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Abstract

Given a probability measui@ and a reference measyeone is often interested in the minimum
p-measure set witR-measure at least. Minimum volume sets of this type summarize the regions
of greatest probability mass &f and are useful for detecting anomalies and constructimd-co
dence regions. This paper addresses the problem of estgmainimum volume sets based on
independent samples distributed according.t®ther than these samples, no other information is
available regardin, but the reference measyrés assumed to be known. We introduce rules for
estimating minimum volume sets that parallel the empirnicsd minimization and structural risk
minimization principles in classification. As in classifiicen, we show that the performances of
our estimators are controlled by the rate of uniform conereg of empirical to true probabilities
over the class from which the estimator is drawn. Thus weiolftaite sample size performance
bounds in terms of VC dimension and related quantities. \WWe demonstrate strong universal
consistency, an oracle inequality, and rates of converyehte proposed estimators are illustrated
with histogram and decision tree set estimation rules.

Keywords: minimum volume sets, anomaly detection, statistical liz@rtheory, uniform devia-
tion bounds, sample complexity, universal consistency

1. Introduction

Given a probability measutie and a reference measyiethe minimum volume set (MV-set) with
mass atleast@ a < 1is

G, = arg minf(G) : P(G) > a, G measurablp

MV-sets summarize regions where the masB &f most concentrated. For examplePifs a mul-
tivariate Gaussian distribution apds the Lebesgue measure, then the MV-sets are ellipsoids. An
MV-set for a two-component Gaussian mixture is illustrated in Figure 1. Agiidtios of minimum
volume sets include outlier/anomaly detection, determining highest posterisitydenmultivari-
ate confidence regions, tests for multimodality, and clustering. See Pol@¥K){MWalther (1997);
Schilkopf et al. (2001) and references therein for additional applications

This paper considers the problem of MV-set estimation using a training sairglen from
P, which in most practical settings is the only information one has aBoUthe specifications to
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Figure 1: Minimum volume set (gray region) of a two-component GaussiatureixAlso shown
are 500 points drawn independently from this distribution.

the estimation process are the significance leyethe reference measuge and a collection of
candidate sets .

A major theme of this work is the strong parallel between MV-set estimation aaaybatassi-
fication. In particular, we find that uniform convergence (of true phility to empirical probability
over the class of setg) plays a central role in controlling the performance of MV-set estimators.
Thus, we derive distribution free finite sample performance bounds in tffasniliar quantities
such as VC dimension. In fact, as we will see, any uniform convergbauad can be directly
converted to a rule for MV-set estimation.

In Section 2 we introduce a rule for MV-set estimation analogous to empiisgaitinimization
in classification, and shows that this rule obeys similar finite sample size penfice guarantees.
Section 3 extends the results of the previous section to aflaw grow in a controlled way with
sample size, leading to MV-set estimators that are strongly universallystemts Section 4 intro-
duces an MV-set estimation rule similar in spirit to structural risk minimization in ifieason,
and develops an oracle-type inequality for this estimator. The oracle ilityggaarantees that
the estimator automatically adapts its complexity to the problem at hand. Section dutdésoa
tuning parameter to the proposed rules that allows the user to affect tleeffrdtween volume
error and mass error without sacrificing theoretical properties. Segfwavides a “case study” of
tree-structured set estimators to illustrate the power of the oracle inequalityrfeing rates of con-
vergence. Section 7 includes a set of numerical experiments that exgierproposed theory (and
algorithmic issues) using histogram and decision tree rules in two dimensioctiorSe includes
concluding remarks and avenues for potential future investigations.il&@efaoofs of the main
results of the paper are relegated to the appendices. Throughouptiretha theoretical results are
illustrated in detail through several examples, including VC classes, histagiand decision trees.
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1.1 Previous Work

All previous theoretical work on MV-set estimation has been asymptotic irr@atini our knowl-
edge. Our work here is the first to provide explicit finite sample boundst Blosely related to this
paper is the pioneering work of Polonik (1997). Using empirical prottessry, he establishes con-
sistency results and rates of convergence for minimum volume sets whiehdlep the entropy
of the class of candidate sets. This places restrictions on the M@sé¢.g, u(Gy) is continu-
ous ina), whereas our consistency result holds universally, i.e., for all digtabsP. Also, the
convergence rates obtained by Polonik apply under smoothness assugptithe density. In con-
trast, our rate of convergence results in Section 6 depend on the smetiriee boundary dB;.
Walther (1997) studies an approach based on “granulometric smoothihighi involves applying
certain morphological smoothing operations todhmass level set of a kernel density estimate. His
rates also apply under smoothness assumptions on the density, rather teatiresi assumptions
regarding the smoothness of the MV-set as in our approach.

Algorithms for MV-set estimation have been developed for convex setge(S4979) and el-
lipsoidal sets (Hartigan, 1987) in two dimensions. Unfortunately, for moneptioated problems
(dimension> 2 and non-convex sets), there has been a disparity between practiesgt\stima-
tors and theoretical results. Polonik (1997) makes no comment on the pli&gt his estimators.
The smoothing estimators of Walther (1997) in practice must approximate thestiicabestima-
tor via iterative level set estimation. On the other hand, computationally effipiesedures like
those in Schlkopf et al. (2001) and Huo and Lu (2004) are motivated by the minimumnvelu
set paradigm, but their performance relativedp is not known. Recently, however, Moz and
Moguerza (2006) have proposed the so-called one-class neighlohimaaand demonstrated its
consistency under certain assumptions. Our proposed algorithms forrhis®gnd decision trees
are practical in low dimensional settings, but appear to be constrainec lsathe computational
limitations as empirical risk minimization in binary classification.

More broadly, MV-set estimation theory has similarities (in terms of the naturespiits and
technical devices) to other set estimation problems, such as classificatimimiiation analysis,
density support estimation (which corresponds to the aasel), and density level set estimation,
to which we now turn.

1.2 Connection to Density Level Sets

The MV-set estimation problem is closely related to density level set estimatsyh#éKov, 1997,
Ben-David and Lindenbaum, 1997; Cuevas and Rodriguez-Casd; 36inwart et al., 2005; Vert
and Vert, 2005) and excess mass estimation problems (Nolan, 198frMnd Sawitzki, 1991;
Polonik, 1995). Indeed, it is well known that density level sets are minimoltmve sets (Nunez-
Garcia et al., 2003). The main difference between density level sets srakid is that the former
require the specification of a density level of interest, rather than théfispgon of the mass
to be enclosed. Since the density is in general unknown, it seems th#ysgea is much more
reasonable and intuitive than setting a density level for problems like anoregdgtibn. Suppose
for example that one is interested in a reference measure of thedgrmwhereu is Lebesgue
measure and > 0. The choice ot does not change the minimum volume set, but it does affect
they level set. Since there is no way a priori to choose the bete invariance of the minimum
volume set seems highly desirable. To frame the same issue in a differerstupapselis uniform
on some set containing the supportif Then MV-sets are invariant to how the supportuof
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specified, while density level sets are not. Further advantages of kd\6ger level sets are given
in the concluding section.

Algorithms for density level set estimation can be split into two categories, impliai-in
methods and explicit set estimation methods. Plug-in strategies entail full dessityation and
are the more popular practical approach. For example, Baillo et al. Y266siders plug-in rules for
density level set estimation problems and establishes upper bounds otetb& canvergence for
such estimators in certain cases. The problem of estimating a density ssgiptine zero level set,
is a special minimum volume set (i.e., the minimum volume set that contains the totabpityb
mass). Cuevas and Fraiman (1997) study density support estimationeanthsi a certain (density
estimator) plug-in scheme provides universally consistent support estimatio

While consistency and rate of convergence results for plug-in methodslypiwake global
smoothness assumptions on the density, explicit methods make assumptionsdendite at or
near the level of interest. This fact, together with the intuitive appeal othaving to solve a
problem harder than one is interested in, make explicit methods attractivew&teet al. (2005)
reduce level set estimation to a cost-sensitive classification problem byisginpm the reference
measure. The idea of sampling frqmin the minimum volume context is discussed further in the
concluding section. Vert and Vert (2005) study the one-class stigpotor machine (SVM) and
show that it produces a consistent density level set estimator, baseglfanttthat consistent density
estimators produce consistent plug-in level set estimators. Willett and N@®ak, 2006) propose
a level set estimator based on decision trees, which is applicable to densitgdéestimation as
well as regression level set estimation, and related dyadic partitioningneshare developed by
Klemela (2004) to estimate the support set of a density.

The connections between MV-sets and density level sets will be importaniriates paper.
To make the connection precise the following assumption on the data-gegaditiribution and
reference measure is needed. We emphasize that this assumption isessiamgéor the results in
Sections 2 and 3, where distribution free error bounds and univemealstency are established.

Al P has a density with respect tqu

A key result relating density level and MV-sets is the following, stated witlpwaof (see, e.g.,
Nunez-Garcia et al. (2003)).

Lemma 1 Under assumptioAl there existsy such that for any MV-set 5
{X: f(X) >VYa} C Gy C {x: f(X) >Va}.
Note that every density level set is an MV-set, but not conversellgolfieverpu({x: f(X) =va}) =
0, then the three sets in the Lemma coincide.
1.3 Notation

Let (x,8) be a measure space withc RY. Let X be a random variable taking valuesinwith
distributionP. Let S= (Xi,...,X,) be an independent and identically distributed (IID) sample
drawn according t®. Let G denote a subset of, and letg be a collection of such subsets. [t
denote the empirical measure basedson

P(G) = iiﬂ(xi €G).
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Herel(-) is the indicator function. The notatignwill denote a measuteon x. Denote byf
the density ofP with respect tou (when it exists)y > 0 a level of the density, and € (0,1) a
user-specified mass constraint. Define

Mo = inf {K(G) : P(G) = a}, (1)

where the inf is over all measurable sets. A minimum volume@&gtis a minimizer of (1) when it
exists.

2. Minimum Volume Sets and Empirical Risk Minimization

We introduce a procedure inspired by the empirical risk minimization (ERMXijwi@ for classifi-
cation. In classification, ERM selects a classifier from a fixed set ofifirssby minimizing the
empirical error (risk) of a training sample. Vapnik and Chervonenkisésteed the basic theoret-
ical properties of ERM (see Vapnik, 1998; Devroye et al., 1996),vamdind similar properties in
the minimum volume setting.

Let g be a class of sets. Givene (0,1), denote

Ga = {Geg P(G)ZG},
the collection of all sets iy with mass at least. Define

Hg.a = INf{l(G) : G € Ga} (2

and
Gy, =arg mn{(G) : G € G} 3)
when it exists. Thu§; ¢ is the best approximation to the minimum volumeGgtfrom G .

Empirical versions of;4 andG; o are defined as follows. Lg{(G,S,d) be a functionofc € g,
the training sampl&, and a confidence paramegee (0,1). Set

Ga={Ge g :P(G)>a-¢G,S3)}

and ~ R
Gg o =arg minfu(G) : G € Gq}. 4

We refer to the rule in (4) as MV-ERM because of the analogy with empirsialminimization in
classification. A discussion of the existence and uniqueness of the ghawnéties is deferred to
Section 2.5.

The quantityp acts as a kind of “tolerance” by which the empirical mass may deviate from the
targeted value. Throughout this paper we assume taatisfies the following.

Definition 2 We saypis a (distribution free)complexity penaltyfor ¢ if and only if for all distri-
butions P and alb € (0,1),

P" ({S: sup(’P(G) — ﬁ(G)‘ —(P(G735)) > 0}) <9o.

Geg

1. Although we do not emphasize it, the results of Sections 2 and 3 onlireqoio be a real-valued function an.
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Thus, @ controls the rate of uniform convergenceRi{fG) to P(G) for G € g. It is well known that
the performance of ERM (for binary classification) relative to the peréorce of the best classifier
in the given class is controlled by the uniform convergence of true to erappiobabilities. A
similar result holds for MV-ERM.

Theorem 3 If @is a complexity penalty fog, then

P"((P(Gya) <@~ 29(Gy.0,58) ) or (WGya) > ya) ) <&
Proof Consider the sets

OP = {Sip(ég,a)<G—2(P(ég,a7876)}7
@U = {S:u(ég7a)>u(Gg7G)}a

Qp = {S:sup(’P(G)—ﬁ(G)’—cp(G,Sé))>O}.

Geg

Lemma 4 With ©p, 0, andQp as defined above we have
@P U @“ C QP.

The proof is given in Appendix A, and follows closely the proof of Lemma Xannon et al.
(2002). The theorem statement follows directly from this observation. |

Lemma 4 may be understood by analogy with the result from classification ayatq{s(f)
infres R (f) < 2sup., |R(f) — & (f)| (see Devroye et al. (1996), Ch. 8). Heteand % are

the true and empirical risksf is the empirical risk minimizer, and is a set of classifiers. Just
as this result relates uniform convergence to empirical risk minimization inifitat®n, so does
Lemma 4 relate uniform convergence to the performance of MV-ERM.

The theorem above allows direct translation of uniform convergergétseinto performance
guarantees on MV-ERM. Fortunately, many penalties (uniform conaesgeesults) are known. In
the next two subsections we take a closer look at penalties for VC clasdeantable classes,
and a Rademacher penalty.

2.1 Example: VC Classes

Let g be a class of sets with VC dimensign and define

0G.S.5) — \/32VIogn+nIog(8/6).

By a version of the VC inequality (Devroye et al., 1996), we know thiat a complexity penalty
for g, and therefore Theorem 3 applies.

To view this result in perhaps a more recognizable wayglet0 and choose such that
®(G,S,0) = ¢ for all G € g and allS By inverting the relationship betweenande, we have
the following.

(5)
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Corollary 5 With the notation defined above,

p" ((P(ég a) <0— 28) or (u(égﬁa) > ugg)) < 8nVe"eY/128

Thus, for any fixed > 0, the probability of being within&of the target mass and being less than
the target volumei; o approaches one exponentially fast as the sample size increases. sTitis re
may also be used to calculate a distribution free upper bound on the sampleeaiiasl to be within

a given tolerance of a and with a given confidence-1d. In particular, the sample size will grow
no faster than a polynomial in/t and 1/, paralleling results for classification.

2.2 Example: Countable Classes

Supposes is a countable class of sets. Assume that to e@eyg a numbel[G] is assigned such
that
S 276l <1, (6)
Geg

In light of the Kraft inequality for prefix codes (Cover and Thomas, 199{G5] may be defined as
the codelength of a codeword fGrin a prefix code for; . Letd > 0 and define

0G.S.5) = \/ [G] log2+ log(2/3) @

2n

By Chernoff’s bound together with the union boumgis a penalty forg. Therefore Theorem 3
applies and we have a result analogous to the Occam’s Razor boutakfification (see Langford,
2005).

As a special case, suppogss finite and takdG] = log, | |. Settinge = ¢(G, S,d) and invert-
ing the relationship betweenande, we have the following.

Corollary 6 For the MV-ERM estimatég,a from a finite class;

= ((P(ég.,a) <a-— 28) or (p(éw) > Hg,a)) <2/l ™2,

As with VC classes, these inequalities may be used for sample size calculations.

2.3 The Rademacher Penalty for Sets

The Rademacher penalty was originally studied in the context of classificagidfoltchinskii
(2001) and Bartlett et al. (2002). For a succinct exposition of its basipepties, see Bousquet
et al. (2004). An analogous penalty exists for sets.dset. ., 0, be Rademacher random variables,
i.e., independent random variables taking on the values 1 and -1 with papkability. Denote
FA>(0i)(G) =15 6il(X € G). We define the Rademacher average

n

p(g)=E [supFA’(oi)(G)
Geg

2. A prefix code is a collection of codewords (strings of Os and 1s) wattno codeword is a prefix of another.
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and the conditional Rademacher average

)

6(678) = E(Gi) [SUpIS(O'i)(G)
Geg

where the second expectation is with respect the Rademacher randabiiesaonly, and condi-
tioned on the sampl8.

Proposition 7 With probability at leastL. — d over the draw of S,

log(1/d)
2n

P(G)—P(G) < 2p(g) +

for all G € g. With probability at least. — & over the draw of S,

P(G) - P(G) < 20(g.9) + || 22922

forallG e g.

The proof of this result follows exactly the same lines as the proof of Hmd& in Bousquet et al.
(2004), and is omitted.
Assumeg satisfies the property th&@ € ¢ = G € g, whereG denotes the compliment of

G. ThenP(G) — P(G) = P(G) — P(G), and so the upper bounds of Proposition 7 also apply to
|P(G) — P(G)|. Thus we are able to define the conditional Rademacher penalty

0(G,S8) = 2p(6,9) + 2'09r<12/5>

By the above Proposition, this is a complexity penalty according to Definitionh2. cbnditional
Rademacher penalty is studied further in Section 7 and in Appendix E, whestown thap(g ,S)
can be computed efficiently for sets based on a fixed partition @uch as histograms and trees).

2.4 Comparison to Generalized Quantile Processes

Polonik (1997) studies thempirical quantile function
Vo = inf{i(G) : P(G) > a},

and the MV-set estimate that achieves the minimum (when it exists). The ordyatiffe compared
with MV-ERM is the absence of the terg{G, S, ) in the constraint. Thus, MV-ERM will tend to
produce estimates with smaller volume and smaller mass. While Polonik provessyniptatic
properties of his estimator, we have demonstrated finite sample bounds f&RW\ Moreover,

in Section 5, we show that the results of this section extend to a generalizawviBRM where
@is replaced by, wherev is any number1 <v < 1. Thus finite sample bounds also exist for
Polonik’s estimatory = 0).
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2.5 Existence and Uniqueness

In this section we discuss the existence and uniqueness of th&sgtand ég,a- Regarding the
former, itis really not necessary that a minimizer exist. All of our resultstated in terms ofi; q,
which certainly exists. When a minimizer exists, its uniqueness is not an isstefsame reason.
Our results above involve only; «, which is the same regardless of which minimizer is chosen.
Yet one may wonder whether convergence of the volume and mass to theiabygalues implies
convergence to the MV-set (when it is unique) in any sense. A resulisidlifection is presented in
Theorem 10 below.

For the MV-ERM estimatéw, uniqueness is again not an issue because all results hold even
if the minimizer is chosen arbitrarily. As for existence, we must be more daMfeli cannot make
the same argument as fGi; o because we are ultimately interested in a concrete set estimate, not
just its volume and mass. Clearly,df is finite, égg exists. For more general sets, existence must
be examined on a case-by-case basis. For examplegifR9, pis the Lebesgue measure, ands
the VC class of spherical or ellipsoidal sets, tl@}a can be seen to exist.

In the event thaG, 4 does not exist, it suffices to I&;  be a set whose volume comes within
¢ of the infimum, where is arbitrarily small. Then our results still hold Wipt(ég «a) replaced by
u(ég,q) — €. The consistency and rate of convergence results below are urethaswe may take
€ — 0 arbitrarily fast as a function of.

3. Consistency

A minimum volume set estimator is consistent if its volume and mass tend to the optimad palue
anda asn — oo, Formally, define the error quantity

£(G) = (U(G) —Ha) + (0 =P(G)),,

where(x) , = max(x,0). We are interested in MV-set estimators such m(ﬁg,a) tends to zero as
n— oo,

Definition 8 A learning ruleég,a is strongly consisterit

lim £ (G4 o) =0 with probability 1

If Ggﬂ is strongly consistent for every possible distribution of X, té@a, is stronglyuniversally
consistent.

In this section we show that if the approximating powegdfhcreases in a certain way as a function
of n, then MV-ERM leads to a universally consistent learning rule.

To see how consistency might result from MV-ERM, it helps to rewrite Téeo3 as follows.
Let g be fixed and letp(G, S, 8) be a penalty for; . Then with probability at least% &, both

~

H(Gg.a) — by < HGg o) — Uy (8)

and R R
a— P(Gg,u) < ZCP(Gg,m S.)9) 9
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hold. We refer to the left-hand side of (8) as theess volumef the class; and the left-hand side
of (9) as thamissing massf égﬂ. The upper bounds on the right-hand sides are an approximation
error and a stochastic error, respectively.

The idea is to letg grow with n so that both errors tend to zero as— «. If g does not
change withn, universal consistency is impossible. Either the approximation error willpeero
for most distributions (whew; is too small) or the bound on the stochastic error will be too large
(otherwise). For example, if a class has universal approximation ditipabits VC dimension is
necessarily infinite (Devroye et al., 1996, Ch. 18).

To have both stochastic and approximation errors tend to zero, we applgRMW to a class
G* from a sequence of classgs, G2, ..., wherek = k(n) grows with the sample size. Given such
a sequence, define

Gyrg = argminfu(G): Ge gk}, (10)
where R R
G5 ={G€ G :P(G) 2 a—n(G,S9)}
andqy is a penalty forg .
Theorem 9 Choose k= k(n) andd = d(n) such that
1. k(n) - wasn— o
2. Shq0(n) < o0

Assume the sequence of setsand penaltiesp, satisfy

lim inf p(G) = (11)
k—oGegk
and
lim sup@(G,S,d(n)) =0. (12)
n—>ooG€gk

Thenégkﬂ is strongly universally consistent.

The proof is given in Appendix B. We now give some examples that satisBetbhonditions.

3.1 Example: Hierarchy of VC Classes

Assumeg !, G?2,...,is afamily of VC classes with VC dimensiols < Vs < .... ForG € g ¥ define

0(G.S.5) = \/32Vklogn+nlog(8/6)‘ 13)

By taking &(n) =< n~B for somep > 1 andk such thatk = o(n/logn) the assumption in (12) is
satisfied. Examples of families of VC classes satisfying (11) include gerextdinear discriminant
rules with appropriately chosen basis functions and neural netwotkg@i and Zeger, 1995).
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3.2 Example: Histograms

Assumex = [0,1]9, and letg ¥ be the class of all sets formed by taking unions of cells in a regular
partition of x into hypercubes of sidelength/i. Eachg* has ¥ members and we may therefore
apply the penalty for finite sets discussed in Section 2.2. To satisfy theikegfiality (6) it suffices

to take[G] = k9. The penalty folG € G¥is then

d
%(G.S.5) = \/ (Clog2 log(2/0) (14)

By taking &(n) =< nP for somef > 1 andk such thatk? = o(n) the assumption in (12) is satis-
fied. The assumption in (11) is satisfied by the well-known universaloeqopation capabilities of
histograms. Thus the conditions for consistency of histograms for minimurmeodet estimation
are exactly parallel to the conditions for consistency of histogram ruteddesification (Devroye
et al., 1996, Ch. 9). Dyadic decision trees, discussed below in Sectiare @nother countable
family for which consistency results are possible.

3.3 The Symmetric Difference Performance Metric

An alternative measure of performance for an MV-set estimator ig-theasure of the symmetric
difference,p(éwAGg), whereAAB = (A\B) U (B\A). Although this performance metric has been
commonly adopted in the study of density level sets, itis less desirable fpuguoses. First, unlike
with density level sets, there may not be a unique MV-set (imagine the casge wie density oP

has a plateau). Second, as pointed out by Steinwart et al. (200%) jshey known way to estimate

the accuracy of this measure using only samples fRoniNonetheless, the symmetric difference
metric coincides asymptotically with our error meteicin the sense of the following result. The
theorem uses the notatigy to denote the density level corresponding to the MV-set, as discussed
in Section 1.2.

Theorem 10 Assume W is a probability measure and P has a density f with respect totu. Le
Gp, denote a sequence of sets. [f & a minimum volume set and@®AG};) — 0 with n, then
£ (Gn) — 0. Conversely, assumé{x: f(x) =yq}) =0. If £(G,) — 0, then {G,AG}) — 0.

The proof is given in Appendix C. The assumption of the second parteofhthorem ensures
that Gy is unique, otherwise the converse statement need not be true. Theoptbef converse
reveals yet another connection between MV-set estimation and classificdtioparticular, we
show thatz (G,) bounds the excess classification risk for a certain classification probldra. T
converse statement then follows from a result of Steinwart et al. (2068)show that this excess
classification risk and thg-measure of the symmetric difference tend to zero simultaneously.

4. Structural Risk Minimization and an Oracle Inequality

In the previous section on consistency the rate of convergence of thegtars to zero is determined

by the choice ok = k(n), which must be chosen a priori. Hence itis possible that the excess volume
decays much more quickly than the missing mass, or vice versa. In this seetiotreduce a new

rule called MV-SRM, inspired by the principle of structural risk minimization ¥§Rrom the
theory of classification (Vapnik, 1982; Lugosi and Zeger, 1996) dudomatically balances the
two errors.
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The results of this and subsequent sections are no longer distributionlfrgearticular, we
assume

Al P has a density with respect tqu
A2 foralla’ € (0,1), G}, exists andP(G},) = a’.

Note thatA2 holds if f has no plateaus, i.qi({x: f(x) =y}) =0 for ally> 0. This is a commonly
made assumption in the study of density level sets. Howé&zis somewhat more general. It still
holds, for example, ifiis absolutely continuous with respect to Lebesgue measure, e¥ema
plateaus.

Recall from Section 1.2 that under assump#dn there existyy > 0 such for any MV-seGy,

{X:f(X) >VYa} C Gy C {x: f(X) > Va}-

Let ¢ be a class of sets. Intuitively, vie@ as a collection of sets of varying capacities, such
as a union of VC classes or a union of finite classes (examples are gil@mbLet@(G, S d) be a
penalty forg . The MV-SRM principle selects the set

Gsa = argmin {u(G) +2¢(G,S3): P(G) >a— m(G,Sé)} : (15)
Geg

Note that MV-SRM is different from MV-ERM because it minimizes a complexignalized vol-
ume instead of simply the volume. We have the following oracle inequality for RMSRecall

Z(G) = (WGC) — 1), + (@ =P(G)),.

Theorem 11 Let Ggaa be the MV-set estimator in (15) and assufifeand A2 hold. With proba-
bility at leastl — 6 over the training sample S,

£ (Gg q) < <1+1> inf { WG) — W +2¢(G, S, 9) } (16)
Yo / GEGa

Although the value of 1y, is in practice unknown, it can be bounded by
1 _ M)~ H(X)

Ya l1-a ~1-a

This follows from the bound + o <y - (U(X ) — &) on the mass outside the minimum volume set.
If wis a probability measure, thenyy < 1/(1—a).

The oracle inequality says that MV-SRM performs about as well as thehssen by an oracle
to optimize the tradeoff between excess volume and missing mass.

4.1 Example: Union of VC Classes

Considerg = Uﬁzlgk, whereg ¥ has VC dimensioV, Vi <V, < ---, andK is possibly infinite.
A penalty forg can be obtained by defining, f&r e gk,

®(G,S,0) = ¢(G,5,827%),

whereqx is the penalty from Equation (13). Thenis a penalty forg becausey is a penalty for
G ¥, and by applying the union bound and the fagt, 2-K < 1. In this case, MV-SRM adaptively
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selects an MV-set estimate from a VC class that balances approximatiotoehdstic errors. Note
that instead of setting, = 52 one could also choos® O kP B > 1.

To be more concrete, supposé is the collection of sets whose boundaries are defined by poly-
nomials of degreé&. It may happen that for certain distributions, the MV-set is well-approxichate
by a quadratic region (such as an ellipse), while for other distributionsheehidegree polynomial
is required. If the appropriate polynomial degree for the MV-set is notn in advance, as would
be the case in practice, then MV-SRM adaptively chooses an estimatoedbinaegree that does
about as well as if the best degree was known in advance.

4.2 Example: Union of Histograms

Letg = Uﬁzlg", wheregK is as in Section 3.2. As with VC classes, we obtain a penaltyfoy
defining, forG € gk,
®G,S8) = @(G, S 827),

whereqy is the penalty from Equation (14). Then MV-SRM adaptively choosestdipa resolution
k that approximates the MV-set about as well as possible without overfiténggaming data. This
example is studied experimentally in Section 7.

5. Damping the Penalty

In Theorem 3, the reader may have noticed that MV-ERM does not etultalance the excess
volume @(vaa) relative to its optimal value) with the missing ma%@g,a) relative toa). Indeed,
with high probability,u(ég,a) is less than (G; o), while P(vaa) is only guaranteed to be within
Z‘P(ég,a) of a. The net effect is that MV-ERM (and MV-SRM) underestimates the Miv-§&ur
experiments in Section 7 demonstrate this to be the case.

In this section we introduce variants of MV-ERM and MV-SRM that allow thelteteor to
be shared between the volume and mass, instead of all of the error rasidmegmass term. Our
approach is to introduce a damping factal < v < 1 that scales the penalty. We will see that the
resulting MV-set estimators obey performance guarantees like thoseve@lneady seen, but with
the total error redistributed between the volume and mass. The reasant fotraducing this more
general framework initially is that the results are slightly less general, mooévad to state, and to
some extent follow as corollaries to the originak 1) framework.

The extensions of this section encompass the generalized quantile estimateni PL997),
which corresponds te = 0. Thus we have finite sample size guarantees for that estimator to match
Polonik’'s asymptotic analysis. The case- —1 is also of interest. If it is crucial that the estimate
satisfies the mass constral?(tég,a) > a (note that this involves thiue probability measuré),
settingv = —1 ensures this to be the case with probability at leasdl

First we consider damping the penalty in MV-ERM. Assume that the penalty épertient of
G € g and of the sampl&, although it can depend amandd. That is,@(G, S 0) = ¢(n,d). For
example p may be the penalty in (5) for VC classes or (7) for finite classesylsetl and define

G}, o = arg min{u(G) 'P(G)>a —vcp(n,é)}.

Geg
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Since@is independent o6 € g, G\é,a coincides with the MV-ERM estimate (as originally formu-

Iated)égﬂf but at the adjusted mass constraint= o + (1—v)@(n,d). Therefore, we may apply
Theorem 3 to obtain the following.

Corollary 12 Leta’ =a+ (1—v)@(n,d). Then

pn ((P(é‘;,a) <a—(1+v)e(n, 6)) or (p(égﬂ) > ugﬂ,))) <.

Relative to the original formulation of MV-ERM, the bound on the missing masgsédse#sed
by a factor(1+v). On the other hand, the volume is now boundegby = Hg .o + (Hg.a’ — Hg a)-
Thus the bound on the excess volume is increased fromu@ to— H; o. This may be interpreted

as a stochastic component of the excess volume. Relative to the MM{G%},G) has only an
approximation error, wherewé‘ég) has both approximation and stochastic errors. The advantage
is that now the stochastic error of the mass is decreased.

A similar construction applies to MV-SRM. Now assumpe= Uﬁzlgk. Given a scale parameter
v, define

Gl o= arger;]in {u(G) +(14Vv)9(G,S8): P(G) >« —v¢(G,36)} .

As above, assum@ is independent of the sample and constant on egth Denotegy(n,d) =
9(G,S,8) for G € GX. Observe that computinf}‘(’m is equivalent to computing the MV-ERM
estimate on each¥ at the levela(k,v) = a + (1—v)&k(n,d), and then minimizing the penalized
volume over these MV-ERM estimates.

Like the original MV-SRM, this modified procedure also obeys an oraclguality. Recall the
notationg ., = {G € ¢*: P(G) > a(k,v)} = {G € ¢*: P(G) > a+(1-V)&(n,3)}.

Theorem 13 Let —1 <v < 1. Seta(k,v) =a+ (1—v)e(n,d). AssumeAl and A2 hold. With
probability at leastl — 9,

1
AV < < : ; o
£(Gg o) < 1+V0( 12?(|§nK Gelggtk,v>{u(6) uq(k_’v)}Jerek(n,é) , a7)

where G = ((1+v) + va<1k.v) (1- v)) .
Hereyy k) is the density level corresponding to the MV-set with mafg v). It may be bounded
above in terms of known quantities, as discussed in the previous sectiemrddf of the theorem
is very similar to the proof of the earlier oracle inequality and is omitted, althouglytbe found
in Scott and Nowak (2005a). Notice that in the case 1 we recover Theorem 11 (under the stated
assumptions o and¢@). Also note thatgo'f(ky) will be empty ifa(k,v) > 1, in which case thosle
should be excluded from the min.

To understand the result, assume that the rate at whfapproximatess?, is independent od.
In other words, the rate at which {gf .« l(G) — | tends to zero asincreases is the same for all
Then in the theorem we may replace the expres&@ggg{k#v) WG)— u:;(k’v) with infg ok H(G) — K-
Thus, thev-damped MV-SRM error decays at the same rate is the original MV-SR#ladaptively
selects the appropriate model classfrom which to draw the estimate. Furthermore, damping the
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penalty byv has the effect of decreasing the stochastic mass error and addinghassio@rror
to the volume. This follows from the above discussion of MV-ERM and theedadion that the
MV-SRM coincides with an MV-SRM estimate over* for somek. The improved balancing of
volume and mass error is confirmed by our experiments in Section 7.

6. Rates of Convergence for Tree-Structured Set Estimators

In this section we illustrate the application of MV-SRM, when combined with amagpate anal-
ysis of the approximation error, to the study of rates of convergencprelaew the main result of
this section (Theorem 16), we will consider the class of distributions suathtia decision bound-
ary has Lipschitz smoothness (loosely speaking)dirad thed features are relevant. The best rate
of convergence for this classiis /%, We will show that MV-SRM can achieve this rate (within a
log factor) without knowingd’ or which features are relevant. This demonstrates the strength of the
oracle inequality, from which the result is derived.

To obtain these rates we apply MV-SRM to sets based on a special familycisiatetrees
called dyadic decision trees (DDTSs) (Scott and Nowak, 2006). Béftreducing DDTs, however,
we first introduce the class of distributiomswith which our study is concerned. Throughout this
section we assume = [0,1]9 andu is the Lebesgue (equivalently, uniform) measure.

Somewhat related to the approach considered here is the work of Ki¢g@4) who consid-
ers the problem of estimating the support of a uniform density. The estimatmpssed therein
are based on dyadic partitioning schemes similar in spirit to the DDTs studied hwever,
it is important to point out that in the support set estimation problem studiedidmmég (2004)
the boundary of the set corresponds to discontinuity of the density, aneffdhe more standard
complexity-regularization and tree pruning methods commonly employed irsgignesettings suf-
fice to achieve near minimax rates. In contrast, DDT methods are capaltiainiire near minimax
rates for all density level sets whose boundaries belong to certdifeHsmoothness classes, regard-
less of whether or not there is a discontinuity at the given level. Significdiftrent risk bounding
and pruning techniques are required for this additional capability (SedtNawak, 2006).

6.1 The Box-Counting Class

Before introducingp we need some additional notation. lnetienote a positive integer, and define
Pm to be the collection ofr? cells formed by the regular partition ¢,1]9 into hypercubes of
sidelength ¥m. Letcy, ¢, > 0 be positive real numbers. L&f, be a minimum volume set, assumed
to exist, and ledG be the topological boundary &;. Finally, letNy(dG;;,) denote the number of
cells in?y, that intersecdGg.

We define thdox-countingclass to be the satzox = Dgox(C1,C2) Of all distributions satisfying

Al’ : X has a densityf with respect tquandf is essentially bounded hy.
A3 : 3G} such thalN,(dG},) < comf~1 for all m.

Note that sinceu is the Lebesgue measure, assump#@ifrom above follows fromAl, so we do

not need to assume it explicitly here. Assumptili is a slight strengthening &1 and implies

P(A) < cip(A) for all measurable sets. AssumptionA3 essentially requires the boundary of the
minimum volume seG; to have Lipschitz smoothness, and thus one would expect the optimal rate
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1 1
0
0 0
0
0 1
1

Figure 2: A dyadic decision tree (right) with the associated recursivdidyartition (left) ind = 2
dimensions. Each internal node of the tree is labeled with an integer frochibhdicating
the coordinate being split at that node. The leaf nodes are decoratedagshabels.

of convergence to be/d (the typical rate for set estimation problems characterized by Lipschitz
smoothness). See Scott and Nowak (2006) for further discussior bbthcounting assumption.

6.2 Dyadic Decision Trees

Let T denote a tree structured classifier [0,1]¢ — {0,1}. Each suclT gives rise to a seBr =
{x€[0,1]9: T(x) = 1}. In this subsection we introduce a certain class of trees, and later conside
MV-SRM over the induced class of sets.

Scott and Nowak (2006) demonstrate tigadic decision tree@DTSs) offer a computationally
feasible classifier that also achieves optimal rates of convergencgdfatard classification) under
a wide range of conditions. DDTs are especially well suited for rate ofergence studies. Indeed,
bounding the approximation error is handled by the restriction to dyadic spliish allows us
to take advantage of recent insights from multiresolution analysis and nankpproximations
(DeVore, 1998; Cohen et al., 2001; Donoho, 1999). An analysis sitoildrat of Scott and Nowak
(2006) applies to MV-SRM for DDTSs, leading to similar results: optimal ratesooivergence for a
computationally efficient learning algorithm.

A dyadic decision tree is a decision tree that divides the input space bysrakaxis-orthogonal
dyadic splits. More precisely, a DDT is a binary tree (with a distinguished root node) specified
by assigning (1) an integexv) € {1,...,d} to each internal node of T (corresponding to the
coordinate that gets split at that node); (2) a binary label O or 1 to eathdele ofT. The nodes
of DDTs correspond to hyperrectangles (cells)dri]®. Given a hyperrectangle = 1%, [ac, b,
let A1 and A%? denote the hyperrectangles formed by splitthgt its midpoint along coordinate
c. Specifically, define®! = {x € A| x; < (ac +bc)/2} andA>? = A\A®L,

Each node ofl is associated with a cell according to the following rules: (1) The root i®de
associated witfD, 1]°; (2) If vis an internal node associated with the églthen the children of are
associated witth°™)-1 andA°)2, See Figure 2. Note that evefycorresponds to a s& € [0,1]¢
(the regions labeled 1), and we think of DDTs as both classifiers and satshiangeably.
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LetL = L(n) be a natural number and defimé to be the collection of all DDTs such that (1) no
leaf cell has a sidelength smaller thart-2and (2) any two leaf nodes that are siblings have different
labels. Condition (1) says that when traversing a path from the root td adezoordinate is split
more thanL times. Condition (2) means that it is impossible to “prune” at any internal node a
still have the same set/classifier. Also defieto be the collection of all cellé that correspond
to nodes of DDTs inr-. Definer(T) to be the collection of “leaf” cells of . For a cellA € at,
let j(A) denote the depth oh when viewed as a node in some DDT. Observe that whinthe
Lebesgue measurg(A) =214,

6.3 MV-SRM with Dyadic Decision Trees

We study MV-SRM over the family;- = {Gr : T € 71}, whereL is set by the user. To simplify
the notation, at times we will suppress the dependengemafthe training sampl8and confidence
parameted. Thus our MV set estimator has the form

Gy = arg min {u(G) +29(G) |P(G) + 9(G) > a} . (18)
Gegt

It remains to specify the penalty There are a number of ways to produgsatisfying

p" ({S: sup (
Gegt

Sinceg is countable (in fact, finite), one approach is to devise a prefix code fand apply the
penalty in Section 2.2. Instead, we employ a different penalty which hasitlamtage that it leads
to minimax optimal rates of convergence. Introduce the notg#dr= (3+log,d) j(A), which may
be thought of as the codelengthAfn a prefix code forz“, and define theninimaxpenalty

P(G) — I5(G)‘ _ (p(G,StS)) > 0}) <3

[[Anlogz+log<2/6>>[[AHI092+'°9<2/5>. (19)

O(Gr) == AG%T) \/8 max(ﬁ(A) - .

ForeachA e 1(T), set!(A) = 1 if AC Gt and 0 otherwise. The bound originates from writing

P(Gr)-P(Gr)= Y  PA)-PA)
AeT(T):l(A)=1

and

P(Gr)—P(Gr) = P(Gr)—P(Gr)

= P(A) —P(A)
AeT(T):¢(A)=0
from which it follows that
IP(Gr) —P(Gr)| < > P(A)- P(A). (20)
Aem(T)

The eventX € A is a Bernoulli trial with probability of succedd(A), and so bounding the right
hand side of (20) simply involves applying a concentration inequality forrbiats to eachA € a*.
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There are many ways to do this (additive Chernoff, relative Chereastict tail inversion, etc.),
but the one we have chosen is particularly convenient for rate of cgeee analysis. For further
discussion, see Scott and Nowak (2006). Proof of the following ressnétarly identical to a similar
result in Scott and Nowak (2006), and is omitted.

Proposition 14 Let@be as in (19) and led € (0,1). With probability at least. — & over the draw
of S,
IP(G) —P(G)| < ¢(G)

for all G € g-. Thusgis a complexity penalty fog .

The MV-SRM procedure oveg - with the above penalty leads to an optimal rate of convergence
for the box-counting class.

Theorem 15 Choose L= L(n) andd = d(n) such that

1. 2 = (n/logn)V/d

2. 3(n) = O(y/logn/n) andlog(1/3(n)) = O(logn)
DefineGy as in (18) withg as in (19). For d> 2 we have

1
SUpE"z (Gy) < <Iogn) " (21)

DBOX n

We omit the proof, since this theorem is a special case of Theorem 16.bétdevthat the condition
ondis satisfied i5(n) < n~® for somef > 1/2.

6.4 Adapting to Relevant Features

The previous result could have been obtained without using MV-SRbte&d, we could have
applied MV-ERM to a fixed hierarchg -1 g2 .. whereL(n) = (n/logn)Y/9. The strength of
MV-SRM and the associated oracle inequality is in its ability to adapt to favocallditions on the
data generating distribution which may not be known in advance. Here wedlieishis idea when
the number of relevant features is not known in advance.

We define theelevant data dimensioto be the numbed’ < d of relevant features. A feature
X', i=1,...,d, is said to be relevant providedX) is not constant wheX' is varied from 0 to 1.
For example, il = 2 andd’ = 1, thendG; is a horizontal or vertical line segment (or union of such
line segments). 18l = 3 andd’ = 1, thendGj is a plane (or union of planes) orthogonal to one of
the axes. I©d = 3 and the third coordinate is irrelevant & 2), thendGj is a “vertical sheet” over
a curve in thg X!, X?) plane (see Figure 3).

Let Dlox = Dhox(C1,C2,d") be the set of all product measurié® such thatAl’ and A3 hold
for the underlying distributio?, andX has relevant data dimensidh> 2. An argument of Scott
and Nowak (2006) implies that the expected minimax rateifoelevant features is~/?. By the
following result, MV-SRM can achieve this rate to within a log factor.

Theorem 16 Choose L= L(n) andd = d(n) such that
1. 2 = n/logn
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/_ V
rl"

Figure 3: Cartoon illustrating relevant data dimension. IXRexis is irrelevant, then the boundary
of the MV-set is a “vertical sheet” over a curve in tié!, X?) plane.

2. 8(n) = O(y/logn/n) andlog(1/3(n)) = O(logn)
DefineGy as in (18) withgas in (19). If d > 2then

1
SUpE"z (Gy) < (Iogn) " (22)

/ n
DBox

The proof hinges on the oracle inequality. The details of the proof ayesimilar to the proof of a
result in Scott and Nowak (2006) and are therefore omitted. Here wgijiesa sketch of how the
oracle inequality comes into play.

LetK <L and letGj; € gX be such that (iu(Gy) = arg Minge gx M(G) — Hg; and (i) G is
based on the smallest possible partition among all sets satisfying (iln S&X. It can be shown

that
M(Gi) — b + @Gk, S 8) < m *+ md’/Z‘l\/@

in expectation. This upper bound is minimized whanx (n/Iogn)l/d/, in which case we obtain
the stated rate. Here the oracle inequality is crucial becaugepends om’, which is not known
in advance. The oracle inequality tells us that MV-SRM performs as if it kinevoptimalk.

Note that the set estimation rule does not require knowledge of the constamtdc,, nord’,
nor which features are relevant. Thus the rule is completely automatic aptiveda

7. Experiments

In this section we conduct some simple numerical experiments to illustrate thefoulleB/-set
estimation proposed in this work. Our objective is not an extensive coropangh competing
methods, but rather to demonstrate that our estimators behave in a wayrieg agth the the-
ory, to gain insight into the behavior of various penalties, and to examine &igsrithmic issues.
Throughout this section we take = [0,1]¢ andp to be the Lebesgue (equivalently, uniform) mea-
sure.
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7.1 Histograms

We devised a simple numerical experiment to illustrate MV-SRM in the case ofghests (see
Sections 3.2 and 4.2). In this case, MV-SRM can be implemented exactly with eginggedure.
First, compute the MV-ERM estimate for eagi‘i, k=1,...,K, where Yk is the bin-width. To do
this, for eaclk, sort the cells of the partition according to the number of samples in the cel, The
begin incorporating cells into the estimate one cell at a time, starting with the madagegh until
the empirical mass constraint is satisfied. Finally, once all MV-ERM estimatestieen computed,
choose the one that minimizes the penalized volume.

We consider two penalties. Both penalties are defineg\@as, 8) = (G, S, 82 K) for G € g,
whereq is a penalty forgK. The first is based on the simple Occam-style bound of Section 3.2.
ForG e X, set

kdlog2+log(2/5
(H?CC(G;SE)_\/ 0og Znog( / )

The second is the (conditional) Rademacher penaltyGrorg ¥, set

2 n
(ﬂ?ad(G,S,é) = HE(Gi) [ sup O'i]l (X| S G/)

Gegki=

. [2lou2/3)
n

Hereos,...,0n are Rademacher random variables, i.e., independent random vat#iteson the
values 1 and -1 with equal probability. Fortunately, the conditional expestaith respect to these
variables can be evaluated exactly in the case of partition-based rutesistice histogram. See
Appendix E for details.

As a data set we consider= [0,1]¢, the unit square, and data generated by a two-dimensional
truncated Gaussian distribution, centered at the gdif®, 1/2) and having spherical variance with
parameteo = 0.15. Other parameter settings are- 0.8, K = 40, andd = 0.05. All experiments
were conducted at nine different sample sizes, logarithmically spacedffé® to 1000000, and
repeated 100 times. Figure 4 shows a representative training sample agfRM\éstimates with
v =1,0, and—1. These examples clearly demonstrate that the larghie smaller the estimate.

Figure 5 depicts the erroz(é) of the MV-SRM estimate withv = 1. The Occam’s Razor
penalty consistently outperforms the Rademacher penalty. For comparidamped version(=
0) was also evaluated. Itis clear from the graphsvhka0 outperform® = 1. This happens because
the damped version distributes the error more evenly between mass and yvakigiscussed in
Section 5.

Figure 6 depicts the penalized volume of the MV-ERM estimates () as a function of the
resolutionk, where Yk is the sidelength of the histogram cell. MV-SRM selects the resolution
where this curve is minimized. Clearly the Occam’s Razor bound is tighter thanatthenfrcher
bound (look at the right side of the graph), which explains why Occatpesforms Rademacher.
Figure 7 depicts the average resolution of the estimate (top) and the aggragetric difference
with respect to the true MV-set, for various sample sizes. These graplisra = 1. The graphs
for v =0 do not change considerably. Thus, while damping seems to have a btgieffact on the
error quantityz, the effect on the symmetric difference is much less pronounced.

7.2 Dyadic Decision Trees

Implementing MV-SRM for dyadic decision trees is much more challenging thahistcograms.
Although an exact algorithm is possible (see Scott and Nowak, 2008auggest an approximate
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n=10000,k=15v=1

(@) (b)
n=10000,k=15,v=0 n=10000, k=15v=-1

(©) (d)

Figure 4: Data and three representative MV-ERM histogram estimatesefalatia in Section 7.1.
The shaded region is the MV-set estimate, and the solid circle indicates tHé\tset.
All estimates are based on the Occam bound. (a) 10000 realizationsousesdrfing. (b)

MV-ERM estimate with a bin-width of 1/15 and= 1. (c)v =0. (d)v = —1. Clearly,
the largew, the smaller the estimate.
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Figure 5: The erroe (ég’a) as a function of sample size for the histogram experiments in Section
7.1. All results are averaged over 100 repetitions for each training sasizgle (Top)
Results for the original MV-SRM algorithnv(= 1). (Bottom) Results fov = 0. In this
case the error is more evenly distributed between mass and volume, wingreafrmer
case all the error is in the mass term.
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Figure 6: The penalized volume of the MV-ERM estimaﬂéé‘ys:a, as a function ok, where Tk is
the sidelength of the histogram cell. The results are for a sample size dd.1B@8ults
represent an average over 100 repetitions. Clearly, the Occamisbreand is smaller
than the Rademacher penalty (look at the right side of the plot), to which wetindute
its improved performance (see Figure 5).
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Figure 7: Results from the histogram experiments in Section 7.1. All resel&svaraged over 100
repetitions for each training sample size, and are for the non-dampadrverfsMV-
SRM (v = 1). (Top) Average value of the resolution parameétéi/k = sidelength of
histogram cells) as a function of sample size. (Bottom) Average value of themetric
difference between the estimated and true MV-sets. Neither graph chaiggéficantly
if v is varied.
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algorithm based on a reformulation of the constrained optimization problemmgfi1V-SRM in
terms of its Lagrangian, coupled with a bisection search to find the appi@peagrange multiplier.
If the penalty is additive, then the unconstrained Lagrangian can be minirafiently using
existing algorithmic approaches.

A penalty for a DDT is said to badditiveif it can be written in the form

®Gr) = > WA

Aem(T)

for somey. If @is additive the optimization in (18) can be re-written as

min [M(A)E(A) + (L+V)W(A)] subjectto Y {Is(A)E(A)JrVqJ(A)} >0
Tert Aem(T) Aem(T)

where/(A) is the binary label of leaf (¢(A) = 1 if Ais in the candidate set and 0 otherwise). In-
troducing the Lagrange multiplier > 0, the unconstrained Lagrangian formulation of the problem
is

min Zr [p(A)e(A) F(1+V)Q(A) — A (P(A)e(A) +vw(A))} .

AS
Inspection of the Lagrangian reveals that the optimal choidéAfis

1 if AP(A) > u(A),
LA =
0 otherwise

Thus, we have a “per-leaf” cost function
cos(A) := min(u(A) —AP(A),0) + (1+v(1—\))W(A)

For a given value ok, the optimal tree can be efficiently obtained using the algorithm of Blanchard
et al. (2004).

We also note that the above strategy works for tree structures besidesetstudied in Section
6. For example, suppose an overfitted tree (with arbitrary, non-dyptiis)dhas been constructed
by some greedy heuristic (perhaps using an independent data set)p@ose that instead of binary
dyadic splits with arbitrary orientation, one only considers “quadsplitsrelineevery parent node
has 2 children (in fact, this is the tree structure used for our experiments belowguch cases,
optimizing the Lagrangian reduces to a classical pruning problem, andtingabfree can be found
by a simpleO(n) dynamic program that has been used since at least the days of CABIm&sr
etal., 1984).

Let ﬁ denote the tree resulting from the Lagrangian optimization above. Fromesthaogti-
mization theory, we know that for each value)ofT, will coincide with Gy, for a certain value of
a. For each value ok there is a correspondinm, but the converse is not necessarily true. There-
fore, the Lagrangian solutions correspond to many, but not all possithlgions of the original
MV-SRM optimization with different values af. Despite this potential limitation, the simplicity of
the Lagrangian optimization makes this a very attractive approach to MV-SRiikinase. We can
determine the best value dffor a given targett by repeatedly solving the Lagrangian optimization
and finding the setting fok that meets or comes closest to the original constraint. The search over
A can be conducted efficiently using a bisection search.
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In our experiments we do not consider the “free-split” tree structurerites in Section 6, in
which each parent has two children defined by ond ef 2 possible splits. Instead, we assume a
guadsplit tree structure, whereby every cell is a square, and eaesptchas four square children.
The total optimization time i©(mn), wheremis the number of steps in the bisection search. In our
experiments presented below we found that ten steps (i.e., ten Lagrareggoraning optimiza-
tions) were sufficient to meet the constraint almost exactly (whenevsitpes

We consider three complexity penalties. We refer to the first penalty amitiimaxpenalty,
since it is inspired by the minimax optimal penalty in (19):

. (@23

qum(A) - (001) \/8 max(FA)(A)j [[Aﬂ |Og 2+ |Og(2/6) > [[Aﬂ Iog 2+ |Og(2/6)

n n

Note that the penalty is down-weighted by a constant factor@f,Gince otherwise it is too large
to yield meaningful resultg:

The second penalty is based on the Rademacher penalty (see Sectidre23Y. denote the
set of all partitionsrt of trees inTt. Giventp € M, setgn, = {Gr € gL : (T) = p}. Recall
T(T) denotes the partition associated with the ffeeCombining Proposition 7 with the results of
Appendix E, we know that for any fixex

A;T /I3(nA) N /2Iogr(]2/6)

is a complexity penalty fo;;. To obtain a penalty for al- = Uyt Gn, We apply the union
bound over alite M* and replacé by 8|M"|~1. Although distributing the “delta” uniformly across
all partitions is perhaps not intuitive (one might expect smaller partitions to be fikaly and
hence they should receive a larger chunk of the delta), it has the impprtyerty that the delta
term is the same for all trees, and thus can be dropped for the purpgosésimization. Hence,
the effective penalty is additive. In summary, our second penalty,reeféo as the Rademacher
penalty* is given by

wreda) = /PR, (24)
The third penalty is referred to as the modified Rademacher penalty anerskgiv

The modified Rademacher penalty is still a valid penalty, since it strictly dominatebasic
Rademacher penalty. The basic Rademacher is proportional to the sqobd the empirical
P mass and the modified Rademacher is proportional to the square-rootofahmass (empirical

3. Note that here down-weighting is distinct from damping\wgs discussed earlier. With down-weighting, both
occurrences of the penalty, in the constraint and in the objective fupetierscaled by the same factor. The oracle
inequality (and hence minimax optimality) still holds for the downweighted ipgradbeit with larger constants.

4. Technically, this is an upper bound on the Rademacher penalty, Biscassed in Appendix E, this bound is tight to
within a factor ofy/2. Using the exact Rademacher yields essentially the same results.vigheefer to this upper
bound simply as the Rademacher penalty.
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P mass plugu mass). In our experiments we have found that the modified Rademachatypen
typically performs better than the basic Rademacher penalty, since it daigmsuthe inclusion of
very small isolated leafs containing a single data point (as seen in the exptimesults below).
Note that, unlike the minimax penalty, the two Rademacher-based penalties dosvmeweighted,;
the true penalties are used.

We illustrate the performance of the dyadic quadtree approach with a twaosional Gaus-
sian mixture distribution, taking = 0. Figure 1 depicts 500 samples from the Gaussian mixture
distribution, along with the true minimum volume set for= 0.90. Figures 8, 9, and 10 depict the
minimum volume set estimates based on each of the three penalties, and for siaemplef 100,
1000, and 10000. Here we use MM, Rad, and mRad to designate the émalégs.

In addition to the minimum volume set estimates based on a single tree, we also ghow th
estimates based on voting over shifted partitions. This amounts to construtting-Xifferent
trees, each based on a partition offset by an integer multiple of the batensjitie2 -, and taking
a majority vote over all the resulting set estimates to form the final estimate. €hts®tes are
indicated by MM’, Rad’, and mRad’, respectively. Similar methods basedvenaging or voting
over shifted partitions have been tremendously successful in imagespiogeand they tend to
mitigate the “blockiness” associated with estimates based on a single tree, asliss#den in the
results depicted. Moreover, because of the significant amount aideday in the shifted partitions,
the MM’, Rad’, and mRad’ estimates can be computed in@(sbhnlogn) operations.

Visual inspection of the resulting minimum volume set estimates (which were “typesults
selected at random) reveals some of the characteristics of the differealtips and their behav-
iors as a function of the sample size. Notably, the basic Rademacher pendltytdeallow very
small and isolated leafs into the final set estimate, which is somewhat unagpegtia modified
Rademacher penalty clearly eliminates this problem and provides veryneddsaestimates. The
(down-weighted) minimax penalty results in set estimates quite similar to those rggtotim the
modified Rademacher. However, the somewhat arbitrary choice of s¢atitay (0.01 in this case)
is undesirable. Finally, let us remark on the significant improvement provageoting over multi-
ple shifted trees. The voting procedure quite dramatically reduces thekifipartition associated
with estimates based on single trees. Overall, the modified Rademacher peoalgdowith voting
over multiple shifted trees appears to perform best in our experimenttirrf the casa = 10000,
this set estimate is almost identical to the true minimum volume set depicted in Figure 1.

8. Conclusions

In this paper we propose two rules, MV-ERM and MV-SRM, for estimatiomafimum volume
sets. Our theoretical analysis is made possible by relating the performatizese rules to the
uniform convergence properties of the class of sets from which the astimtaken. This in turn
lets us apply distribution free uniform convergence results such as than&ftiality to obtain
distribution free, finite sample performance guarantees. It also leadshg stniversal consistency
when the class of candidate sets is allowed to grow in a controlled way. M¥-&8#eys an oracle
inequality and thereby automatically selects the appropriate complexity of teetgaator. These
theoretical results are illustrated with histograms and dyadic decision trees.

Our estimators, results, and proof techniques for minimum volume sets b&ang s2sem-
blance to existing estimators, results, and proof techniques for sumkolassification. This is no
coincidence. Minimum volume set estimation is closely linked with hypothesis testingume
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(MM) (Rad) (mRad)

y 2

!

oy Ra)  (mRad)

Figure 8: Minimum volume set estimates based on dyadic quadtre@s=00.90 with n = 100
samples. Reconstructions based on MM = minimax penalty (23), Rad = Raldemac
penalty (24), and mRad = modified Rademacher penalty (25), and MM’, &adimRad’
denote the analogous estimates based on voting over multiple trees at tigfgfen
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(MM) (Rad) (mRad)

oy Ra)  (mRad)

Figure 9: Minimum volume set estimates based on dyadic quadtrees=dd.90 with n = 1000
samples. Reconstructions based on MM = minimax penalty (23), Rad = Raldemac
penalty (24), and mRad = modified Rademacher penalty (25), and MM’, &adimRad’
denote the analogous estimates based on voting over multiple trees at tigfefen
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‘(M Mj | | | ‘(Rad‘) | | | tmRéd)

(MM) (Rad’) (mRad)

Figure 10: Minimum volume set estimates based on dyadic quadtreesf@ 90 withn = 10000
samples. Reconstructions based on MM = minimax penalty (23), Rad = Rakemac
penalty (24), and mRad = modified Rademacher penalty (25), and MM", Rad

mRad’ denote the analogous estimates based on voting over multiple treesendiff
shifts.
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P has a density with respect {9 and thatu is a probability measure. Then the minimum vol-
ume set with mass is the acceptance region of the most powerful test of sizenIfor testing
Ho: X ~ P versusHj : X ~ | But classification and hypothesis testing have the same goals; the
difference lies in what knowledge is used to design a classifier/test (tgailaita versus knowledge
of the true densities). The problem of learning minimum volume sets standsalydiiween these
two: For one class the true distribution is known (the reference measurejor the other only
training samples are available.

This observation provides not only intuition for the similarity between MV-stingation and
classification, but it also suggests an alternative approach to MV4&etagion. In particular, sup-
pose it is possible to sample at will from the reference measure. Conséder samples, together
with the original training data, to be a labeled training set. Then the MV-set magtimated by
learning a classifier with respect to the Neyman-Pearson criterion (Gaetrad., 2002; Scott and
Nowak, 2005b). Briefly, the Neyman-Pearson classification paradigaivies learning a classi-
fier from training data that minimizes the “miss” generalization error while caimstrg the “false
alarm” generalization error to be less than or equal to a specified size, tasel - a.

Minimum volume set estimation based on Neyman-Pearson classification affiéssnct ad-
vantage over the rules studied in this paper. Indeed, our algorithms tograms and dyadic
decision trees take advantage of the fact that the reference meaisueasily evaluated for these
special types of sets. For more general sets or non-uniform referapasures, direct evaluation
of the reference measure may be impractical. Neyman-Pearson classificationtrast, involves
computing the empirical volume based on the training sample, a much easier tasgower, in
principle one may take an arbitrarily large sample froto mitigate finite sample effects. A similar
idea has been employed by Steinwart et al. (2005), who samplefsmas to reduce density level
set estimation to cost-sensitive classification. In this setting the advantage-séfgl over density
level sets is further magnified. For example, to sample from a uniform distoiwne must specify
its support, which is a priori unknown. Fortunately, MV-sets are invat@aithe choice of support,
whereas thg-level set changes with the support.of
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Appendix A. Proof of Lemma 4

The proof follows closely the proof of Lemma 1 in Cannon et al. (2002fine& = {S: IE)\(G(]‘"Q) <
a— @Gy ¢,S,8)}. Itis true thatd, C =. To see this, iS¢ = thenG, 4 € G4, and henc@(G, o) <
H(Gg «) by definition ofég a- ThusS¢ ©,. It follows that

@pU@pC@pUE
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and hence it suffices to sha®@ C Qp and= C Qp.
First, we show tha®p C Qp. If S€ Op then

P(Gs o) <0 —29(Gg 4,S,).
This implies
P(Gg.a) —P(Gga) < a—29Gyq,88)—P(Gya)
S _(P<é\g,uas56>7

where the last inequality is true becal®&; ) > a — 9(G; 4,S, 8). ThereforeSe Qp.
Second, we show tha C Qp. If S€ =, then

I/D\(Gg,a) —P(Gga) < 0—@G4.a,S0)—P(Gga)
< _(‘p(Gg,ChS)a)a

where the last inequality holds becal¥&; o) > a. Thus,Se€ Qp, and the proof is complete.

Appendix B. Proof of Theorem 9
By the Borel-Cantelli Lemma (Durrett, 1991), it suffices to show that fgren 0,

8

~

PY£(Gga) > €) < 0.

n=1
We will show this by establishing
S pn WGy o) — 1 >8) cw (26)
y + 2
n=
and .
ZP”((a—P(ég,q))+>§.) <o 27)
n=1

First consider (26). By assumption (11), there exiStsuch thatp(G;q) — g < €/2 for all
k > K. LetN be such thak(n) > K for n > N. For any fixednh > N, consider a sampl8 of sizen.
By Theorem 3, it follows that with probability at least-B(n), u(éw) - < u(G';a) — 5 <eg/2.
Therefore

nzlpn <<”(ég’a) _u;)Jr - §>

S A (CEEDRHES R (CRRDRS
o oy &

< 3P ((WGsa)-we) > 5)+ 3 80

< o
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The second inequality follows from the assumed summabiligy(of.
To establish (27), leN be large enough so that

sup &(G,S8(n)) <

€
Gegkin 4

foralln > N. For any fixech > N, consider a sampl8of sizen. By Theorem 3, it follows that with
probability at least - 8(n), a — P(G; o) < 20«(Gg o, S 0(n)) < &/2. Therefore

5P ((a-PGw), > 5)
— Zm(( éga))+>;)+niP”<<a—P(ég7a)>+>;)

[ee]

< n; P ((a-PGsa)), > 5) + 3 ain)

<

This completes the proof.

Appendix C. Proof of Theorem 10

The first part of the theorem is straightforward. First, we claim thé®n) — 1), < W(Gn\Gg). T
see this, assum&Gy) — i > 0, otherwise the statement is trivial. Then

(W(Gn) — “3)4- = WGn)— gy
= WU(Gn) —H(Gq)
< WGn) —H(GxNGn)
= M(Gn\Gq)

Similarly, one can showa —P(Gy)), < P(G{\Gn). LetDy = {x: f(x) >y} andE, = G5 \Gn.
Then for anyy > 0,

P(En) = P(EnNDy) 4+ P(EnNDy) < P(Dy) + YU(En).

By the dominated convergence theord?)y) — 0 asy — . Thus, for any > 0, we can choose
y such thaP(Dy) < € and them large enough so thaf(E,) < €. The result follows.

Now the second part of the theorem. From Section 1.2, we Kapw- {x: f(X) = Yo} where
Yo is the unique number such thht, ., f(X)dux) = a.

Consider the distributio® of (X,Y) € x x {0,1} given by the class-conditional distributions
XY =0~ PandX|Y =1~ , and a priori class probabilitig3(Y =0) = p=1—-Q(Y = 1), where
p will be specified below. The® defines a classification problem. LEtdenote a Bayes classifier
with respect tdQ (i.e., a classifier with minimum probability of error), and ketx — {0,1} be an
arbitrary classifier. The classification risk lois defined a (h) = Q(h(X) #Y), and the excess
classification risk isg (h) — ® (h*). From Bayes decision theory we know tltis the rule that
compares the likelihood ratio to/(1— p). But, as discussed in Section 1.2, the likelihood ratio is
1/f. Therefore, ifpis such thap/(1— p) = 1/yq, thenh*(x) = 1 -1 (x € Gj) palmost everywhere.
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Settinghy(X) = 1—-1(x € Gy), we have

R (hn) — R (h")
n(X) #Y) —Q(h*(X) #Y)

= Q(h

= (1= p)(H(hn(X) =0) — p(h*(X) = 0))) + p(P(hn(X) = 1) — P(h*(X) = 0))
= (1= p)(K(Gn) —K(Gq)) + P(1—P(Gn) — (1-P(Gy)))

= (1—p)(K(Gn) — Hy) + P(a —P(Gn))

< (M(Gn) —Hg) + (0 —P(Gn))

< E(Gp).

Thereforex (hn) — % (h*). We now invoke a result of Steinwart et al. (2005) that says, in our
notation, thai_ (h,) — & (h*) if and only if W(G,AGg) — 0, and the proof is complete.

Appendix D. Proof of Theorem 11

Let Qp be as in the proof of Theorem 3, anAd assuBneQp. This holds with pr(lbability at least
1— 3. We consider three separate casespi(Qg ) > Uy andP(G; o) < a, (2) W(Gg o) > Mg and
P(Gs o) >a, and 3Gy o) < 1, andP(Gg4 «) < a. Note that the case in which bath< P(G; «)
andu(éw) < Mg is impossible by definition of minimum volume sets. We will use the following
fact:

Lemma 17 If Se Qp, thena — P(G; o) < 20(G; ,S, ).

The proof is a repetition of the proof th@ C Qp in Lemma 4.
For the first case we have

£(Gya) = WGga)—M+a—PGya)
< WGg.a)— K +29(Gg «,S,d)
nt { we)- 1 + 206,59 |

GeGa

< it { e -+ 20689 |

IN

(1+1) inf { U(G) — 1 + 29(G, S, 3) }

Yo / GE€Ga

The first inequality follows fronS € ®p. The next line comes from the definition é‘w- The

second inequality follows frorS € Qp, from which it follows thatgq C G4. The final step is trivial
(this constant is needed for case 3). R
For the second casg(G; ) > g andP(G; o) > a, note

£(Goa) = MGga)—
< pG

A

Q,U) - +2(p(é\g7ot7575)
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and proceed as in the first case. R
For the third casgqi(G; o) < L andP(G; «) < a, we rely on the following lemmas.

Lemma 18 Lete > 0. Then ¢
ke < =
Mo —Ho—e = Yo
Proof By assumption®\1 andA2, there exist MV-set&;,_. andGj such that
f(X)du(x) = a
G

and

/ F(X)dp(X) = a — .
G,

5
a—&

Furthermore, we may choo& _. andGj, such thaG;,_, C G;,. Thus

e — f(x)du(x)—/ F()d(x)

Gy Go—e

= [ 100du
G \Gg_e
> YaM(Gg\Gg_e¢)

*

= Ya (U:; - pafs)

and the result follows. [ ]

Lemma 19 If Se Op and Ge G4, then
. 2
He —H(G) < y—-cp(G,sé)-
a

Proof Denotee = 2¢(G, S 8). SinceS< Qp andG ¢ Ga, We know

O

P(G) > (G)—%sza—e.

In other wordsG € Gq_¢. Thereforep(G) > py_ and it suffices to boungly — & _.. Now apply
the preceding lemma. [ |
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It now follows that

‘E(ég’q) = (o —P(é\ga)
S Z(P(égcxasvé)
= H(ég,a)—%‘{'%—U(ég,a)‘FZ(P(ég,mSaé)
~ 1 —~
< U(Gg,u)—lié+<1+y> 20(Gg a,S,9)
o

1 < ) ~
< <1+ ya> (u(Gg,a) — Mo +2<p(Gg,a,S€>))

- <1+1> inf { H(G) — 1 +29(G, S 9) }

Yo/ Gega

< (1+) dnt { wor -+ 20es9) |

Yo / GEGa

The first inequality follows from Lemma 17. The second inequality is by Lemmarh@ next to
last line follows from the definition 06, ¢, and the final step is implied b§ € Qp as in case 1.
This completes the proof.

Appendix E. The Rademacher Penalty for Partition-Based Sets

In this appendix we show how the conditional Rademacher penalty introdu&sdttion 2.3 can be
evaluated for a class based on a fixed partition. The authors thank Gilles Blanchard for pointing
out the properties that follow. Let= {Aq4,...,Ac} be a fixed, finite partition ok, and letg be the
set of all sets formed by taking the union of cellsinThus|g | = 2 and evenyG € g is specified
by ak-length string of binary digit§(A1), ..., ¢(Ax), with £(A) = 1 if and only if A C G.

The conditional Rademacher penalty may be rewritten as follows:

n

2
= fE(oi) [ sup O'iE(A)
n 0(A): AcTti=

2
= - Y Ey) |sup oil(A)
nA;Tt o) L(A) i:>ZeA |

=: Ag W(A).

2 n
fE(oi) lsup O'i]I(Xi S G)
n Geg iS
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Thus the penalty is additive (modulo the delta term). Now consider a fixedcell

) -
WA) = _Eq@) [sup > Gil(A)
LL(A) i EA
. -
= HE(GQ sup 0i(2((A)—1)
LL(A) iXEA
. -
= pE@) SUP(%(A)—l)_; Ui]
LL(A) iXGEA
. -
o HE(Ui) _i:>ZeAci

Now let bin(M, p,m) = (m) p™(1— p)M—™ be the probability of observing successes in a sequence
of M Bernoulli trials having success probability Then this last expression can be computed

explicitly as
Na

B = | binin 1/2,0)m 21

wherena = |{i : X; € A}|. This is the penalty used in the histogram experiments (after the delta term
is included).
A more convenient and intuitive penalty may be obtained by bounding
1

YA = [Ew) :_i:;e‘\m] 1}
(2.2)]

_ 1
l 2

= “Eq o?
n @) _i:>§eA I]

IA

=]
m
Q

where the inequality is Jensen’s. Moreover, by the Khinchin-Kaharguality (see, e.g., Ledoux
and Talagrand, 1991, Lemma 4.1), the converse inequality holds with a f@@toso the bound
is tight up to this factor. This is the “Rademacher” penalty employed in the dykatiision tree
experiments.
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