropriate polynomial degree for the MV-set is not known in advance, as would
be the case in practice, then MV-SRM adaptively chooses an estimator of a certain degree that does
about as well as if the best degree was known in advance.

4.2 Example: Union of Histograms

Let G = ∪K
k=1G

k, whereG k is as in Section 3.2. As with VC classes, we obtain a penalty forG by
defining, forG∈ G k,

φ(G,S,δ) = φk(G,S,δ2−k),

whereφk is the penalty from Equation (14). Then MV-SRM adaptively chooses a partition resolution
k that approximates the MV-set about as well as possible without overfitting the training data. This
example is studied experimentally in Section 7.

5. Damping the Penalty

In Theorem 3, the reader may have noticed that MV-ERM does not equitably balance the excess
volume (µ(ĜG ,α) relative to its optimal value) with the missing mass (P(ĜG ,α) relative toα). Indeed,

with high probability,µ(ĜG ,α) is less than µ(GG ,α), while P(ĜG ,α) is only guaranteed to be within

2φ(ĜG ,α) of α. The net effect is that MV-ERM (and MV-SRM) underestimates the MV-set. Our
experiments in Section 7 demonstrate this to be the case.

In this section we introduce variants of MV-ERM and MV-SRM that allow the total error to
be shared between the volume and mass, instead of all of the error residingin the mass term. Our
approach is to introduce a damping factor−1≤ ν ≤ 1 that scales the penalty. We will see that the
resulting MV-set estimators obey performance guarantees like those we have already seen, but with
the total error redistributed between the volume and mass. The reason for not introducing this more
general framework initially is that the results are slightly less general, more involved to state, and to
some extent follow as corollaries to the original (ν = 1) framework.

The extensions of this section encompass the generalized quantile estimate of Polonik (1997),
which corresponds toν = 0. Thus we have finite sample size guarantees for that estimator to match
Polonik’s asymptotic analysis. The caseν = −1 is also of interest. If it is crucial that the estimate
satisfies the mass constraintP(ĜG ,α) ≥ α (note that this involves thetrue probability measureP),
settingν = −1 ensures this to be the case with probability at least 1−δ.

First we consider damping the penalty in MV-ERM. Assume that the penalty is independent of
G ∈ G and of the sampleS, although it can depend onn andδ. That is,φ(G,S,δ) = φ(n,δ). For
example,φ may be the penalty in (5) for VC classes or (7) for finite classes. Letν ≤ 1 and define

Ĝν
G ,α = arg min

G∈G

{
µ(G) : P̂(G) ≥ α−νφ(n,δ)

}
.
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Sinceφ is independent ofG∈ G , Ĝν
G ,α coincides with the MV-ERM estimate (as originally formu-

lated)ĜG ,α′ but at the adjusted mass constraintα′ = α +(1−ν)φ(n,δ). Therefore, we may apply
Theorem 3 to obtain the following.

Corollary 12 Let α′ = α+(1−ν)φ(n,δ). Then

Pn
((

P(Ĝν
G ,α) < α− (1+ν)φ(n,δ)

)
or
(

µ(ĜG ,α) > µG ,α′)
))

≤ δ.

Relative to the original formulation of MV-ERM, the bound on the missing mass is decreased
by a factor(1+ν). On the other hand, the volume is now bounded byµG ,α′ = µG ,α +(µG ,α′ −µG ,α).
Thus the bound on the excess volume is increased from 0 toµG ,α′ −µG ,α. This may be interpreted

as a stochastic component of the excess volume. Relative to the MV-set,µ(ĜG ,α) has only an

approximation error, whereasµ(Ĝν
G ,α) has both approximation and stochastic errors. The advantage

is that now the stochastic error of the mass is decreased.
A similar construction applies to MV-SRM. Now assumeG =∪K

k=1G
k. Given a scale parameter

ν, define
Ĝν
G ,α = arg min

G∈G

{
µ(G)+(1+ν)φ(G,S,δ) : P̂(G) ≥ α−νφ(G,S,δ)

}
.

As above, assumeφ is independent of the sample and constant on eachG k. Denoteεk(n,δ) =
φ(G,S,δ) for G ∈ G k. Observe that computinĝGν

G ,α is equivalent to computing the MV-ERM

estimate on eachG k at the levelα(k,ν) = α +(1− ν)εk(n,δ), and then minimizing the penalized
volume over these MV-ERM estimates.

Like the original MV-SRM, this modified procedure also obeys an oracle inequality. Recall the
notationG k

α(k,ν) = {G∈ G k : P(G) ≥ α(k,ν)} = {G∈ G k : P(G) ≥ α+(1−ν)εk(n,δ)}.

Theorem 13 Let −1 ≤ ν ≤ 1. Setα(k,ν) = α +(1− ν)εk(n,δ). AssumeA1 and A2 hold. With
probability at least1−δ,

E (Ĝν
G ,α) ≤

(
1+

1
γα

)
min

1≤k≤K

[
inf

G∈G k
α(k,ν)

{
µ(G)−µ∗α(k,ν)

}
+Ckεk(n,δ)

]
, (17)

where Ck =
(
(1+ν)+ 1

γα(k,ν)
(1−ν)

)
.

Hereγα(k,ν) is the density level corresponding to the MV-set with massα(k,ν). It may be bounded
above in terms of known quantities, as discussed in the previous section. The proof of the theorem
is very similar to the proof of the earlier oracle inequality and is omitted, although itmay be found
in Scott and Nowak (2005a). Notice that in the caseν = 1 we recover Theorem 11 (under the stated
assumptions onG andφ). Also note thatG k

α(k,ν) will be empty if α(k,ν) > 1, in which case thosek
should be excluded from the min.

To understand the result, assume that the rate at whichG k
α approximatesG∗

α is independent ofα.
In other words, the rate at which infG∈G k

α
µ(G)−µ∗α tends to zero ask increases is the same for allα.

Then in the theorem we may replace the expression infG∈G k
α(k,ν)

µ(G)−µ∗α(k,ν) with infG∈G k
α
µ(G)−µ∗α.

Thus, theν-damped MV-SRM error decays at the same rate is the original MV-SRM, and adaptively
selects the appropriate model classG k from which to draw the estimate. Furthermore, damping the
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penalty byν has the effect of decreasing the stochastic mass error and adding a stochastic error
to the volume. This follows from the above discussion of MV-ERM and the observation that the
MV-SRM coincides with an MV-SRM estimate overG k for somek. The improved balancing of
volume and mass error is confirmed by our experiments in Section 7.

6. Rates of Convergence for Tree-Structured Set Estimators

In this section we illustrate the application of MV-SRM, when combined with an appropriate anal-
ysis of the approximation error, to the study of rates of convergence. Topreview the main result of
this section (Theorem 16), we will consider the class of distributions such that the decision bound-
ary has Lipschitz smoothness (loosely speaking) andd′ of thed features are relevant. The best rate
of convergence for this class isn−1/d′

. We will show that MV-SRM can achieve this rate (within a
log factor) without knowingd′ or which features are relevant. This demonstrates the strength of the
oracle inequality, from which the result is derived.

To obtain these rates we apply MV-SRM to sets based on a special family of decision trees
called dyadic decision trees (DDTs) (Scott and Nowak, 2006). Beforeintroducing DDTs, however,
we first introduce the class of distributionsD with which our study is concerned. Throughout this
section we assumeX = [0,1]d andµ is the Lebesgue (equivalently, uniform) measure.

Somewhat related to the approach considered here is the work of Klemelä (2004) who consid-
ers the problem of estimating the support of a uniform density. The estimatorsproposed therein
are based on dyadic partitioning schemes similar in spirit to the DDTs studied here. However,
it is important to point out that in the support set estimation problem studied by Klemel̈a (2004)
the boundary of the set corresponds to discontinuity of the density, and therefore more standard
complexity-regularization and tree pruning methods commonly employed in regression settings suf-
fice to achieve near minimax rates. In contrast, DDT methods are capable of attaining near minimax
rates for all density level sets whose boundaries belong to certain Hölder smoothness classes, regard-
less of whether or not there is a discontinuity at the given level. Significantlydifferent risk bounding
and pruning techniques are required for this additional capability (Scott and Nowak, 2006).

6.1 The Box-Counting Class

Before introducingD we need some additional notation. Letmdenote a positive integer, and define
Pm to be the collection ofmd cells formed by the regular partition of[0,1]d into hypercubes of
sidelength 1/m. Letc1,c2 > 0 be positive real numbers. LetG∗

α be a minimum volume set, assumed
to exist, and let∂G∗

α be the topological boundary ofG∗
α. Finally, letNm(∂G∗

α) denote the number of
cells inPm that intersect∂G∗

α.
We define thebox-countingclass to be the setD BOX =D BOX(c1,c2) of all distributions satisfying

A1’ : X has a densityf with respect toµ and f is essentially bounded byc1.

A3 : ∃G∗
α such thatNm(∂G∗

α) ≤ c2md−1 for all m.

Note that sinceµ is the Lebesgue measure, assumptionA2 from above follows fromA1, so we do
not need to assume it explicitly here. AssumptionA1’ is a slight strengthening ofA1 and implies
P(A) ≤ c1µ(A) for all measurable setsA. AssumptionA3 essentially requires the boundary of the
minimum volume setG∗

α to have Lipschitz smoothness, and thus one would expect the optimal rate
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Figure 2: A dyadic decision tree (right) with the associated recursive dyadic partition (left) ind = 2
dimensions. Each internal node of the tree is labeled with an integer from 1 tod indicating
the coordinate being split at that node. The leaf nodes are decorated withclass labels.

of convergence to ben−1/d (the typical rate for set estimation problems characterized by Lipschitz
smoothness). See Scott and Nowak (2006) for further discussion of the box-counting assumption.

6.2 Dyadic Decision Trees

Let T denote a tree structured classifierT : [0,1]d → {0,1}. Each suchT gives rise to a setGT =
{x∈ [0,1]d : T(x) = 1}. In this subsection we introduce a certain class of trees, and later consider
MV-SRM over the induced class of sets.

Scott and Nowak (2006) demonstrate thatdyadic decision trees(DDTs) offer a computationally
feasible classifier that also achieves optimal rates of convergence (forstandard classification) under
a wide range of conditions. DDTs are especially well suited for rate of convergence studies. Indeed,
bounding the approximation error is handled by the restriction to dyadic splits,which allows us
to take advantage of recent insights from multiresolution analysis and nonlinear approximations
(DeVore, 1998; Cohen et al., 2001; Donoho, 1999). An analysis similarto that of Scott and Nowak
(2006) applies to MV-SRM for DDTs, leading to similar results: optimal rates ofconvergence for a
computationally efficient learning algorithm.

A dyadic decision tree is a decision tree that divides the input space by means of axis-orthogonal
dyadic splits. More precisely, a DDTT is a binary tree (with a distinguished root node) specified
by assigning (1) an integerc(v) ∈ {1, . . . ,d} to each internal nodev of T (corresponding to the
coordinate that gets split at that node); (2) a binary label 0 or 1 to each leaf node ofT. The nodes
of DDTs correspond to hyperrectangles (cells) in[0,1]d. Given a hyperrectangleA = ∏d

c=1[ac,bc],
let Ac,1 andAc,2 denote the hyperrectangles formed by splittingA at its midpoint along coordinate
c. Specifically, defineAc,1 = {x∈ A | xc ≤ (ac +bc)/2} andAc,2 = A\Ac,1.

Each node ofT is associated with a cell according to the following rules: (1) The root nodeis
associated with[0,1]d; (2) If v is an internal node associated with the cellA, then the children ofv are
associated withAc(v),1 andAc(v),2. See Figure 2. Note that everyT corresponds to a setGT ∈ [0,1]d

(the regions labeled 1), and we think of DDTs as both classifiers and sets interchangeably.
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Let L = L(n) be a natural number and defineT L to be the collection of all DDTs such that (1) no
leaf cell has a sidelength smaller than 2−L, and (2) any two leaf nodes that are siblings have different
labels. Condition (1) says that when traversing a path from the root to a leaf no coordinate is split
more thanL times. Condition (2) means that it is impossible to “prune” at any internal node and
still have the same set/classifier. Also defineA L to be the collection of all cellsA that correspond
to nodes of DDTs inT L. Defineπ(T) to be the collection of “leaf” cells ofT. For a cellA∈ A L,
let j(A) denote the depth ofA when viewed as a node in some DDT. Observe that whenµ is the
Lebesgue measure,µ(A) = 2− j(A).

6.3 MV-SRM with Dyadic Decision Trees

We study MV-SRM over the familyG L = {GT : T ∈ T L}, whereL is set by the user. To simplify
the notation, at times we will suppress the dependence ofφ on the training sampleSand confidence
parameterδ. Thus our MV set estimator has the form

Ĝα = arg min
G∈G L

{
µ(G)+2φ(G) | P̂(G)+φ(G) ≥ α

}
. (18)

It remains to specify the penaltyφ. There are a number of ways to produceφ satisfying

Pn

({
S: sup

G∈G L

(∣∣∣P(G)− P̂(G)
∣∣∣−φ(G,S,δ)

)
> 0

})
≤ δ.

SinceG L is countable (in fact, finite), one approach is to devise a prefix code forG L and apply the
penalty in Section 2.2. Instead, we employ a different penalty which has the advantage that it leads
to minimax optimal rates of convergence. Introduce the notationJAK = (3+ log2d) j(A), which may
be thought of as the codelength ofA in a prefix code forA L, and define theminimaxpenalty

φ(GT) := ∑
A∈π(T)

√

8max

(
P̂(A),

JAK log2+ log(2/δ)

n

)
JAK log2+ log(2/δ)

n
. (19)

For eachA∈ π(T), setℓ(A) = 1 if A⊂ GT and 0 otherwise. The bound originates from writing

P(GT)− P̂(GT) = ∑
A∈π(T):ℓ(A)=1

P(A)− P̂(A)

and

P̂(GT)−P(GT) = P(GT)− P̂(GT)

= ∑
A∈π(T):ℓ(A)=0

P(A)− P̂(A)

from which it follows that

|P(GT)− P̂(GT)| ≤ ∑
A∈π(T)

P(A)− P̂(A). (20)

The eventX ∈ A is a Bernoulli trial with probability of successP(A), and so bounding the right
hand side of (20) simply involves applying a concentration inequality for binomials to eachA∈ A L.
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There are many ways to do this (additive Chernoff, relative Chernoff,exact tail inversion, etc.),
but the one we have chosen is particularly convenient for rate of convergence analysis. For further
discussion, see Scott and Nowak (2006). Proof of the following resultis nearly identical to a similar
result in Scott and Nowak (2006), and is omitted.

Proposition 14 Let φ be as in (19) and letδ ∈ (0,1). With probability at least1−δ over the draw
of S,

|P(G)− P̂(G)| ≤ φ(G)

for all G ∈ G L. Thusφ is a complexity penalty forG L.

The MV-SRM procedure overG L with the above penalty leads to an optimal rate of convergence
for the box-counting class.

Theorem 15 Choose L= L(n) andδ = δ(n) such that

1. 2L(n) < (n/ logn)1/d

2. δ(n) = O(
√

logn/n) and log(1/δ(n)) = O(logn)

DefineĜα as in (18) withφ as in (19). For d≥ 2 we have

sup
DBOX

EnE (Ĝα) 4

(
logn

n

) 1
d

. (21)

We omit the proof, since this theorem is a special case of Theorem 16 below. Note that the condition
on δ is satisfied ifδ(n) ≍ n−β for someβ > 1/2.

6.4 Adapting to Relevant Features

The previous result could have been obtained without using MV-SRM. Instead, we could have
applied MV-ERM to a fixed hierarchyG L(1),G L(2), . . . whereL(n) ≍ (n/ logn)1/d. The strength of
MV-SRM and the associated oracle inequality is in its ability to adapt to favorableconditions on the
data generating distribution which may not be known in advance. Here we illustrate this idea when
the number of relevant features is not known in advance.

We define therelevant data dimensionto be the numberd′ ≤ d of relevant features. A feature
Xi , i = 1, . . . ,d, is said to be relevant providedf (X) is not constant whenXi is varied from 0 to 1.
For example, ifd = 2 andd′ = 1, then∂G∗

α is a horizontal or vertical line segment (or union of such
line segments). Ifd = 3 andd′ = 1, then∂G∗

α is a plane (or union of planes) orthogonal to one of
the axes. Ifd = 3 and the third coordinate is irrelevant (d′ = 2), then∂G∗

α is a “vertical sheet” over
a curve in the(X1,X2) plane (see Figure 3).

Let D ′
BOX = D ′

BOX(c1,c2,d′) be the set of all product measuresPn such thatA1’ andA3 hold
for the underlying distributionP, andX has relevant data dimensiond′ ≥ 2. An argument of Scott
and Nowak (2006) implies that the expected minimax rate ford′ relevant features isn−1/d′

. By the
following result, MV-SRM can achieve this rate to within a log factor.

Theorem 16 Choose L= L(n) andδ = δ(n) such that

1. 2L(n) < n/ logn
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Figure 3: Cartoon illustrating relevant data dimension. If theX3 axis is irrelevant, then the boundary
of the MV-set is a “vertical sheet” over a curve in the(X1,X2) plane.

2. δ(n) = O(
√

logn/n) and log(1/δ(n)) = O(logn)

DefineĜα as in (18) withφ as in (19). If d′ ≥ 2 then

sup
D ′

BOX

EnE (Ĝα) 4

(
logn

n

) 1
d′

. (22)

The proof hinges on the oracle inequality. The details of the proof are very similar to the proof of a
result in Scott and Nowak (2006) and are therefore omitted. Here we justgive a sketch of how the
oracle inequality comes into play.

Let K ≤ L and letG∗
K ∈ G K

α be such that (i)µ(G∗
K) = arg minG∈G K

α
µ(G)−µ∗α; and (ii) G∗

K is
based on the smallest possible partition among all sets satisfying (i). Setm= 2K . It can be shown
that

µ(G∗
K)−µ∗α +φ(G∗

K ,S,δ) 4 m−1 +md′/2−1

√
logn

n

in expectation. This upper bound is minimized whenm≍ (n/ logn)1/d′
, in which case we obtain

the stated rate. Here the oracle inequality is crucial becausem depends ond′, which is not known
in advance. The oracle inequality tells us that MV-SRM performs as if it knewthe optimalK.

Note that the set estimation rule does not require knowledge of the constantsc1 andc2, nord′,
nor which features are relevant. Thus the rule is completely automatic and adaptive.

7. Experiments

In this section we conduct some simple numerical experiments to illustrate the rulesfor MV-set
estimation proposed in this work. Our objective is not an extensive comparison with competing
methods, but rather to demonstrate that our estimators behave in a way that agrees with the the-
ory, to gain insight into the behavior of various penalties, and to examine basic algorithmic issues.
Throughout this section we takeX = [0,1]d andµ to be the Lebesgue (equivalently, uniform) mea-
sure.
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7.1 Histograms

We devised a simple numerical experiment to illustrate MV-SRM in the case of histograms (see
Sections 3.2 and 4.2). In this case, MV-SRM can be implemented exactly with a simple procedure.
First, compute the MV-ERM estimate for eachG k, k = 1, . . . ,K, where 1/k is the bin-width. To do
this, for eachk, sort the cells of the partition according to the number of samples in the cell. Then,
begin incorporating cells into the estimate one cell at a time, starting with the most populated, until
the empirical mass constraint is satisfied. Finally, once all MV-ERM estimates have been computed,
choose the one that minimizes the penalized volume.

We consider two penalties. Both penalties are defined viaφ(G,S,δ) = φk(G,S,δ2−k) for G∈ G k,
whereφk is a penalty forG k. The first is based on the simple Occam-style bound of Section 3.2.
ForG∈ G k, set

φOcc
k (G,S,δ) =

√
kd log2+ log(2/δ)

2n
.

The second is the (conditional) Rademacher penalty. ForG∈ G k, set

φRad
k (G,S,δ) =

2
n

E(σi)

[
sup

G′∈G k

n

∑
i=1

σiI
(
Xi ∈ G′)

]
+

√
2log(2/δ)

n
.

Hereσ1, . . . ,σn are Rademacher random variables, i.e., independent random variablestaking on the
values 1 and -1 with equal probability. Fortunately, the conditional expectation with respect to these
variables can be evaluated exactly in the case of partition-based rules such as the histogram. See
Appendix E for details.

As a data set we considerX = [0,1]d, the unit square, and data generated by a two-dimensional
truncated Gaussian distribution, centered at the point(1/2,1/2) and having spherical variance with
parameterσ = 0.15. Other parameter settings areα = 0.8, K = 40, andδ = 0.05. All experiments
were conducted at nine different sample sizes, logarithmically spaced from 100 to 1000000, and
repeated 100 times. Figure 4 shows a representative training sample and MV-ERM estimates with
ν = 1,0, and−1. These examples clearly demonstrate that the largerν, the smaller the estimate.

Figure 5 depicts the errorE (Ĝ) of the MV-SRM estimate withν = 1. The Occam’s Razor
penalty consistently outperforms the Rademacher penalty. For comparison,a damped version (ν =
0) was also evaluated. It is clear from the graphs thatν = 0 outperformsν = 1. This happens because
the damped version distributes the error more evenly between mass and volume, as discussed in
Section 5.

Figure 6 depicts the penalized volume of the MV-ERM estimates (ν = 1) as a function of the
resolutionk, where 1/k is the sidelength of the histogram cell. MV-SRM selects the resolution
where this curve is minimized. Clearly the Occam’s Razor bound is tighter than the Rademacher
bound (look at the right side of the graph), which explains why Occam outperforms Rademacher.
Figure 7 depicts the average resolution of the estimate (top) and the averagesymmetric difference
with respect to the true MV-set, for various sample sizes. These graphs are for ν = 1. The graphs
for ν = 0 do not change considerably. Thus, while damping seems to have a noticeable effect on the
error quantityE , the effect on the symmetric difference is much less pronounced.

7.2 Dyadic Decision Trees

Implementing MV-SRM for dyadic decision trees is much more challenging than for histograms.
Although an exact algorithm is possible (see Scott and Nowak, 2005a), we suggest an approximate
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n = 10000, k = 15, ν = 1

(a) (b)
n = 10000, k = 15, ν = 0 n = 10000, k = 15, ν = −1

(c) (d)

Figure 4: Data and three representative MV-ERM histogram estimates for the data in Section 7.1.
The shaded region is the MV-set estimate, and the solid circle indicates the trueMV-set.
All estimates are based on the Occam bound. (a) 10000 realizations used for training. (b)
MV-ERM estimate with a bin-width of 1/15 andν = 1. (c) ν = 0. (d) ν = −1. Clearly,
the largerν, the smaller the estimate.
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Figure 5: The errorE (ĜG ,α) as a function of sample size for the histogram experiments in Section
7.1. All results are averaged over 100 repetitions for each training samplesize. (Top)
Results for the original MV-SRM algorithm (ν = 1). (Bottom) Results forν = 0. In this
case the error is more evenly distributed between mass and volume, whereasin the former
case all the error is in the mass term.
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Figure 6: The penalized volume of the MV-ERM estimatesGk
G ,α, as a function ofk, where 1/k is

the sidelength of the histogram cell. The results are for a sample size of 10000. Results
represent an average over 100 repetitions. Clearly, the Occam’s razor bound is smaller
than the Rademacher penalty (look at the right side of the plot), to which we mayattribute
its improved performance (see Figure 5).
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Figure 7: Results from the histogram experiments in Section 7.1. All results are averaged over 100
repetitions for each training sample size, and are for the non-damped version of MV-
SRM (ν = 1). (Top) Average value of the resolution parameterk (1/k = sidelength of
histogram cells) as a function of sample size. (Bottom) Average value of the symmetric
difference between the estimated and true MV-sets. Neither graph changes significantly
if ν is varied.
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algorithm based on a reformulation of the constrained optimization problem defining MV-SRM in
terms of its Lagrangian, coupled with a bisection search to find the appropriate Lagrange multiplier.
If the penalty is additive, then the unconstrained Lagrangian can be minimizedefficiently using
existing algorithmic approaches.

A penalty for a DDT is said to beadditiveif it can be written in the form

φ(GT) = ∑
A∈π(T)

ψ(A)

for someψ. If φ is additive the optimization in (18) can be re-written as

min
T∈T L

∑
A∈π(T)

[µ(A)ℓ(A)+(1+ν)ψ(A)] subject to ∑
A∈π(T)

[
P̂(A)ℓ(A)+νψ(A)

]
≥ α

whereℓ(A) is the binary label of leafA (ℓ(A) = 1 if A is in the candidate set and 0 otherwise). In-
troducing the Lagrange multiplierλ > 0, the unconstrained Lagrangian formulation of the problem
is

min
T

∑
A∈T

[
µ(A)ℓ(A)+(1+ν)ψ(A)−λ

(
P̂(A)ℓ(A)+νψ(A)

)]
.

Inspection of the Lagrangian reveals that the optimal choice ofℓ(A) is

ℓ(A) =






1 if λP̂(A) ≥ µ(A),

0 otherwise

Thus, we have a “per-leaf” cost function

cost(A) := min(µ(A)−λP̂(A),0)+(1+ν(1−λ))ψ(A)

For a given value ofλ, the optimal tree can be efficiently obtained using the algorithm of Blanchard
et al. (2004).

We also note that the above strategy works for tree structures besides theone studied in Section
6. For example, suppose an overfitted tree (with arbitrary, non-dyadic splits) has been constructed
by some greedy heuristic (perhaps using an independent data set). Or,suppose that instead of binary
dyadic splits with arbitrary orientation, one only considers “quadsplits” whereby every parent node
has 2d children (in fact, this is the tree structure used for our experiments below).In such cases,
optimizing the Lagrangian reduces to a classical pruning problem, and the optimal tree can be found
by a simpleO(n) dynamic program that has been used since at least the days of CART (Breiman
et al., 1984).

Let T̂λ denote the tree resulting from the Lagrangian optimization above. From standard opti-
mization theory, we know that for each value ofλ, T̂λ will coincide with Ĝα, for a certain value of
α. For each value ofλ there is a correspondingα, but the converse is not necessarily true. There-
fore, the Lagrangian solutions correspond to many, but not all possiblesolutions of the original
MV-SRM optimization with different values ofα. Despite this potential limitation, the simplicity of
the Lagrangian optimization makes this a very attractive approach to MV-SRM inthis case. We can
determine the best value ofλ for a given targetα by repeatedly solving the Lagrangian optimization
and finding the setting forλ that meets or comes closest to the original constraint. The search over
λ can be conducted efficiently using a bisection search.
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In our experiments we do not consider the “free-split” tree structure described in Section 6, in
which each parent has two children defined by one ofd = 2 possible splits. Instead, we assume a
quadsplit tree structure, whereby every cell is a square, and every parent has four square children.
The total optimization time isO(mn), wherem is the number of steps in the bisection search. In our
experiments presented below we found that ten steps (i.e., ten Lagrangian tree pruning optimiza-
tions) were sufficient to meet the constraint almost exactly (whenever possible).

We consider three complexity penalties. We refer to the first penalty as theminimaxpenalty,
since it is inspired by the minimax optimal penalty in (19):

ψmm(A) := (0.01)

√

8max

(
P̂(A),

JAK log2+ log(2/δ)

n

)
JAK log2+ log(2/δ)

n
. (23)

Note that the penalty is down-weighted by a constant factor of 0.01, since otherwise it is too large
to yield meaningful results:3

The second penalty is based on the Rademacher penalty (see Section 2.3).Let ΠL denote the
set of all partitionsπ of trees inT L. Given π0 ∈ ΠL, setGπ0 = {GT ∈ G L : π(T) = π0}. Recall
π(T) denotes the partition associated with the treeT. Combining Proposition 7 with the results of
Appendix E, we know that for any fixedπ,

∑
A∈π

√
P̂(A)

n
+

√
2log(2/δ)

n

is a complexity penalty forGπ. To obtain a penalty for allG L = ∪π∈ΠLGπ, we apply the union
bound over allπ ∈ ΠL and replaceδ by δ|ΠL|−1. Although distributing the “delta” uniformly across
all partitions is perhaps not intuitive (one might expect smaller partitions to be more likely and
hence they should receive a larger chunk of the delta), it has the important property that the delta
term is the same for all trees, and thus can be dropped for the purposes of minimization. Hence,
the effective penalty is additive. In summary, our second penalty, referred to as the Rademacher
penalty,4 is given by

ψRad(A) =

√
P̂(A)

n
. (24)

The third penalty is referred to as the modified Rademacher penalty and is given by

ψmRad(A) =

√
P̂(A)+µ(A)

n
. (25)

The modified Rademacher penalty is still a valid penalty, since it strictly dominates the basic
Rademacher penalty. The basic Rademacher is proportional to the square-root of the empirical
P mass and the modified Rademacher is proportional to the square-root of thetotal mass (empirical

3. Note that here down-weighting is distinct from damping byν as discussed earlier. With down-weighting, both
occurrences of the penalty, in the constraint and in the objective function, are scaled by the same factor. The oracle
inequality (and hence minimax optimality) still holds for the downweighted penalty, albeit with larger constants.

4. Technically, this is an upper bound on the Rademacher penalty, but asdiscussed in Appendix E, this bound is tight to
within a factor of

√
2. Using the exact Rademacher yields essentially the same results. Thus,we refer to this upper

bound simply as the Rademacher penalty.
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P mass plusµ mass). In our experiments we have found that the modified Rademacher penalty
typically performs better than the basic Rademacher penalty, since it discourages the inclusion of
very small isolated leafs containing a single data point (as seen in the experimental results below).
Note that, unlike the minimax penalty, the two Rademacher-based penalties are not down-weighted;
the true penalties are used.

We illustrate the performance of the dyadic quadtree approach with a two-dimensional Gaus-
sian mixture distribution, takingν = 0. Figure 1 depicts 500 samples from the Gaussian mixture
distribution, along with the true minimum volume set forα = 0.90. Figures 8, 9, and 10 depict the
minimum volume set estimates based on each of the three penalties, and for samplesizes of 100,
1000, and 10000. Here we use MM, Rad, and mRad to designate the three penalties.

In addition to the minimum volume set estimates based on a single tree, we also show the
estimates based on voting over shifted partitions. This amounts to constructing 2L × 2L different
trees, each based on a partition offset by an integer multiple of the base sidelength 2−L, and taking
a majority vote over all the resulting set estimates to form the final estimate. Theseestimates are
indicated by MM’, Rad’, and mRad’, respectively. Similar methods based onaveraging or voting
over shifted partitions have been tremendously successful in image processing, and they tend to
mitigate the “blockiness” associated with estimates based on a single tree, as is clearly seen in the
results depicted. Moreover, because of the significant amount of redundancy in the shifted partitions,
the MM’, Rad’, and mRad’ estimates can be computed in justO(mnlogn) operations.

Visual inspection of the resulting minimum volume set estimates (which were “typical” results
selected at random) reveals some of the characteristics of the different penalties and their behav-
iors as a function of the sample size. Notably, the basic Rademacher penalty tends to allow very
small and isolated leafs into the final set estimate, which is somewhat unappealing. The modified
Rademacher penalty clearly eliminates this problem and provides very reasonable estimates. The
(down-weighted) minimax penalty results in set estimates quite similar to those resulting from the
modified Rademacher. However, the somewhat arbitrary choice of scalingfactor (0.01 in this case)
is undesirable. Finally, let us remark on the significant improvement provided by voting over multi-
ple shifted trees. The voting procedure quite dramatically reduces the “blocky” partition associated
with estimates based on single trees. Overall, the modified Rademacher penalty coupled with voting
over multiple shifted trees appears to perform best in our experiments. In fact, in the casen= 10000,
this set estimate is almost identical to the true minimum volume set depicted in Figure 1.

8. Conclusions

In this paper we propose two rules, MV-ERM and MV-SRM, for estimation ofminimum volume
sets. Our theoretical analysis is made possible by relating the performance of these rules to the
uniform convergence properties of the class of sets from which the estimate is taken. This in turn
lets us apply distribution free uniform convergence results such as the VCinequality to obtain
distribution free, finite sample performance guarantees. It also leads to strong universal consistency
when the class of candidate sets is allowed to grow in a controlled way. MV-SRM obeys an oracle
inequality and thereby automatically selects the appropriate complexity of the setestimator. These
theoretical results are illustrated with histograms and dyadic decision trees.

Our estimators, results, and proof techniques for minimum volume sets bear a strong resem-
blance to existing estimators, results, and proof techniques for supervised classification. This is no
coincidence. Minimum volume set estimation is closely linked with hypothesis testing.Assume
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(MM) (Rad) (mRad)

(MM’) (Rad’) (mRad’)

Figure 8: Minimum volume set estimates based on dyadic quadtrees forα = 0.90 with n = 100
samples. Reconstructions based on MM = minimax penalty (23), Rad = Rademacher
penalty (24), and mRad = modified Rademacher penalty (25), and MM’, Rad’, and mRad’
denote the analogous estimates based on voting over multiple trees at different shifts.
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(MM) (Rad) (mRad)

(MM’) (Rad’) (mRad’)

Figure 9: Minimum volume set estimates based on dyadic quadtrees forα = 0.90 with n = 1000
samples. Reconstructions based on MM = minimax penalty (23), Rad = Rademacher
penalty (24), and mRad = modified Rademacher penalty (25), and MM’, Rad’, and mRad’
denote the analogous estimates based on voting over multiple trees at different shifts.

693



SCOTT AND NOWAK

(MM) (Rad) (mRad)

(MM’) (Rad’) (mRad’)

Figure 10: Minimum volume set estimates based on dyadic quadtrees forα = 0.90 withn = 10000
samples. Reconstructions based on MM = minimax penalty (23), Rad = Rademacher
penalty (24), and mRad = modified Rademacher penalty (25), and MM’, Rad’, and
mRad’ denote the analogous estimates based on voting over multiple trees at different
shifts.
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P has a density with respect toµ, and thatµ is a probability measure. Then the minimum vol-
ume set with massα is the acceptance region of the most powerful test of size 1−α for testing
H0 : X ∼ P versus H1 : X ∼ µ. But classification and hypothesis testing have the same goals; the
difference lies in what knowledge is used to design a classifier/test (training data versus knowledge
of the true densities). The problem of learning minimum volume sets stands halfway between these
two: For one class the true distribution is known (the reference measure),but for the other only
training samples are available.

This observation provides not only intuition for the similarity between MV-set estimation and
classification, but it also suggests an alternative approach to MV-set estimation. In particular, sup-
pose it is possible to sample at will from the reference measure. Consider these samples, together
with the original training data, to be a labeled training set. Then the MV-set may be estimated by
learning a classifier with respect to the Neyman-Pearson criterion (Cannon et al., 2002; Scott and
Nowak, 2005b). Briefly, the Neyman-Pearson classification paradigm involves learning a classi-
fier from training data that minimizes the “miss” generalization error while constraining the “false
alarm” generalization error to be less than or equal to a specified size, in our case 1−α.

Minimum volume set estimation based on Neyman-Pearson classification offersa distinct ad-
vantage over the rules studied in this paper. Indeed, our algorithms for histograms and dyadic
decision trees take advantage of the fact that the reference measureµ is easily evaluated for these
special types of sets. For more general sets or non-uniform reference measures, direct evaluation
of the reference measure may be impractical. Neyman-Pearson classification, in contrast, involves
computing the empirical volume based on the training sample, a much easier task. Moreover, in
principle one may take an arbitrarily large sample fromµ to mitigate finite sample effects. A similar
idea has been employed by Steinwart et al. (2005), who sample fromµ so as to reduce density level
set estimation to cost-sensitive classification. In this setting the advantage of MV-sets over density
level sets is further magnified. For example, to sample from a uniform distribution, one must specify
its support, which is a priori unknown. Fortunately, MV-sets are invariant to the choice of support,
whereas theγ-level set changes with the support ofµ.
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Appendix A. Proof of Lemma 4

The proof follows closely the proof of Lemma 1 in Cannon et al. (2002). DefineΞ = {S: P̂(GG ,α) <

α−φ(GG ,α,S,δ)}. It is true thatΘµ ⊂ Ξ. To see this, ifS/∈ Ξ thenGG ,α ∈ Ĝα, and henceµ(ĜG ,α)≤
µ(GG ,α) by definition ofĜG ,α. ThusS /∈ Θµ. It follows that

ΘP∪Θµ ⊂ ΘP∪Ξ
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and hence it suffices to showΘP ⊂ ΩP andΞ ⊂ ΩP.
First, we show thatΘP ⊂ ΩP. If S∈ ΘP then

P(ĜG ,α) < α−2φ(ĜG ,α,S,δ).

This implies

P(ĜG ,α)− P̂(ĜG ,α) < α−2φ(ĜG ,α,S,δ)− P̂(ĜG ,α)

≤ −φ(ĜG ,α,S,δ),

where the last inequality is true becauseP̂(ĜG ,α) ≥ α−φ(ĜG ,α,S,δ). ThereforeS∈ ΩP.
Second, we show thatΞ ⊂ ΩP. If S∈ Ξ, then

P̂(GG ,α)−P(GG ,α) < α−φ(GG ,α,S,δ)−P(GG ,α)

≤ −φ(GG ,α,S,δ),

where the last inequality holds becauseP(GG ,α) ≥ α. Thus,S∈ ΩP, and the proof is complete.

Appendix B. Proof of Theorem 9

By the Borel-Cantelli Lemma (Durrett, 1991), it suffices to show that for any ε > 0,

∞

∑
n=1

Pn(E (ĜG ,α) > ε) < ∞.

We will show this by establishing

∞

∑
n=1

Pn
((

µ(ĜG ,α)−µ∗α
)

+
>

ε
2

)
< ∞ (26)

and
∞

∑
n=1

Pn
((

α−P(ĜG ,α)
)

+
>

ε
2
.
)

< ∞ (27)

First consider (26). By assumption (11), there existsK such thatµ(Gk
G ,α)−µ∗α ≤ ε/2 for all

k≥ K. Let N be such thatk(n) ≥ K for n≥ N. For any fixedn≥ N, consider a sampleSof sizen.
By Theorem 3, it follows that with probability at least 1−δ(n), µ(ĜG ,α)−µ∗α ≤ µ(Gk

G ,α)−µ∗α ≤ ε/2.
Therefore

∞

∑
n=1

Pn
((

µ(ĜG ,α)−µ∗α
)

+
>

ε
2

)

=
N−1

∑
n=1

Pn
((

µ(ĜG ,α)−µ∗α
)

+
>

ε
2

)
+

∞

∑
n=N

Pn
((

µ(ĜG ,α)−µ∗α
)

+
>

ε
2

)

≤
N−1

∑
n=1

Pn
((

µ(ĜG ,α)−µ∗α
)

+
>

ε
2

)
+

∞

∑
n=N

δ(n)

< ∞.
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The second inequality follows from the assumed summability ofδ(n).
To establish (27), letN be large enough so that

sup
G∈G k(n)

φk(G,S,δ(n)) ≤ ε
4

for all n≥ N. For any fixedn≥ N, consider a sampleSof sizen. By Theorem 3, it follows that with
probability at least 1−δ(n), α−P(ĜG ,α) ≤ 2φk(ĜG ,α,S,δ(n)) ≤ ε/2. Therefore

∞

∑
n=1

Pn
((

α−P(ĜG ,α)
)

+
>

ε
2

)

=
N−1

∑
n=1

Pn
((

α−P(ĜG ,α)
)

+
>

ε
2

)
+

∞

∑
n=N

Pn
((

α−P(ĜG ,α)
)

+
>

ε
2

)

≤
N−1

∑
n=1

Pn
((

α−P(ĜG ,α)
)

+
>

ε
2

)
+

∞

∑
n=N

δ(n)

< ∞.

This completes the proof.

Appendix C. Proof of Theorem 10

The first part of the theorem is straightforward. First, we claim that(µ(Gn)−µ∗α)+ ≤ µ(Gn\G∗
α). To

see this, assumeµ(Gn)−µ∗α ≥ 0, otherwise the statement is trivial. Then

(µ(Gn)−µ∗α)+ = µ(Gn)−µ∗α
= µ(Gn)−µ(G∗

α)

≤ µ(Gn)−µ(G∗
α ∩Gn)

= µ(Gn\G∗
α).

Similarly, one can show(α−P(Gn))+ ≤ P(G∗
α\Gn). Let Dγ = {x : f (x) ≥ γ} andEn = G∗

α\Gn.
Then for anyγ > 0,

P(En) = P(En∩Dγ)+P(En∩Dγ) ≤ P(Dγ)+ γµ(En).

By the dominated convergence theorem,P(Dγ) → 0 asγ → ∞. Thus, for anyε > 0, we can choose
γ such thatP(Dγ) ≤ ε and thenn large enough so thatγµ(En) ≤ ε. The result follows.

Now the second part of the theorem. From Section 1.2, we knowG∗
α = {x : f (x) = γα} where

γα is the unique number such that
R

f (x)≥γα
f (x)dµ(x) = α.

Consider the distributionQ of (X,Y) ∈ X ×{0,1} given by the class-conditional distributions
X|Y = 0∼ P andX|Y = 1∼ µ, and a priori class probabilitiesQ(Y = 0) = p= 1−Q(Y = 1), where
p will be specified below. ThenQ defines a classification problem. Leth∗ denote a Bayes classifier
with respect toQ (i.e., a classifier with minimum probability of error), and leth : X → {0,1} be an
arbitrary classifier. The classification risk ofh is defined asR (h) = Q(h(X) 6= Y), and the excess
classification risk isR (h)−R (h∗). From Bayes decision theory we know thath∗ is the rule that
compares the likelihood ratio top/(1− p). But, as discussed in Section 1.2, the likelihood ratio is
1/ f . Therefore, ifp is such thatp/(1− p) = 1/γα, thenh∗(x) = 1−I(x∈ G∗

α) µalmost everywhere.
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Settinghn(x) = 1− I(x∈ Gn), we have

R (hn)−R (h∗)

= Q(hn(X) 6= Y)−Q(h∗(X) 6= Y)

= (1− p)(µ(hn(X) = 0)−µ(h∗(X) = 0)))+ p(P(hn(X) = 1)−P(h∗(X) = 0))

= (1− p)(µ(Gn)−µ(G∗
α))+ p(1−P(Gn)− (1−P(G∗

α)))

= (1− p)(µ(Gn)−µ∗α)+ p(α−P(Gn))

≤ (µ(Gn)−µ∗α)+(α−P(Gn))

≤ E (Gn).

ThereforeR (hn) → R (h∗). We now invoke a result of Steinwart et al. (2005) that says, in our
notation, thatR (hn) → R (h∗) if and only if µ(Gn∆G∗

α) → 0, and the proof is complete.

Appendix D. Proof of Theorem 11

Let ΩP be as in the proof of Theorem 3, and assumeS∈ ΩP. This holds with probability at least
1−δ. We consider three separate cases: (1)µ(ĜG ,α) ≥ µ∗α andP(ĜG ,α) < α, (2) µ(ĜG ,α) ≥ µ∗α and

P(ĜG ,α)≥α, and (3)µ(ĜG ,α) < µ∗α andP(ĜG ,α) < α. Note that the case in which bothα≤P(ĜG ,α)

andµ(ĜG ,α) < µ∗α is impossible by definition of minimum volume sets. We will use the following
fact:

Lemma 17 If S∈ ΩP, thenα−P(ĜG ,α) ≤ 2φ(ĜG ,α,S,δ).

The proof is a repetition of the proof thatΘP ⊂ ΩP in Lemma 4.
For the first case we have

E (ĜG ,α) = µ(ĜG ,α)−µ∗α +α−P(ĜG ,α)

≤ µ(ĜG ,α)−µ∗α +2φ(ĜG ,α,S,δ)

= inf
G∈Ĝα

{
µ(G)−µ∗α +2φ(G,S,δ)

}

≤ inf
G∈Gα

{
µ(G)−µ∗α +2φ(G,S,δ)

}

≤
(

1+
1
γα

)
inf

G∈Gα

{
µ(G)−µ∗α +2φ(G,S,δ)

}
.

The first inequality follows fromS∈ ΘP. The next line comes from the definition of̂GG ,α. The

second inequality follows fromS∈ ΩP, from which it follows thatGα ⊂ Ĝα. The final step is trivial
(this constant is needed for case 3).

For the second case,µ(ĜG ,α) ≥ µ∗α andP(ĜG ,α) ≥ α, note

E (ĜG ,α) = µ(ĜG ,α)−µ∗α

≤ µ(ĜG ,α)−µ∗α +2φ(ĜG ,α,S,δ)
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and proceed as in the first case.
For the third case,µ(ĜG ,α) < µ∗α andP(ĜG ,α) < α, we rely on the following lemmas.

Lemma 18 Let ε > 0. Then
µ∗α −µ∗α−ε ≤

ε
γα

.

Proof By assumptionsA1 andA2, there exist MV-setsG∗
α−ε andG∗

α such that

Z

G∗
α

f (x)dµ(x) = α

and
Z

G∗
α−ε

f (x)dµ(x) = α− ε.

Furthermore, we may chooseG∗
α−ε andG∗

α such thatG∗
α−ε ⊂ G∗

α. Thus

ε =
Z

G∗
α

f (x)dµ(x)−
Z

G∗
α−ε

f (x)dµ(x)

=
Z

G∗
α\G∗

α−ε

f (x)dµ(x)

≥ γαµ(G∗
α\G∗

α−ε)

= γα(µ∗α −µ∗α−ε)

and the result follows.

Lemma 19 If S∈ ΩP and G∈ Ĝα, then

µ∗α −µ(G) ≤ 2
γα

·φ(G,S,δ).

Proof Denoteε = 2φ(G,S,δ). SinceS∈ ΩP andG∈ Ĝα, we know

P(G) ≥ P̂(G)− 1
2

ε ≥ α− ε.

In other words,G∈ Gα−ε. Therefore,µ(G) ≥ µ∗α−ε and it suffices to boundµ∗α −µ∗α−ε. Now apply
the preceding lemma.
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It now follows that

E (ĜG ,α) = α−P(ĜG ,α)

≤ 2φ(ĜG ,α,S,δ)

= µ(ĜG ,α)−µ∗α +µ∗α −µ(ĜG ,α)+2φ(ĜG ,α,S,δ)

≤ µ(ĜG ,α)−µ∗α +

(
1+

1
γα

)
2φ(ĜG ,α,S,δ)

≤
(

1+
1
γα

)(
µ(ĜG ,α)−µ∗α +2φ(ĜG ,α,S,δ)

)

=

(
1+

1
γα

)
inf

G∈Ĝα

{
µ(G)−µ∗α +2φ(G,S,δ)

}

≤
(

1+
1
γα

)
inf

G∈Gα

{
µ(G)−µ∗α +2φ(G,S,δ)

}

The first inequality follows from Lemma 17. The second inequality is by Lemma 19. The next to
last line follows from the definition of̂GG ,α, and the final step is implied byS∈ ΩP as in case 1.
This completes the proof.

Appendix E. The Rademacher Penalty for Partition-Based Sets

In this appendix we show how the conditional Rademacher penalty introducedin Section 2.3 can be
evaluated for a classG based on a fixed partition. The authors thank Gilles Blanchard for pointing
out the properties that follow. Letπ = {A1, . . . ,Ak} be a fixed, finite partition ofX , and letG be the
set of all sets formed by taking the union of cells inπ. Thus|G | = 2k and everyG∈ G is specified
by ak-length string of binary digitsℓ(A1), . . . , ℓ(Ak), with ℓ(A) = 1 if and only ifA⊂ G.

The conditional Rademacher penalty may be rewritten as follows:

2
n

E(σi)

[
sup
G∈G

n

∑
i=1

σiI(Xi ∈ G)

]
=

2
n

E(σi)

[
sup

ℓ(A) :A∈π

n

∑
i=1

σiℓ(A)

]

=
2
n ∑

A∈π
E(σi)

[
sup
ℓ(A)

∑
i:Xi∈A

σiℓ(A)

]

=: ∑
A∈π

ψ(A).
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Thus the penalty is additive (modulo the delta term). Now consider a fixed cellA:

ψ(A) =
2
n

E(σi)

[
sup
ℓ(A)

∑
i:Xi∈A

σiℓ(A)

]

=
1
n

E(σi)

[
sup
ℓ(A)

∑
i:Xi∈A

σi(2ℓ(A)−1)

]

=
1
n

E(σi)

[
sup
ℓ(A)

(2ℓ(A)−1) ∑
i:Xi∈A

σi

]

=
1
n

E(σi)

[∣∣∣∣∣ ∑
i:Xi∈A

σi

∣∣∣∣∣

]
.

Now let bin(M, p,m) =
(M

m

)
pm(1− p)M−m be the probability of observingmsuccesses in a sequence

of M Bernoulli trials having success probabilityp. Then this last expression can be computed
explicitly as

ψ(A) =
1
n

nA

∑
i=0

bin(nA,1/2, i)|nA−2i|,

wherenA = |{i : Xi ∈ A}|. This is the penalty used in the histogram experiments (after the delta term
is included).

A more convenient and intuitive penalty may be obtained by bounding

ψ(A) =
1
n

E(σi)

[∣∣∣∣∣ ∑
i:Xi∈A

σi

∣∣∣∣∣

]

≤ 1
n

E(σi)




(

∑
i:Xi∈A

σi

)2




1
2

=
1
n

E(σi)

[

∑
i:Xi∈A

σ2
i

] 1
2

=

√
P̂(A)

n
,

where the inequality is Jensen’s. Moreover, by the Khinchin-Kahane inequality (see, e.g., Ledoux
and Talagrand, 1991, Lemma 4.1), the converse inequality holds with a factor

√
2, so the bound

is tight up to this factor. This is the “Rademacher” penalty employed in the dyadicdecision tree
experiments.
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