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Chapter 3

Asymptotics

In this chapter we undertake the study of asymptotics or large sample theory. As-
ymptotics plays an important role in Statistical Science, for several reasons. As in
applied mathematics, for many complicated problems there are nice asymptotic
approximations that are highly accurate and much easier to compute than the
exact solution. For instance, “ray theory” is basically an asymptotic solution to a
wave equation as the frequency tends to infinity. In Statistical Science, the usual
situation is to let the sample size tend to ∞, hence the terminology “large sample
theory.” An important use of statistical asymptotics is approximate calculations
involving distributional properties of random variables, such as probabilities or
moments. Also, asymptotics are often useful for statistical inferences. For in-
stance, if one wishes to provide a confidence interval for a population mean from
a sample when the population distribution is unknown, then the Central Limit
Theorem and the consistency of the sample variance provide a simple approach
which works well in many settings when the sample size is large. Finally, it has
been common to examine “asymptotic optimality” of procedures. Thus, from a
practical point of view, many “real world” applications of statistics involve an
appeal to asymptotics.

3.1 Basic Asymptotics

This first section introduces some tools from the analytical (i.e. non-probabilistic)
subject of asymptotics. There are many useful ideas and results from this subject
which are generally learned in applied mathematics.

Suppose { an : n ∈ IN } is a sequence of vectors and { bn : n ∈ IN } is a
sequence of nonnegative real numbers. We write

‖an‖ <∼ bn as n→ ∞

or, what is the same,

an = O(bn) as n→ ∞ ,
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if and only if there is some N and some C ∈ (0,∞) such that

‖an‖ ≤ Cbn for all n ≥ N.

In words, an = O(bn) iff for all n sufficiently large, ‖an‖ is bounded by a multiple
of bn. One says “an is big-oh of bn,” or “an is asymptotically dominated by
bn.” In general, the notation O(bn) stands for any sequence { an } satisfying the
above which is not necessarily the same in each appearance, even within the same
expression or equation. This latter convention is the source of much confusion
and error. An equivalent condition if bn > 0 for all n is

‖an‖ <∼ bn iff ∃C > 0 such that ‖an‖ ≤ Cbn for all n, (3.1)

which avoids mentioning N , and one can avoid mentioning C as well by writing

‖an‖ <∼ bn iff lim sup
n

‖an‖
bn

< ∞ . (3.2)

See Exercise 3.1.1. It is sometimes useful to write bn >∼ an to mean an
<∼ bn.

We write
‖an‖ � bn as n→ ∞

or
an = o(bn) as n→ ∞,

if and only if for all ε > 0 there is some N such that

‖an‖ ≤ εbn for all n ≥ N.

An equivalent condition if bn > 0 for all n is

‖an‖ � bn iff lim
n→∞

‖an‖
bn

= 0 . (3.3)

See Exercise 3.1.1.
If both an and bn are nonnegative,

an
<∼ bn and bn <∼ an as n→ ∞ ,

then we write
an � bn as n→ ∞ .

If bn > 0 for all n then

an � bn as n→ ∞ if and only if (3.4)

∃c > 0 and C > 0 such that cbn ≤ an ≤ Cbn , ∀n.
See Exercise 3.1.1.
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Finally, if {an} is a positive real sequence and bn > 0 for all n, we write

an ∼ bn as n→ ∞

iff
lim

n→∞

an

bn
= 1 .

We will often drop the n → ∞ in such statements, it being understood. Note
that

an ∼ bn ⇒ an � bn ,

but not conversely. (To see this, note that an ∼ bn implies both the lim infn and
lim supn in (3.4) are 1.)

A warning: these notations are not entirely standard. The O(·) and o(·)
are common and well standardized, but the notations <∼ and � are somewhat
rarer. Many use “≈”, “'”, or “∼=” to mean either what we defined as � or ∼,
and sometimes “∼” means what we defined as �. One must clarify the meaning
in each case. Our notations are, we believe, the most commonly used. Also, the
meaning of � never seems to vary.

These notions are also useful when dealing with functions of a continuous
variable. If f(x) and g(x) ≥ 0 are real valued functions of a vector variable x
defined for all x in some neighborhood of x0, then we write

|f(x)| <∼ g(x) as x → x0

or
f(x) = O(g(x)) as x→ x0 ,

if and only if there is some ε > 0 and some C ∈ (0,∞) such that

|f(x)| ≤ Cg(x) for all x satisfying 0 < ‖x− x0‖ < ε .

Again, vector valued functions f can be treated by replacing the | · | with ‖ · ‖.
One can extend these notions to one-sided or infinite limits, i.e. if x is a real
variable, x→ x0 ± 0 or x0 = ±∞ (Exercise 3.1.4). Here, we write x→ x0 − 0 to
mean x approaches x0 from the left, and similarly x→ x0+0 means x approaches
x0 from the right. Also, the other notions corresponding to � (or o(.)), �, and
∼ are defined analogously (Exercise 3.1.5).

Another extension which is frequently useful is to have uniformity in another
variable. Suppose f(x, y) and g(x, y) are functions of two vector variables where
y ∈ A. Then

|f(x, y)| <∼ |g(x, y)| as x→ x0 uniformly in y ∈ A

iff there is some ε > 0 and some C ∈ (0,∞) such that

for all y ∈ A, |f(x, y)| ≤ C|g(x, y)|
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for all x satisfying 0 < ‖x− x0‖ < ε .

Again, this can be extended to sequences (i.e. x is an IN valued variable and x0

= ∞), and so forth.
While these notions and notations are very useful, they are the source of many

errors, especially the O(·) notation. Many students think that an = O(bn) means
|an| � bn, which is not true. Note that an = O(bn) is a one-sided relation. For
instance, 2−n = O(n−2), but n−2 6= O(2−n). Also, just because an = O(bn) and
an = O(cn) does not mean O(bn) = O(cn)! For instance, 2−n = O(n−2) and 2−n =
O(n−1), but n−1 6= O(n−2)! One must always be careful to remember what these
notations mean. O(bn) stands for some sequence that is <∼ bn. The notation <∼
is preferable in that it is less likely to lead to error (e.g. one isn’t likely to think
that an

<∼ bn and an
<∼ cn implies bn <∼ cn), but the O(·) notation is very useful

in so many circumstances and is used so widely that it is worth learning about
it and understanding it to avoid the pitfalls. To illustrate the usefulness, by the
definition of the derivative we have that for f differentiable at x0,

f(x0 + h) = f(x0) + hf ′(x0) + o(h) , as h→ 0.

To use the � notation, we would have to write something like

f(x0 + h) = f(x0) + hf ′(x0) +R(h) ,

where |R(h)| � h as h→ 0.

The usual practice is to collect all O(·) and o(·) terms on one side of an equation
(usually the r.h.s.) and to simplify using results as in Proposition 3.1.1 below.
See Example 3.1.1.

The practical utility of the asymptotics to be presented is not always clear.
It will typically be the case that we have an expression such as

an = bn + O(cn) , (3.5)

where an is a sequence we are interested in approximating but is very complicated,
bn is the approximating sequence which is easier to evaluate, and O(cn) is the
“remainder” or “error” term. Generally, if this approximation is to be of any
use, we need that cn = o(‖bn‖), i.e. that the error term tends to be much
smaller than our approximating sequence, or put more simply, the relative error
of the approximation tends to 0. Even if this happens, we don’t know that for a
given (finite) value of n that bn will be a good approximation to an, because our
definitions all involve some statement about “for all n sufficiently large . . . ”. If
one looks through the proof of a theorem whose conclusion is of the form (3.5),
one can find values for how large n has to be and the constant C. However, this is
often not very productive useful one of the advantages of this whole asymptotical
approach is that we can be rather “sloppy” about getting our constants. Thus,
in general, if we find from the proof of equation (3.5) that for all n ≥ 1, 000, 000
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we have ‖an − bn‖ ≤ 100, 000‖cn‖, this may be rather discouraging. However,
one could hope that in fact for much smaller values of n we have a much better
bound. In applications, there is often a straightforward way to proceed: the
desired sequence an can often be computed accurately for small values of n, and
then we can calculate the norm of the error ‖an − bn‖, plot this vs. ‖cn‖, and
look for some behavior in the plotted points which indicates a straight line for
large enough n. Thus, it is often desirable to combine asymptotic results with
computational results for small n to see where the asymptotics begins to “take
hold” (in slang, when we have reached “asymptopia”) with sufficient accuracy,
and then we can use the asymptotic approximation after that point. See deBruijn
(??) for further discussion on these practical issues. Example 3.1.1 below gives
some indication of these ideas.

We next give some simple properties of these order relations.

Proposition 3.1.1 (a) If ‖cn‖ <∼ bn <∼ an, then ‖cn‖ <∼ an. This is also written
as O(O(an)) = O(an).

(b) If ‖cn‖ <∼ bn � an, then ‖cn‖ � an, which is also written as O(o(an)) =
o(an). Similarly, either o(O(an)) or o(o(an)) is o(an).

(c) O(an)O(bn) = O(anbn).

(d) Either O(an)o(bn) or o(an)o(bn) is o(anbn).

(e) O(an) +O(an) = O(an).

(f) o(an) + o(an) = o(an).

Partial Proof. Consider part (a). This looks “obvious” when stated in
the form ‖cn‖ <∼ bn <∼ an =⇒ ‖cn‖ <∼ an because of the typographical similarity
between “<∼” and “≤”, but looks can be deceiving, so one must be able to provide
a proof. Now ‖cn‖ <∼ bn means there is an N and a C such that ‖cn‖ ≤ Cbn for
all n ≥ N , and bn <∼ an means there is a N ′ and a C ′ such that bn ≤ C ′an for
all n ≥ N ′. Thus, for all n ≥ max{N,N ′}, |cn| ≤ CC ′an, so we have cn <∼ an as
desired.

We consider the equality of the first and third members in part (d). Suppose
cn = O(an), so there is an N and a C such that ‖cn‖ ≤ Can for all n ≥ N .
Suppose dn = o(bn), i.e. given ε > 0 there is an N ′ such that |dn| ≤ εbn for all
n ≥ N ′. Now let ε′ > 0 be given. Take ε = ε′/C in the previous sentence, so
for n ≥ max{N,N ′}, |cndn| ≤ (Can)(εbn) = ε′(anbn), which shows that cndn =
o(anbn) as desired.

Next, consider the first and third members of (e). Suppose bn = O(an) i.e.
there exist N and C such that for all n ≥ N we have ‖bn‖ ≤ Can. Similarly, for
another sequence cn = O(an), there exists C ′ and N ′ such that for all n ≥ N ′,
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‖cn‖ ≤ C ′an. Then for all n ≥ max{N,N ′}, ‖bn + cn‖ ≤ ‖bn‖ + ‖cn‖ ≤ Can +
C ′an = (C + C ′)an, which shows bn + cn = O(an).

Finally, consider (f). If bn = o(an), then given ε > 0 there exist N such that
for all n ≥ N , ‖bn‖ < (ε/2)an. And for the other term, if cn = o(an) then there
exists N ′ such that for all n ≥ N ′, ‖cn‖ < (ε/2)an. Then for all n ≥ max{N,N ′},
‖bn + cn‖ ≤ ‖bn‖ + ‖cn‖ < (ε/2 + ε/2)an = εan, which shows the desired result.

The rest of the proof is left to the student (Exercise 3.1.6).

2

Before looking at an example, we should point out that if one blindly manipu-
lates expressions and equalities involving the O(·) and o(·), one is bound to make
errors. Equations involving these seem to defy many of the laws of algebra. For
instance, when we write O(an)+O(an) = O(an), we can’t automatically subtract
O(an) from both sides and conclude O(an) = 0.

Example 3.1.1 Consider the approximation of the tails of the standard normal
distribution, i.e.

1 − Φ(z) =
∫ ∞

z
φ(x) dx (3.6)

=
1√
2π

∫ ∞

z
e−x2/2 dx .

Of course, φ is theN(0, 1) density. Throughout this example, we will let z → ∞ in
all asymptotic formulae. Many asymptotic expansions for integrals are obtained
through integration by parts, a useful trick to remember. If we apply this to (3.6)
with

u =
−1

x
, dv = −xe−x2/2 dx

du =
1

x2
dx , v = e−x2/2

then
∫

u dv = uv −
∫

v du

gives

1 − Φ(z) =
1√
2π

{ [−1

x
e−x2/2

]x=∞

x=z
−
∫ ∞

z

1

x2
e−x2/2 dx

}

=
φ(z)

z
−
∫ ∞

z

φ(x)

x2
dx .

Now for x ≥ z > 0, 1/x2 ≤ 1/z2 so

0 <
∫ ∞

z

φ(x)

x2
dx <

1

z2

∫ ∞

z
φ(x) dx = [1 − Φ(z)]O

(

1

z2

)

.
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Plugging this into the previous display gives

1 − Φ(z) =
φ(z)

z
+ [1 − Φ(z)]O

(

1

z2

)

and hence

[1 − Φ(z)]
[

1 + O
(

1

z2

)]

=
φ(z)

z
. (3.7)

It is preferable that the order bounds end up on the r.h.s. with the approximant,
and this is no problem since if r(z) = o(1) as z → ∞ (which just means r(z) → 0),
we have

1

1 + r(z)
= 1 − r(z)

1 + r(z)
= 1 − O(r(z)) = 1 + O(r(z)),

as the denominator [1 + r(z)] → 1. Thus [1 + O(1/z2)]−1 = 1 +O(1/z2), and so
dividing both sides of (3.7) by 1 +O(1/z2) gives

1 − Φ(z) =
φ(z)

z

[

1 + O
(

1

z2

)]

. (3.8)

Now we consider the practical utility of this result. Figure 1.1 shows a plot
of the ratio of the computed error bound to the order estimate as a function of
z. Here, this ratio is defined as

(1 − Φ(z)) − φ(z)/z

φ(z)/z3
.

The S statistical package was used for this calculation. We see that this function
decreases down to near −1 at about z = 7 and then begins to oscillate erratically
(actually, for z > 8 the erratic oscillations become quite extreme). These oscilla-
tions result from roundoff error in the computation of Φ(z). Indeed, for z > 7 an
extension of this asymptotic approximation given in Exercise 3.1.13 would prob-
ably give more accurate results than the computer package. From this exercise
it also follows that

(1 − Φ(z)) − φ(z)/z

φ(z)/z3
∼ −1 . (3.9)

Until the numerical error causes the computed quantity to become unstable, this
is more or less the behavior we see.

Figure 1.2 shows the relative error in the approximation of of 1 − Φ(z) by
φ(z)/z. The relative error is defined to be

Relative Error =
(1 − Φ(z)) − φ(z)/z

(1 − Φ(z))
,

i.e., the error divided by the quantity being approximated.
From this plot, we conclude that the relative error for z ≥ 3.0 is ≤ 10%, approx-
imately. Since 1 − Φ(z) is small, this is not necessarily so bad.
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relative error at z=7 is about 2%
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2

In the next Proposition, we concentrate on the O(·), but analogous results
hold for the o(·).

Proposition 3.1.2 (a) If an
<∼ bn are nonnegative sequences, then ap

n
<∼ bpn for

any p > 0.

(b) Let µ be a measure on Ω and suppose there is a µ-null set N such that |fn(x)|
<∼ |gn(x)| as n→ ∞ uniformly in x ∈ Ω −N . Then

|
∫

Ω
fn(x) dµ(x) | <∼

∫

Ω
|gn(x)| dµ(x) .

Partial Proof. Part (a) is left to the student (Exercise 3.1.8). Consider
part (b). Of course, deleting the µ-null does not affect any of the integrals. We
know that there exists an n0 and a constant C such that for all n ≥ n0 and all
x ∈ Ω −N ,

|fn(x)| ≤ C|gn(x)| for all x ∈ Ω −N .

Recall that | ∫ fn dµ| ≤
∫ |fn| dµ, so integrating both sides of the last display

gives

|
∫

fn dµ | ≤ C
∫

|gn(x)| dµ
and this holds for all n ≥ n0. This is the desired result.

2

We illustrate the utility of these ideas with some applications in probability
and statistics. The first argument is “combinatorial” in nature, whereas the
second uses Taylor series, which is very common in asymptotics.

Theorem 3.1.3 Suppose X, X1, X2, ..., are i.i.d. random variables with E[X]
= 0. Let Sn =

∑n
i=1Xi. If k is an integer ≥ 2 such that E[|X|k] < ∞, then

E[Sk
n] = O(nbk/2c) ,

where bk/2c is the largest integer ≤ k/2.

Proof. Expanding the product of a sum, we have

E[Sk
n] = E





k
∏

j=1





n
∑

ij=1

Xij









=
n
∑

i1=1

n
∑

i2=1

· · ·
n
∑

ik=1

E





k
∏

j=1

Xij





=
∑

i∈{1,2,...,n}k

E





k
∏

j=1

Xij



 ,
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where the summation in the last expression is over k-dimensional vectors i with
positive integer components which are ≤ n. Applying the triangle inequality, we
have

|E[Sk
n] | ≤

∑

i∈{1,2,...,n}k

| E





k
∏

j=1

Xij



 | . (3.10)

In the summand,

| E





k
∏

j=1

Xij



 | ,

the order of the factors in the product is irrelevant. Thus, for each summation
multi-index i, there is a corresponding multi-index m such that the components
of m are obtained by permuting those of i so that they are in increasing order,
i.e. there is a permutation π of {1, 2, . . ., k} such that

mj = iπ(j) , for all j = 1, 2, . . . , k ,

and
m1 ≤ m2 ≤ . . . ≤ mk .

Then

| E




k
∏

j=1

Xij



 | = | E




k
∏

j=1

Xmj



 | .

Let Sort(x) be the vector with the same components as x but permuted in
increasing order, so m = Sort(i).

Now each such (unordered) multi-index i corresponds to a unique (ordered)
m, but each m may be obtained from several i. The number of i’s giving rise to
the same m is at most k!, i.e. #{i : Sort(i) = m} ≤ k!. (It is exactly k! if all
components of m are distinct, but if there are ties in the components of m, then
the number of such i’s whose ordered components result in the given m is < k!.
For instance, if m has one tie between two components (so there are k−1 distinct
values in the k components of m, then there are k!/2! unordered multi-indices i
such that Sort(i) equals the given m.)

Let M denote the collection of all possible values of m, i.e.

M = Sort
(

{1, 2, . . . , n}k
)

.

If we break up the summation on the r.h.s. of (3.10) into the multi-indices i
corresponding to a given m, we obtain

∑

i∈{1,2,...,n}k

| E




k
∏

j=1

Xij



 |

=
∑

m∈M

∑

i:Sort(i)=m

| E




k
∏

j=1

Xmj



 |
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=
∑

m∈M

#{i : Sort(i) = m} | E




k
∏

j=1

Xmj



 |

≤ k!
∑

m∈M

| E




k
∏

j=1

Xmj



 | . (3.11)

Now recall that the Xi’s are i.i.d. with mean 0, so in the last summation,
if any of the components of a multi-index m are unique (i.e. if mj0 6= mj for j
6= j0), then the corresponding summand is 0 by using the expected value of a
product of independent random variables is the product of the expectations. For
example, suppose k = 6 and m = (2, 2, 4, 8, 8, 8), then

E





6
∏

j=1

Xmj



 = E[X2X2X4X8X8X8]

= E[X2
2 ] ×E[X4] × E[X3

8 ] = E[X2] × 0 × E[X3] = 0 .

In general, we may state that

if mj − 1 < mj < mj + 1 , then (3.12)

E





k
∏

j=1

Xmj



 = 0 .

The same conclusion holds if m1 < m2, or mk − 1 < mk. Thus, in the last
expression in (3.11), we can delete all summands in which one of the components
of the ordered multi-index m is unique (i.e. not tied with another component).
This is the driving force behind the proof, plus the fact that we can obtain a
simple bound on the summands in (3.11) which are not 0 by this trick.

Now let us count the number of summands left over after applying the ob-
servation of the previous paragraph. If an ordered multi-index m of dimension k
has no untied components, then there are at most bk/2c distinct values among
the components of m. This is because each component must be tied with at least
one other component, and if k is odd, there is at least one three way tie. For
instance, if k = 7, one possibility for the ties in m is

m1 = m2 < m3 = m4 < m5 = m6 = m7 , (3.13)

so there are only 3 = b7/2c distinct values among the components of such an m,
namely m1, m3, and m5. Let M0 denote the subset of M consisting of ordered
multi-indices of dimension k in which there are no untied components, i.e.

M0 = {m : m1 ≤ m2 ≤ ... ≤ mk − 1 ≤ mk ,

and either mj = mj + 1 or mj = mj − 1 for all j } .
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We claim that
#(M0) ≤ C0n

bk/2c . (3.14)

where C0 is a finite constant which depends on k but not on n. (This is important
because the C in the definition of O(·) cannot depend on n, of course.) To see
(3.14), note that we may choose the first of the distinct values in n ways from
the set {1, 2, ..., n}, then the second of the distinct values in n − 1 ways, and
so forth down to the last, say the R’th, of the distinct values in (n − R + 1)
ways. Thus, if there are R ≤ bk/2c distinct values, the number of ways may be
chosen is at most

∏R
r=1(n− r + 1) ≤ nR ≤ nbk/2c. Thus, there are at most nbk/2c

ways of choosing the distinct values for the components of such an m. Given
such a selection for the distinct values, they can be rearranged into the ordered
components of m in some number of ways which depends only on the number of
components k, which gives rise to the constant C0. Note that we may be “lazy”
here and not count the number of such rearrangements.

Now after we delete summands from the last expression in (3.11) using the
observation in (3.12), we may rewrite any expectation from any remaining sum-
mands in the last expression in (3.11) in the form

E





k
∏

j=1

Xmj



 =
R
∏

r=1

E[Xpr ] , (3.15)

where R ≤ bk/2c by our remarks above, and the pr are integers satisfying

2 ≤ pr , for all r = 1, 2, ..., R , and (3.16)

R
∑

r=1

pr = k .

For example, if k = 7 and m is as in (3.13), then

E





7
∏

j=1

Xmj



 = E[X2] × E[X2] × E[X3] ,

where R = 3, p1 = 2 (because m1 = m2), p2 = 2 (because m3 = m4), and p3 =
3 (because m5 = m6 = m7). Now since pr ≤ k by (3.16),

| E[Xpr ] | ≤ max
2≤j≤k

E[|X|j] = C1 .

Note that our assumption that E[|X|k] < ∞ guarantees that C1 < ∞. Further,

R
∏

r=1

E[Xpr ] ≤ CR
1 ≤ (max{1, C1} )R (3.17)

≤ ( max{1, C1} )bk/2c = C2 .



172 CHAPTER 3. ASYMPTOTICS

Now we are ready to pull the details together and complete the proof. Let
M0 denote the subset of M consisting of ordered multi-indices of dimension k in
which there is no component which is untied with some other component. Then
collecting together (3.10), (3.11), (3.12), (3.14), and (3.17), we have

|E[Sk
n] | ≤ k!

∑

m∈M

| E




k
∏

j=1

Xmj



 |

= k!
∑

m∈M0

| E




k
∏

j=1

Xmj



 |

≤ k! #(M0) max
m∈M0

| E




k
∏

j=1

Xmj



 |
≤ k! (C0n

bk/2c)C2

= Cnbk/2c ,

where the constant C doesn’t depend on n. This completes the proof.

2

Theorem 3.1.4 Suppose X, X1, X2, . . . , are i.i.d. random variables with E[X4]
< ∞. Let E[X] = µ and V ar[X] = σ2. Suppose h : A −→ IR where A is an
interval such that X ∈ A a.s., and suppose that all derivatives of h up to order 4
exist and the fourth order derivative is bounded in A. Then denoting the sample
average of the first n of the Xi’s by Xn = (1/n)

∑n
i=1Xi, we have

E[h(Xn)] = h(µ) +
1

2n
σ2D2h(µ) + O(

1

n2
) .

If the fourth order derivative of h2 is also bounded in A, then

V ar[h(Xn)] =
1

n
σ2(Dh(µ))2 + O(

1

n2
) .

Proof. By Taylor series expansion of h(x) about x = µ out to the terms of
order 4,

h(Xn) = h(µ) + (Xn − µ)Dh(µ) +
1

2
(Xn − µ)2D2h(µ) (3.18)

+
1

3!
(Xn − µ)3D3h(µ) +

1

4!
(Xn − µ)4D4h(Yn)

where Yn is between Xn and µ. We are using Lagrange’s form of the remainder
term here. Also, note that Yn is a random variable (it depends on Xn). Taking
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expectations, we see that the linear term in the Taylor expansion disappears since
E[Xn] = µ. Also, for the quadratic term we have E[(Xn − µ)2] = σ2/n, and for
the cubic term, E[(Xn−µ)3] = O(1/n2) by Theorem 3.1.3 (see Exercise 3.1.9(b)).
Finally, for the remainder term, we have

| E [

(Xn − µ)4D4h(Yn)
] | ≤ E

[

|Xn − µ|4|D4h(Yn)|
]

≤ E
[

|Xn − µ|4
]

sup
y∈A

|D4h(y)| = E
[

(Xn − µ)4
]

sup
y∈A

|D4h(y)|

= O(1/n2) sup
y∈A

|D4h(y)| = O(1/n2) , (3.19)

where we used E[(Xn −µ)4] = O(1/n2) which follows from Theorem 3.1.3. Note
that since A is a convex set, it contains both Xn and µ, and hence also Yn. Thus,
from our remarks and (3.19), when we take expectations of both sides of (3.18)
we obtain

E[h(Xn)] = h(µ) +
1

2n
σ2D2h(µ) + O(

1

n2
) + O(

1

n2
) ,

where the first O(1/n2) term comes from E[(Xn−µ)3] = O(1/n2) and the second
comes from (3.19). The result then follows from Proposition 3.1.1 (e).

The second statement follows by the following steps: (i) compute an asymp-
totic formula for E[h(Xn)2] using the first part; (ii) plug in the asymptotic for-
mula for (E[h(Xn)])2 from the first part; and (iii) simplify using the results of
Proposition 3.1.1. The details are left as Exercise 3.1.15.

2

The foregoing result will be useful for evaluating the properties of h(Xn) as
an estimator of h(µ).
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Exercises for Section 3.1.

3.1.1 (a) Verify the claims about equations (3.1), (3.2), (3.3), and (3.4).
(b) Show that (3.2) and (3.3), are valid without the requirement bn 6= 0 for

all n provided we adopt the convention 0/0 = 0.

3.1.2 Assume bn > 0 for all n. Show that an = O(bn) if and only if there is a
positive finite constant C such that ‖an‖ ≤ C‖bn‖ for all n.

3.1.3 Suppose

bn =

{

0 if n ≤ 10 or n is even,
n−1 otherwise.

Determine if the following sequences are O(bn).

(i) an = 2−n.

(ii) an = (1 − (−1)n)n−1.

3.1.4 Define f(x) = O(g(x)) as x→ ∞.

3.1.5 Define the analogues of o(·), �, and ∼ for vector valued functions of a
vector variable. State and prove analogues of equations (3.2), (3.3), and (3.4) for
this setup as well.

3.1.6 Complete the proof of all parts of Proposition 3.1.1.

3.1.7 For each of the following statements, determine whether it is true or false
and justify your answer.

(a) O(an) − O(an) = 0.
(b) If an = bn + o(bn), and if bn > 0, then an ∼ bn.
(c) If an � bn and bn � cn, then an � cn.
(d) The previous claim remains true if � is replaced by ∼ throughout.
(e) If an � bn and cn � dn, then an + cn � bn + dn.
(f) x−1 = O(1) as x→ ∞.
(g) 1 = O(x) as x→ ∞.
(h) x−1 = o(1) as x → ∞.
(i) x−1 = O(1) as x→ 0.
(j) 1 = O(x−1) as x→ 0.
(k) Suppose for each fixed n = 1, 2, ..., we have fn(x) � gn(x) as x → x0.

Then
∑∞

n=1 fn(x) � ∑∞
n=1 gn(x) as x→ x0.

(l) Suppose for each fixed n = 1, 2, . . ., N , we have fn(x) � gn(x) as x→ x0.
Then

∑N
n=1 fn(x) � ∑N

n=1 gn(x) as x→ x0.
(m) If an > 0 and bn = o(an), then

√
an + bn =

√
an[1+ bn/(2an)+ o(bn/an)].
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3.1.8 (a) Prove Proposition 3.1.2 (a).
(b) State and prove the analogues of both parts of Proposition 3.1.2 for �

(or o(·)).

3.1.9 (a) Verify that

(

n
∑

i=1

xi

)k

=
n
∑

i1=1

n
∑

i2=1

· · ·
n
∑

ik=1

k
∏

j=1

xij .

(b) Let Xn = n−1Sn denote the mean of a sample of size n. Under the

same assumptions as in Theorem 3.1.3, show that E[X
k
n] = O(nbk/2c−k). Show in

particular that E[X
3
n] = O(n−1) and E[X

4
n] = O(n−1).

(c) Show in Theorem 3.1.3 that if we drop the hypothesis that E[X] = 0, then
the best result we can obtain is E[Sk

n] = O(nk).

3.1.10 Suppose f(x) ≥ 0 satisfies f(x) = O(e−ax) as x → ∞ for some a > 0.
Show that

∫ ∞

z
f(x) dx <∼ e−az as z → ∞ .

3.1.11 The results of Example 3.1.1 can be used to derive an asymptotic ex-
pression for extreme quantiles of the N(0, 1) distribution. For 0 < α < 1 define
the upper α quantile

zα = Φ−1(1 − α) .

Derive that
zα ∼

√

−2 logα as α→ 0 .

Hints: Formally solving for zα from (3.8) gives

z2
α = −2 logα− 2{log zα − log(

√
2π) + log[1 +O(1/z2

α)]} .

It is easy to verify that zα → ∞ as α→ 0, so log zα = o(z2
α) as α→ 0.

3.1.12 Give an asymptotic approximation similar to the one in Example 3.1.1
but for the right tail of the Gamma distribution, i.e. for

∫ ∞

z

xα−1

Γ(α)
e−x dx as z → ∞ .

3.1.13 (a) Show that for any integer m ≥ 0 and any real z > 0,

1 − Φ(z) =
φ(z)

z

m
∑

k=0

(−1)k (2k)!

2k(k!) z2k
+ (−1)(m+1) (2m+ 2)!

2m+1(m+ 1)!
Rm(z) ,
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where

Rm(z) =
∫ ∞

z

φ(x)

x2m+2
dx

(b) Show that

Rm(z) <∼
φ(z)

z2m+2
, as z → ∞ .

(c) Verify equation (3.9).
(d) Show that

Rm(z) ∼ φ(z)

z2m+3
, as z → ∞ .

3.1.14 Show that the series

∞
∑

k=0

(−1)k (2k)!

z2k 2(k!)

diverges for any z > 0.

3.1.15 Verify the asymptotic formula for Var[h(Xn)] given in Theorem 3.1.4.

3.1.16 In the proof of Theorem 3.1.4, we carried out the Taylor series expansion
to terms of order 4. Explain why carrying it out to terms of order 3 and only
assuming that the third derivative of h is bounded will not work.
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3.2 Probabilistic Asymptotics.

3.2.1 Convergence Modes for Sequences of Random Vari-

ables.

Recall that for a sequence of nonrandom vectors {xn} we have xn → x as n →
∞ if and only if ‖xn − x‖ → 0, so that convergence of vectors is reduced to
convergence of real numbers. One can check that xn → x iff each component of
xn converges to the corresponding component of x. For sequences of vector valued
functions {f

n
} there are several possible modes of convergence, e.g. pointwise

convergence (f
n
(x) → f(x) for each x in the domain) and uniform convergence

(supx ‖fn
(x) − f(x)‖ → 0 as n → ∞ where the supremum is over all x in the

domain; note that uniform convergence implies pointwise convergence, but not
vice versa. Random vectors are functions (whose domain is some underlying
probability space), but none of these modes of convergence is useful for probability
theory.

Definition 3.2.1 Let X, X1, X2, . . . be random k-vectors defined on a proba-
bility space (Ω,F , P ).

(a) We say Xn converges to X almost surely (abbreviated a.s.) or with proba-
bility one (abbreviated w.p.1), and write Xn

a.s.→ X or limnXn = X, P -a.s.,
iff P{ω ∈ Ω : Xn(ω) → X(ω) } = 1.

(b) For p > 0 we say Xn converges to X in pth mean, pth moment, or in Lp,

and write Xn

Lp→ X, iff E[‖Xn−X‖p] → 0. Convergence in L2 is sometimes

referred to as quadratic mean convergence and written Xn
q.m.→ X.

(c) Xn converges to X in probability, written Xn
P→ X, if and only if ∀ε > 0,

P [‖Xn −X‖ > ε] → 0.

Of course, we are already familiar with a.s. convergence and do not need a
definition, but we find it useful to put all three definitions together. Of the
three modes of convergence, a.s. convergence stands apart. Note that establish-
ing convergence in probability and convergence in Lp only requires knowing the
bivariate distributions Law[Xn, X] so as to be able to compute P [‖Xn −X‖ > ε]
or E[‖Xn − X‖p]. One typically needs to use the entire (infinite dimensional)
distribution Law[X,X1, X2, . . .] to establish a good a.s. convergence result.

The next result appears in Billingsley, Theorem 20.5, p. 274.

Proposition 3.2.1 (a) Xn
a.s.→ X implies Xn

P→ X.

(b) Xn

Lp→ X implies Xn
P→ X.
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Proof. (a) Assume Xn
a.s.→ X. We want to show that for all ε > 0 and all

δ > 0 there exists m such that for all n ≥ m, P [‖Xn(ω) −X(ω)‖ ≥ ε] ≤ δ. Fix
ε > 0. Let B be the null set where convergence fails in a.s. convergence. Then for
all ω /∈ B, there exists N = N(ω) such that for all n ≥ N , ‖Xn(ω)−X(ω)‖ < ε.
Now given δ > 0 we can find m such that P [N > m] < δ. Then for all n > m we
have P [‖Xn(ω) −X(ω)‖ ≥ ε] ≤ P (B ∪ [N > m]) ≤ δ, as desired.

(b) By Markov’s inequality, if Xn

Lp→ X, then

P [ ‖Xn −X‖ > ε ] ≤ E[‖Xn −X‖p]

εp
→ 0 ,

so Xn
P→ X.

2

The last result shows that convergence in probability is the weakest of the
three modes of convergence introduced above.

3.2.2 Further Results on Almost Sure Convergence and

Convergence in Probability.

Our first result is a classical one.

Proposition 3.2.2 (Borel-Cantelli Lemma) Suppose Bn is a sequence of events
on a probablity space and

∞
∑

n=1

P (Bn) < ∞.

Then

P

(

∞
⋂

n=1

∞
⋃

m=n

Bn

)

= 0.

Proof. Let

Cn =
∞
⋃

m=n

Bn

C∞ =
∞
⋂

n=1

Cn.

Note that Cn ⊇ Cn+1. We claim

P (C∞) = lim
n→∞

P (Cn) . (3.20)

To see this, define
Dn = Cn \ Cn+1.
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Then

Cn = C∞ ∪
∞
⋃

k=n

Dn,

and the union is disjoint, so

P (Cn) = P (C∞) +
∞
∑

k=n

P (Dn)

and as n→ ∞, the summation on the r.h.s. tends to 0 since
∑∞

k=1 P (Dn) is finite.
Now

P (Cn) ≤
∞
∑

m=n

P (Bn),

by subadditivity. Since
∑∞

n=1 P (Bn) < ∞, we have
∑∞

m=n P (Bm) → 0 as
n→ ∞, which proves the result.

2

The next result shows how this may be used to establish a.s. convergence.

Proposition 3.2.3 Let an be a sequence of nonnegative numbers with an → 0.
Suppose Xn is a sequence of r.v.’s such that

∞
∑

n=1

P [|Xn| > an] < ∞.

Then Xn
a.s.→ 0.

Proof. Define the events

Bn = [|Xn| > an].

Clearly we can apply the Borel-Cantelli Lemma to the sequence Bn. It is merely
a matter of unravelling the meaning of P (

⋂∞
n=1

⋃∞
m=nBn). Now

Cn =
∞
⋃

m=n

Bn

= {ω : ω ∈ Bm for some m ≥ n}
= {ω : ∃m = m(ω) ≥ n such that |Xm(ω)| > am} .

In the last line, we have written m = m(ω) to show that the m where |Xm| > am

depends on ω. It is a r.v. Now we have

C∞ =
∞
⋂

n=1

Cn

= {ω : ∀nω ∈ Cn}
= {ω : ∀n ∃m ≥ n such that |Xm(ω)| > am} .
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Now we know P (C∞) = 0, so let’s see what happens on Cc
∞, the set of probability

1:

Cc
∞ = {ω : ∃n = n(ω) ∀m ≥ n |Xm(ω)| ≤ am} .

Thus, for ω ∈ Cc
∞, from some point on (namely, from n(ω) onward), the sequence

am dominates the nonnegative sequence of real numbers |Xm(ω)|. But this clearly
implies |Xm(ω)| → 0 since am → 0.

2

Remarks 3.2.1 If an is a sequence, then a subsequence ank
is obtained by taking

the sequence of integers n1 < n2 < n3 < . . .. Note how we requiring the nk’s
to be strictly increasing. If xn is any sequence of real numbers and xn → x,
then for any subsequence xnk

we have xnk
→ x as k → ∞. One can show

further that if xn is any sequence of real numbers, then xn → x if and only if
given any subsequence xnk

there is a sub-subsequence xnkj
such that xnkj

→ x.

To see this, note that xn → x implies xnk
→ x and hence xnkj

→ x for any

sub-subsequence xnkj
. Conversely, or contrapositively, if xn does not converge

to x, then there is some subsequence xnk
which stays some minimal distance

away from x (say, xnk
never gets closer than ε to x), and so the same must be

true of any subsequence of xnk
, so no such sub-subsequence xnkj

converges to x.

These discussions, while a bit confusing and seemingly not very deep, do indicate
that it is sometimes worthwhile to consider subsequences and sub-subsequences.
Actually, in probability, there is a long tradition of “subsequence” arguments.
We shall just touch on the subject.

2

Proposition 3.2.4 Suppose Xn
P→ X. Then there is a subsequence Xnk

a.s.→ X.

Proof. Consider any sequences 0 < an → 0 and bn > 0 with
∑

n bn < ∞.
Since P [‖Xn −X‖ > a1] −→ 0, we can find n1 such that P [‖Xn1

−X‖ > a1] <
b1. Suppose we have constructed n1 < n2 < . . . nk such that P [‖Xnj

−X‖ > aj ]
< bj , ∀j ≤ k. Since P [‖Xn −X‖ > ak+1] −→ 0, we can find nk+1 > nk such that
P [‖Xnk+1

−X‖ > ak+1] < bk+1. Thus, we have shown by induction that we can
obtain a subsequence Xnk

such that

P [‖Xnk
−X‖ > ak] < bk.

Now the result follows by the previous proposition.

2

The next result is especially useful.
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Proposition 3.2.5 Xn
P→ X if and only if for every subsequence Xnk

there is a

sub-subsequence Xnkj

a.s.→ X.

Proof. If Xn
P→ X, then so does any subsequence: Xnk

P→ X. Thus, by the

previous proposition we can extract a sub-subsequence Xnkj

a.s.→ X.

Conversely, if Xn does not converge in probabilty to X, then there is some
ε > 0 such that P [‖Xn −X‖ > ε] does not tend to 0. But then there must be a
subsequence Xnk

and a δ > 0 such that P [‖Xnk
−X‖ > ε] > δ, for all k. If Xnkj

is any subsequence of Xnk
, then it cannot converge a.s. to X since then it would

converge in probability to X by Proposition 3.2.1 (a), but that would violate the
fact P [‖Xnkj

−X‖ > ε] > δ for all j.

2

From this last proposition, many results about a.s. convergence can be carried
over to convergence in probability. The following is an example of this.

Proposition 3.2.6 Suppose Xn
P→ X. Then the monotone and dominated con-

vergence theorems apply.

Proof. We will consider the dominated convergence theorem, so suppose
|Xn| ≤ Y where Y is integrable. Put an = E[Xn], and consider any subsequence
ank

and the corresponding Xnk
. Then by the previous result, we have a subse-

quence Xnkj

a.s.→ X. Now the dominated convergence theorem applies to Xnkj
and

we conclude ankj
→ E[X]. The result now follows from Remarks 3.2.1

2

3.2.3 Continuous Mapping Principles.

In this subsection we consider the first two of the “continuous principles” we will
need. Suppose xn is a sequence of vectors and xn → x. If h is a function which is
continuous at x, then it is easy to show h(xn) → h(x). For stochastic convergence
of random vectors, it is more complicated. The key definition we will need is the
following.

Definition 3.2.2 Let X be a random d-vector and h : IRd −→ IRk a Borel
measurable function. We say h is a.s. continuous at X if

P{ω : h is continuous at X(ω)} = 1.

Proposition 3.2.7 (Continuous Mapping Principle for
a.s.→ and

P→) Suppose
h is a.s. continuous at X.

(a) If Xn
a.s.→ X, then h(Xn)

a.s.→ h(X).

(b) If Xn
P→ X, then h(Xn)

P→ h(X).
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Proof. For part (a), let N1 = {ω : Xn(ω) does not converge to X(ω)} andN2

= {ω : h is not continuous at X(ω)}. Both the Ni’s are null sets, and hence also
is N = N1 ∪N2. If ω /∈ N , then by our remark about sequences, Xn(ω) → X(ω),
so the result follows.

Turning to part (b), suppose Xn
P→ X and consider any subsequence Xnk

.

By Proposition 3.2.5 there is a sub-subsequence Xnkj

a.s.→ X. By part (a), we

have h(Xnkj
)

a.s.→ h(X). Thus, for the sequence h(Xn), we have shown that

any subsequence has a sub-subsequence converging a.s. to h(X). It follows from

Proposition 3.2.5 that h(Xn)
P→ h(X).

2

We next turn to the issue of characterizing rates of convergence in probability.

3.2.4 Stochastic Orders of Convergence.

Definition 3.2.3 Let {Xn : n = 1, 2, . . .} be a sequence of random d-vectors and
{bn} a sequence of nonnegative reals.

(a) Xn = OP (bn) as n → ∞ iff for all δ > 0 there exist C < ∞ and N < ∞
such that for all n ≥ N ,

P [ ‖Xn‖ ≤ Cbn ] ≥ 1 − δ.

(b) Xn = oP (bn) iff for all ε > 0 and δ > 0 there exist N < ∞ such that for all
n ≥ N ,

P [ ‖Xn‖ ≤ εbn ] ≥ 1 − δ.

2

Remarks 3.2.2 (a) Assuming bn > 0 for all n, Xn = oP (bn) is equivalent to

Xn/bn
P→ 0 as n→ ∞.

(b) If Xn = an a.s. where {an} is a sequence of constants (i.e. all r.v.’s
are degenerate), then Xn = OP (bn) (or = oP (bn), respectively) if and only if
an = O(bn) (= o(bn), respectively).

2

Proposition 3.2.8 Suppose p > 0 and E[‖Xn‖p] = O(bpn) (o(bpn), respectively).
Then Xn = OP (bn) (= oP (bn), respectively).

Proof. By Markov’s inequality, if C0 > 0,

P [ ‖Xn‖ > C0an ] = P [ ‖Xn‖p > (C0an)p ] ≤ E[‖Xn‖p]

(C0an)p
.
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Now take N and C1 such that for all n ≥ N ,

E[‖Xn‖p] ≤ C1a
p
n .

Also, choose C0 above so that

C1

Cp
0

< δ ,

where δ > 0 is given. Then, with this choice of C0, we have for all n ≥ N that

P [ ‖Xn‖ ≤ C0an ] ≥ 1 − δ .

The proof of the claim about oP (·) is left as an exercise.

2

Proposition 3.2.9 (a) OP (O(an)) = OP (an).

(b) Any of OP (o(an)), oP (O(an)), or oP (o(an)) is oP (an).

(c) OP (an)OP (bn) = OP (anbn).

(d) Either of OP (an)oP (bn) or oP (an)OP (bn) is oP (anbn).

(e) OP (an) +OP (an) = OP (an).

(f) oP (an) + oP (an) = oP (an).

Partial Proof. Consider the equality of the second and fourth members of
(b). Suppose bn = O(an) and Xn = oP (bn). Then there exist C1 and N1 such
that

bn ≤ C1an , for all n ≥ N

and given ε > 0, δ > 0 there is an N2 such that

P
[

‖Xn‖ ≤ εC−1
1 bn

]

≥ 1 − δ for all n ≥ N2 .

Then for n ≥ N = max{N1, N2}, since C−1
1 bn ≤ an for n ≥ N ,

P [ ‖Xn‖ ≤ εan ] ≥ P
[

‖Xn‖ ≤ εC−1
1 bn

]

≥ 1 − δ .

This shows Xn = oP (an).
Consider (c). Suppose Xn = OP (an) and Yn = OP (bn). Then given δ > 0

there exist Na, Ca, Nb, and Cb such that

P [ |Xn| ≤ Caan ] ≥ 1 − δ/2 for all n ≥ Na ,
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P [ |Yn| ≤ Cbbn ] ≥ 1 − δ/2 for all n ≥ Nb .

Now taking N = max{Na, Nb} and C = CaCb, we have for all n ≥ N ,

P [ |XnYn| ≤ Canbn ]

≥ P [ |Xn| ≤ Caan & |Yn| ≤ Cbbn ]

= 1 − P [ |Xn| > Caan or |Yn| > Cbbn ]

≥ 1 − ( P [ |Xn| > Caan ] + P [ |Yn| > Cbbn ] )

≥ 1 − (δ/2 + δ/2) = 1 − δ .

2

The next result is related to parts (a) and (b) of the previous proposition.

Proposition 3.2.10 Let Xn be a sequence of random d-vectors, an a sequence
of nonnegative constants, and f a function defined on IRd.

(a) If f(x) = O(‖x− x0‖) as x → x0 and Xn = x0 + OP (an) where an → 0,
then f(Xn) = OP (an).

(b) If f(x) = o(‖x − x0‖) as x → x0 and Xn = x0 + OP (an) where an → 0,
then f(Xn) = oP (an).

(c) If f(x) = o(‖x− x0‖) as x→ x0 and Xn = x0 + oP (an) where an = O(1),
then f(Xn) = oP (an).

Proof. We prove part (b) only. Given η > 0 there is an M such that
P [‖Xn − x0‖ < Man] > 1 − η for all n sufficiently large. Let ε > 0 be given.
Since f(x) = o(‖x − x0‖) there is a δ > 0 such that ‖x − x0‖ < δ implies
‖f(x)‖ < εM−1‖x − x0‖. Taking n sufficiently large that Man ≤ δ (which
is possible since an → 0), we have with probability > 1 − η that ‖f(Xn)‖ <
εM−1‖Xn − x0‖ < εM−1Man = εan, which completes the proof of the claim.

2

3.2.5 The Laws of Large Numbers.

Now we state some of the classical limit theorems of probability.

Theorem 3.2.11 Let X1, X2, . . . be i.i.d. random d-vectors and Xn = (1/n)
∑n

i=1Xi.
(a) (Khintchine’s Weak Law of Large Numbers) If E[X i] exists and equals µ,

then Xn
P→ µ.

(b) (Kolmogorov’s Strong Law of Large Numbers). E[X i] exists and equals µ

if and only if Xn
a.s.→ µ.
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2

Proofs of these results may be found in standard advanced texts in probability
theory. For example, see Billingsley, pp. 80-81. More general results appear in
Gnedenko and Kolmogorov (???). The weak law is easy to prove if one assumes
the Xi’s have finite second moment, for then (assuming d = 1 for convenience)

if σ2 = Var[Xi] we have Var[Xn] = σ2/n → 0 which implies Xn
q.m.→ µ, and

this implies Xn
P→ µ by Proposition 3.2.1 (b). In fact, by Proposition 3.2.8,

Var[Xi] < ∞ implies Xn = µ + OP (n−1/2), which gives a rate of convergence
in the weak law. For the rate of convergence in the strong law, the Law of the
Iterated Logarithm (Billingsley, Theorem 9.5, p. 151) states that if Var[Xi] <∞,
then

Xn = µ + O(n−1/2(log logn)1/2) , a.s.

Here, Yn = O(an) almost surely means that there is a null set N ⊂ Ω such
that Yn(ω) = O(an) for all ω /∈ N . Note that the constants C and N in the
definition of the O(·) are random (depend on ω). In the Law of the Iterated
Logarithm, the factor (log log n)1/2 → ∞, but at a very slow rate, so the “almost
sure” refinement for the order of the error bound tends to 0 slightly slower than
the “in probability” error bound OP (n−1/2).
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Exercises for Section 3.2.

3.2.1 Show that Xn
P→ X if and only if for all ε > 0 there is an N such that for

all n ≥ N , P [‖Xn −X‖ > ε] < ε.

3.2.2 Show that a sequence of random k-vectors {Xn} converges in probability

to X0 if and only if each component Xni
P→ X0i, 1 ≤ i ≤ k.

3.2.3 Verify Remarks 3.2.2 (a) and (b).

3.2.4 Prove Proposition 3.2.8 for o(·) and oP (·).

3.2.5 Complete the proof of Proposition 3.2.9.

3.2.6 Complete the proof of Proposition 3.2.10.

3.2.7 Suppose X1, X2, . . . are i.i.d. random variables with mean µ and variance
σ2 <∞. Let h : IR −→ IR be continuously differentiable in a neighborhood of µ.
Show that h(Xn) = h(µ) + OP (n−1/2), where Xn = (1/n)

∑n
i=1Xi is the sample

mean of n observations.

3.2.8 Suppose X1, X2, . . . are i.i.d. random variables with mean 0 and variance
σ2 <∞. Let

Yn =
n
∑

i=1

ipXi

where p is a given real number. Show that

Yn =











OP (np+1/2) if p > −1/2,
OP ((log n)1/2) if p = −1/2,

OP (1) if p < −1/2.

3.2.9 Proposition 3.2.2 is sometimes referred to as the “first Borel-Cantelli
Lemma.” We consider here the “second Borel-Cantelli Lemma.” Suppose the
Bn are mutually independent (i.e., P (

⋂

k Bnk
) =

∏

k P (Bnk
) for any finite subse-

quence Bn1
, . . ., Bnm

). Then
∑

n P (Bn) = ∞ implies

P

(

∞
⋃

n=1

∞
⋂

m=n

Bm

)

= 1.

Hints: Consider the complementary probability. We have for any n2 > n2,

P

(

n2
⋂

m=n1

Bc
m =

n2
∏

m=n1

)

[1 − P (Bm)] .

Now use that 1 − x < e−x.
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3.2.10 Here we consider counterexamples to the converses of Proposition 3.2.1.
(a) Let U be a r.v. with uniform distribution on [0, 1]. Define

Xn = n2/pI[0,1/n](U).

Show that Xn
P→ 0 and Xn

a.s.→ 0, but we don’t have Xn
Lp→ 0.

(b) We define a sequence of r.v.’s Xn which takes values 0 or 1. Define the
“dyadic blocks” Nk = {2k−1, 2k−1 + 1, . . . , 2k − 1}. Note that for each k,
Nk is the set of positive integers whose binary expansion has k binary digits.
?????????????????????????????????????????????????? Let Xn be 1 at a position
chosen uniformly over the set of values inNk and independently among the blocks,

and otherwise Xn is 0. Show that Xn
P→ 0 but that Xn = 1 infinitely often so we

can’t have Xn
a.s.→ 0.

3.2.11 Let X1, X2, . . . be i.i.d. r.v.’s with Expo(1) distribution, and put

Yn = min{X1, X2, . . . , Xn}.

(a) Show that Yn = OP (1/n).
(b) Show that Yn = O((logn)/n) a.s. (Hint: look at

∑

n P [Yn > k(log n)/n]
for suitable k.)

Remark: It is typical that if one has a OP (n−k) sequence for some k > 0,
one can show it is O(h(n)n−k) a.s. where h is some function which goes to ∞
very slowly with n, such as a power of log n.
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3.3 Convergence in Distribution.

The next mode of convergence we consider is the weakest and also the most
useful.

Definition 3.3.1 Let P , P1, P2, . . . be Borel probability measures on IRd. Then
the sequence Pn converges weakly to P (written Pn ⇒ P ) iff for every bounded
and continuous function h : IRd −→ IR,

∫

IRd
h(x) dPn(x) →

∫

IRd
h(x) dP (x) .

Let X, X1, X2, . . . be random d-vectors, not necessarily defined on the same
probability space. Then the sequence {Xn} converges in distribution to X (writ-

ten Xn
D→ X) iff Law[Xn] ⇒ Law[X], i.e. E[h(Xn)] → E[h(X)] for arbitrary

bounded and continuous h : IRd −→ IR.

2

We depart from the usual definition in terms of convergence of the cumula-
tive distribution functions at points of continuity (as on p. 335 and p. 390 in
Billingsley) because for many purposes, this definition is much simpler and easier
to use.

Theorem 3.3.1 Let X, X1, X2, . . . be random d-vectors and F , F1, F2, . . . the
corresponding c.d.f.’s. The following are equivalent:

(i) Xn
D→ X;

(ii) Fn(x) → F (x) at every point x ∈ IRd at which F is continuous;

(iii) There exist random vectors Y , Y 1, Y 2, . . . such that Law[Y ] = Law[X],

Law[Y n] = Law[Xn], ∀n, and Y n
P→ Y .

Before giving the proof of the theorem, we give a couple of other results that
are useful in their own right.

Lemma 3.3.2 Let −∞ ≤ a < b ≤ ∞ and suppose G : (a, b) −→ IR is monotone
nondecreasing. The following hold:

(i) Any discontinuity of G is a jump discontinuity, i.e. a jump discontinuity,
i.e., both limits

G(x− 0) = lim
y↑x

G(y)

G(x+ 0) = lim
y↓x

G(y),
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exist, and there is a discontinuity if and only if the “jump”

J(x) = G(x+ 0) −G(x− 0),

is positive (it is always nonnegative).

(ii) DG = {x : G is discontinuous at x} is countable.

(iii) Any nonempty interval (c, d) ⊂ (a, b) contains infinitely many points where
G is continuous.

Sketch of Proof. Part (i) follows from monotonicity and the fact that a
nonempty set of reals bounded below (above) has a finite infimum (supremum).
The main result used in the proof of (ii) is that a countable union of countable
sets is countable. It suffices to look at a subinterval (a1, b1) ⊂ (a, b) where G is
bounded (we may have G(x) approaching −∞ as x ↓ a or +∞ as x ↑ b), as we
can get countably many such subintervals where G is bounded. If G is bounded
on (a1, b1), then the number of jumps where J(x) > 1/n for any n must be finite
(as G(b1−0)−G(a1 +0) is bounded and greater than the sum of all the jumps in
(a1, b1)), so we can represent the number of positive jumps in (a1, b1) as a count-
able union of finite sets. Part (iii) is immediate from (ii) since any nonempty
interval has uncountably many points.

2

Recall the definition of the lower quantile function F− in Definition 1.1.5.

Theorem 3.3.3 Let F , F1, F2, . . . be cumulative distribution functions on IR
and assume Fn(x) → F (x) as n→ ∞ at every point x in the set

C = {x ∈ IR : F is continuous at x}.

Then F−
n (u) → F−(u) as n→ ∞ at every point u in

B = {u ∈ (0, 1) : F− is continuous at u}.

Furthermore, F+
n (u) → F+(u) at every point in B.

Proof. Let u ∈ B and x = F−(u). Put C = {x ∈ IR : F is continuous at x}.
The basic idea of the proof is to show that for ε > 0 we can find x1, x2 in C with

x− ε < x1 < x < x2 < x+ ε (3.21)

F (x1) < u < F (x2) . (3.22)

Then, since Fn(xi) → F (xi), there exists m such that for all n ≥ m, we have

Fn(x1) < u < Fn(x2) . (3.23)
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But these inequalities imply (by definition of F−
n and right continuity of F ) that

x1 < F−
n (u) < x2 , (3.24)

which in conjunction with (3.21) yields |F−
n (u) − F−(u)| < ε, for all n > m.

To establish the existence of x1 and x2 in C and satisfying (3.21) and (3.22),
we consider 4 cases. The first is if x ∈ C. Then, because u ∈ D, we have
F (y) < F (x) < F (z) for all y < x and z > x. This follows since u ∈ D and
x ∈ C, we have u = F (x) (refer to Figure 1.1.3), and there is not a jump at u,
i.e., an interval in which F is constant.

The second case we consider is when x /∈ C and F (x − 0) < u < F (x).
Then F (y) < u < F (x) ≤ F (z) for all y < x and z > x, so we can easily find
x1 ∈ (x− ε, x)∩C and x2 ∈ (x, x+ ε)∩C satisfying (3.21) and (3.22). The other
two cases are when x /∈ C and u = F (x) or u = F (x − 0). Each of these is a
“mixture” of the previous cases, so one can adapt the arguments accordingly.

The claim about F+ is immediate since B is the set where F+ = F−.

2

Partial Proof of Theorem 3.3.1. We will treat in detail only the case

d = 1. For (i) ⇒ (ii), assume Xn
D→ X and we wish to show Fn(x) → F (x)

if F is continuous at x. Now Fn(y) = E[h(Xn)] where h(x) = I(−∞,y](x) is the
indicator of the interval (−∞, y]. This h is bounded but not continuous. We will
approximate it by continuous functions given by

hε(x) =











1 if x ≤ y − ε,
1 − ε−1[x− (y − ε)] if y − ε < x ≤ y,

0 if x > y

gε(x) =











1 if x ≤ y,
1 − ε−1(x− y) if y < x ≤ y + ε,

0 if x > y + ε.

Here, ε > 0. Plots of these functions are given in Figure 3.3. Then hε(x) ≤
I(−∞,y](x) ≤ gε(x), so

E[hε(Xn)] ≤ Fn(y) ≤ E[gε(Xn)]
↓ n→∞ n→∞ ↓
E[hε(X)] ≤ F (y) ≤ E[gε(X)]

Thus, for all ε > 0,

E[hε(X)] ≤ lim inf Fn(y) ≤ lim supFn(y) ≤ E[gε(X)].

Now limε→0E[gε(X)] = F (y) by dominated convergence (|gε(x)| ≤ 1 for all x and
all ε > 0) and limε→0E[hε(X)] = E[I(−∞,y)(X)] = F (y − 0). If y is a continuity
point of F , then F (y) = F (y − 0) so lim inf Fn(y) = lim supFn(y) = F (y).
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Figure 3.1: Graphs of hε and gε.

Turning now to (ii) ⇒ (iii). Let U be uniformly distributed on [0, 1] and put

Yn = F−
n (U)

Y = F−(U),

where F− is given in Definition 1.1.5. It follows from Proposition 1.2.4 that the
c.d.f.’s of Y and Yn are F and Fn, respectively, so their distributions are the
same as those of X and Xn, respectively (see Theorem 1.1.6 (b)). Note that by
Lemma 3.3.2, the set of values u where F− is discontinuous is countable and so has
measure 0 under Law[U ]. It follows from Theorem 3.3.3 that F−

n (U) → F−(U)

a.s., and hence Yn
P→ Y (using Proposition 3.2.1 (a)).

For (iii) implies (i), assume (iii) holds and let h be a bounded continuous
function from IR −→ IR. Since Xn and Yn have the same distributions, E[h(Xn)]

= E[h(Yn)]. Since h is continuous, we have h(Yn)
P→ h(Y ) by (iii) and Proposition

3.2.7 (b). Since h is bounded, we have E[h(Yn)] → E[h(Y )] by the dominated
convergence theorem for convergence in probability (Proposition 3.2.6), and of
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course E[h(Y )] = E[h(X)], so we can conclude that E[h(Xn)] → E[h(X)] for any

bounded continuous h, and hence Xn
D→ X.

If d > 1 the proof of (i) ⇒ (ii) can be done with functions which are products
of the hε’s and gε’s in each component. The proof of (iii) from either (ii) or (i)
is difficult. The proof that (iii) implies (i) already given works in any dimension d.

2

One can find the equivalence of (i) and (ii) in Billingsley, Theorem 25.8,
page 344, for the one dimensional case, and Theorem 29.1, page 390, for the
higher dimensional setting. The equivalence of (i) and (iii) is a famous result due
to Skorohod (1956). See pp. 399-403 of Billingsley. Much research in modern
probability has been motivated by this result.

Now we give various results on convergence in distribution.

Proposition 3.3.4 (a) If Xn
P→ X, then Xn

D→ X.

(b) If Xn
D→ x, a constant (nonrandom) vector, then Xn = x+ oP (1), and so

if all Xn’s are defined on the same probability space, then Xn
P→ x.

Proof. Part (a) is immediate from the equivalence of (i) and (iii) in Theorem
3.3.1. Part (b) is left as an exercise.

2

Remarks 3.3.1 Part (a) shows that
D→ is the weakest of the modes of conver-

gence we have studied. Schematically,

Xn
a.s.→ X =⇒

Xn

Lp→ X =⇒







Xn
P→ X =⇒ Xn

D→ X.

Of course, Xn
P→ X means all random vectors are defined on the same probability

space.

2

Proposition 3.3.5 (Continuous mapping principle) Suppose Xn
D→ X and

ψ is a.s. continuous at X. Then ψ(Xn)
D→ ψ(X).

Proof. Using condition (iii) of Theorem 3.3.1, we can obtain Y , Y n with the

same distributions and Y n
P→ Y . By the continuous mapping principle for

P→,

Proposition 3.2.7 (b), we have that ψ(Y n)
P→ ψ(Y ), and ψ(Y ) and ψ(Y n) have

the same distributions as ψ(X) and ψ(Xn), so Theorem 3.3.1 applies again to

show ψ(Xn)
D→ ψ(X). (See Theorem 25.7, p. 343, of Billingsley.)
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2

Theorem 3.3.6 (Lévy-Cramér Continuity Theorem) Suppose X, X1, X2,

. . . have characteristic functions φ, φ1, φ2, . . ., respectively. Then Xn
D→ X if

and only if φn(u) → φ(u) for all u.

Partial Proof. (⇒) Since φn(u) =E[cos(u′Xn)] + iE[sin(u′Xn)] and cos(u′x)
and sin(u′x) are bounded, continuous functions of x for each fixed u, it follows
that φn(u) → φ(u) for each fixed u. Note how easy this proof is with our definition
of convergence in distribution.

The proof of the converse is quite difficult. See Theorem 26.3, p. 359, of
Billingsley.

2

Theorem 3.3.7 (Cramér-Wold device) Random d-vectors Xn
D→ X if and

only if u′Xn
D→ u′X for all u ∈ IRd.

Proof. (⇒) Assuming Xn
D→ X, the mapping h(x) = u′x is continuous in x

for each fixed u, so u′Xn
D→ u′X by the continuous mapping principle.

(⇐) Assuming u′Xn
D→ u′X for all u then by the Lévy-Cramér Continuity

Theorem applied to the random variables u′Xn with their characteristic functions
evaluated at 1,

E[exp(iu′Xn)] → E[exp(iu′X)]

which implies that the characteristic functions for Xn converge to that of X for

all u, and hence that Xn
D→ X by the other direction of Theorem 3.3.6.

2

Lemma 3.3.8 (Tightness) If Xn
D→ X then ∀ε > 0 ∃M such that ∀n,

P [ ‖Xn‖ > M ] < ε , (3.25)

i.e., Xn = OP (1).

Proof. Fix ε > 0. There is an M1 such that P [‖X‖ > M1] < ε/2. If M2 ≥M1

is a continuity point of F , the c.d.f. of ‖X‖, (note: any nonempty interval of
reals contains continuity points of F ) then P [‖Xn‖ > M2] → 1 − F (M2) (since
x 7→ ‖x‖ is a continuous function, it follows by the continuous mapping principle

that ‖Xn‖ D→ ‖X‖). Hence, there is an N s.t. P [‖Xn‖ > M2] < ε/2 for all
n ≥ N . Now for each n < N there exists Kn such that P [‖Xn‖ > Kn] < ε/2,
and if we put M = max{K1, K2, . . . , Kn−1,M2} then we have the desired result.
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2

Theorem 3.3.9 (Convergence Equivalence) Suppose (X1, Y 1), (X2, Y 2), . . .
are random 2d-vectors such that for each ε > 0,

lim
n→∞

P [ ‖Xn − Y n‖ > ε ] = 0 , (3.26)

(i.e., Xn = Y n + oP (1)). If Xn
D→ X, then also Y n

D→ X.

Proof. We will assume the X’s and Y ’s are 1-dimensional. The extension to
higher dimensions is left as Exercise 3.3.2. Let F , Fn, and Gn denote the c.d.f.’s
of X, Xn, and Yn, respectively. Suppose ξ is a point of continuity of F and let
ε > 0 be such that ξ ± ε are also continuity points of F . Then

∃N such that ∀n ≥ N, P [|Xn − Yn| > ε] < ε ,

so that Gn(ξ) = P [Yn ≤ ξ] ≤ P [Xn ≤ ξ + ε] + P [|Xn − Yn| > ε] ≤ Fn(ξ + ε) + ε,
and similarly, arguing with the event [Yn > ξ] ⊂ [Xn > ξ − ε] ∪ [|Xn − Yn| > ε]
we obtain Gn(ξ) ≥ Fn(ξ − ε) − ε. Letting n→ ∞ we obtain

F (ξ − ε) − ε ≤ lim inf
n
Gn(ξ) ≤ lim sup

n
Gn(ξ) ≤ F (ξ + ε) + ε .

Letting ε ↓ 0 through a sequence of points for which ξ ± ε are continuity points

of F shows that limnGn(ξ) = F (ξ). This proves Yn
D→ X by Theorem 3.3.1.

2

Theorem 3.3.10 (Slutsky’s Theorem.) Suppose (X1, Y1), (X2, Y2), . . . are ran-

dom 2-vectors such that Xn
D→ X and Yn

D→ c where c is a constant. Then

Xn + Yn
D→ X + c (3.27)

XnYn
D→ cX (3.28)

Xn/Yn
D→ X/c provided c 6= 0 (3.29)

Proof. We will prove (3.28) only, leaving the others as exercises. We will
show that XnYn is convergence equivalent to cXn. By the Tightness Lemma
3.3.8, given η > 0 there exists M = M(η) such that for all n, P [|Xn| > M ] < η.
Now if ε > 0 is given then

P [ |XnYn −Xnc| ≥ ε ]

≤ P [ |Xn(Yn − c)| ≥ ε and |X| ≤M ] + P [ |X| > M ]

≤ P [ |Yn − c| ≥ ε/M ] + η .
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Now given δ > 0 choose η ≤ δ/2 in the above. For the corresponding M = M(η)
find N such that for all n ≥ N , P [|Yn − c| ≥ ε/M ] ≤ δ/2. This follows by
the argument in the proof of Proposition 3.3.4. Now for all n ≥ N we have
P [|XnYn − c| ≥ ε] ≤ δ which implies P [|XnYn − cXn| ≥ ε] → 0, i.e. that
XnYn and cXn are convergence equivalent. By the continuous mapping principle,

cXn
D→ cX, so by Theorem 3.3.9, XnYn

D→ cX.

2

Perhaps the most important theorem regarding convergence in distribution is
the next one.

Theorem 3.3.11 (Lindeberg-Lévy Central Limit Theorem.) Let X1, X2,
. . . be i.i.d. random variables with mean µ and finite variance σ2. Put Xn =
(1/n)

∑n
i=1Xi. Then

√
n
(

Xn − µ
)

D→ N(0, σ2) .

The proof may be found in Billingsley, Section 27. We have abused notation
slightly and written a distribution rather than a random variable on the r.h.s. of
D→, but the meaning should be clear. Note where the mean and variance enter
in as well as the factor

√
n. We will have numerous opportunities to apply this

result.
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Exercises for Section 3.3.

3.3.1 True or False (proof or counterexample):

(a) For random d-vectors, Xn
D→ X if and only if each component Xni

D→ Xi,
1 ≤ i ≤ d.

(b) Xn
D→ X implies E[Xn] → E[X].

(c) If Xn
D→ Z where Z is N(0, 1), then X2

n
D→ U where U has a χ2

1 distribution.

(d) Part (3.27) of Slutsky’s Theorem holds if the Xi and Yi are random vectors.

3.3.2 Complete the proof of Theorem 3.3.9 to cover random vectors.

3.3.3 Using the notations and assumptions of the Central Limit Theorem show
that

√
nXn does not converge in distribution to anything if µ 6= 0.

3.3.4 Prove Proposition 3.3.4 (b) by showing that Xn
D→ x implies for all ε > 0,

P [‖Xn − x‖ > ε] → 0, irrespective of whether or not the Xn are defined on the
same probability space.

3.3.5 Prove parts (3.27) and (3.29) of Slutsky’s theorem.

3.3.6 Let X1, X2, . . . be i.i.d. random d-vectors satisfying E‖X i‖2 < ∞. Put
µ = E[X i] and V = Cov[X i]. Let X̄n be the average of n of the X i’s.

(a) Extend the Central Limit Theorem as stated in the text to i.i.d. random
vectors X i: show that

√
n
[

X̄n − µ
]

D→ N(0, V ) .

(b) Suppose V is nonsingular. Show that

n (X̄n − µ)′V −1(X̄n − µ)
D→ χ2

d .

3.3.7 (a) Suppose Xn is a sequence of random vectors and Xn
D→ X. Let An be

a sequence of random matrices such that An
P→ A where A is a fixed matrix which

is nonsingular. Show that A−1
n Xn

D→ A−1X where A−1
n is defined arbitrarily when

it does not exist.
(b) Part (a) is a multidimensional generalization of (3.29). Give a correspond-

ing generalization of (3.28).
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3.4 Further Convergence in Distribution Results.

Here we give some other very useful results on convergence in distribution.

3.4.1 Asymptotic Linearization: The Delta Method.

We first give a very useful limit theorem for statistical applications. The result
does not seem to have a formal name, but it widely known as the “δ–method.”

Before stating the result, we review the notion of a derivative for a vector
valued function of a vector variable. In general, for a function f defined on a
domain in IRK taking values in IRJ , the derivative Df(x0) at x0 is a J × K
matrix which satisfies

f(x) = f(x0) + Df(x0)(x− x0) + o(‖x− x0‖) ,

as ‖x − x0‖ → 0. We assume x0 is an interior point of the domain of f . If the
derivative at x0 exists (i.e. if there is a J × K matrix which satisfies this last
equation) then the (j, k) entry of Df(x0) is given by ∂fk/∂xj evaluated at x0.
(Mnemonic Note: one can determine the dimensions of the matrix as J×K rather
than K×J , since if they were the latter the matrix multiplication Df(x0)(x−x0)
would not make sense. Once these dimensions have been determined, then it
is easy to see that the (j, k) entry must be ∂fk/∂xj and not ∂fj/∂xk.) This
derivative matrix is sometimes called the Jacobian or the Jacobian matrix. In
statistics, the “Jacobian” usually means the determinant of this matrix (when
J = K so the matrix is square), so we will always call it the Jacobian matrix.
Note that if f is real valued (J = 1), then the Jacobian matrix is a K × 1 matrix
or a K-dimensional row vector, which is just the transpose of the usual gradient
vector.

Theorem 3.4.1 Suppose Xn is a sequence of random d-vectors and µ is a con-

stant d-vector such that
√
n(Xn −µ)

D→ N(0, V ) where V is a covariance matrix.
Let h be a IRk valued function defined in a neighborhood of µ and suppose h is
differentiable at µ. Then

√
n[h(Xn) − h(µ)]

D→ N (0, Dh(µ)V Dh(µ)′) .

Before embarking on the proof, we make a remark. Note that this is very
different from the continuous mapping principle, which would say that h(

√
n[Xn−

µ])
D→ h(Z) where Z is N(0, V ), if h is only continuous. One would not expect a

normal distribution for h(Z) in this case, unless h was very special (e.g. linear).
Proof. We first explain the ideas behind the proof, assuming that the Xn’s

and h are 1-dimensional. Now convergence in distribution of
√
n(Xn −µ) implies

Xn = µ + OP (n−1/2), and in particular tends to be quite close to µ for large
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n. Thus, in a small neighborhood of µ, h(x) looks like its first order Taylor
expansion,

h(x) = h(µ) + (x− µ)Dh(µ) + . . . .

With a little algebraic rearrangement, this gives
√
n[h(Xn) − h(µ)] = Dh(µ)

√
n[Xn − µ] + . . .

and we see that the term on the r.h.s.
D→ N (0, V [Dh(µ)]2) (here, V is just a

positive scalar). The only thing that remains is to make the result rigorous by
taking care of the remainder denoted “. . .” above.

In fact, we will only complete the proof for real valued h (k = 1). The
extension to vector valued h is left as an exercise. According to the definition of
differentiablity of h at µ, there is a vector g (which is 5h(µ)) such that

h(x) = h(µ) + g′(x− µ) + R(x) ,

where the remainder is

R(x) = o(‖x− µ‖) as x→ µ .

Now we want to plug in the random vector Xn. By tightness,
√
n[Xn − µ]

converging in distribution implies that
√
n[Xn − µ] = OP (1) and hence that

Xn − µ = OP (n−1/2). It then follows from Proposition 3.2.10(b) that

R(Xn) = oP (n−1/2) . (3.30)

Then we have
√
n[h(Xn) − h(µ)] = g′

{√
n[Xn − µ]

}

+
√
noP (n−1/2) . (3.31)

Now √
noP (n−1/2) = oP (1)

by Proposition 3.2.9 (d) and the fact that
√
n = OP (n1/2). It follows that√

n[h(Xn) − h(µ)] and g′{√n[Xn − µ]} are convergence equivalent. However,
by the continuous mapping principle,

g′{√n[Xn − µ]} D→ N(0, g′V g)

and so this is also the limit in distribution for
√
n[h(Xn) − h(µ)] by Theorem

3.3.9. This completes the proof.

2

Example 3.4.1 Let X1, X2, . . . be i.i.d. N(µ, 1) where µ is unknown. Consider
the estimator δn = Φ(x0 − Xn) of Pµ[Xi > x0] where x0 is a given number.

Now n1/2[Xn − µ] is exactly N(0, 1) and so also
D→ N(0, 1). It follows from the

δ-method that
√
n [δn − Φ(x0 − µ)]

D→ N
(

0, φ2(x0 − µ)
)

.
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3.4.2 The Lindeberg Central Limit Theorem.

In this section, we give the most general version of the central limit theorem
for independent random variables. Two applications of this theorem are consid-
ered: the asymptotic distribution of regression estimates assuming i.i.d. (but not
necessarily normal) errors with mean 0 and finite variance, and the asymptotic
distribution of the sample median.

The structure of the theorem is a little complicated. A triangular array of
row-wise independent r.v.’s is a doubly indexed collection of r.v.’s 〈Yij : 1 ≤ j ≤
ni, i ≥ 1〉 with ni entries in each row. We suppose ni → ∞ as i → ∞, and
that for each i ≥ 1, the i’th row 〈Yij : 1 ≤ j ≤ ni〉 consists of independent r.v.’s.
Thus, there may be dependence between the rows, but not within the rows. We
will assume that the Yij’s have finite second moments denoted

E[Yij] = µij Var[Yij] = σ2
ij .

Let

Si =
ni
∑

j=1

Yij

denote the sum of the r.v.’s in the i’th row, and

Var[Si] = s2
i =

ni
∑

j=1

σ2
ij .

The Lindeberg Condition is that

∀ε > 0, lim
i→∞

ni
∑

j=1

1

s2
i

∫

[|Yij−µij |>εsi]
(Yij − µij)

2 dP = 0. (3.32)

Theorem 3.4.2 [Lindeberg C.L.T.] Under the Lindeberg condition,

Sn −E[Sn]

sn

D→ N(0, 1).

2

The proof may be found on pp. 369-371 of Billingsley. The Lindeberg condi-
tion is one of those technical mathematical conditions that even mathematicians
dislike, but it is the best condition that has been found to obtain asymptotic
normality of a sum of independent random variables.

Theorem 3.4.3 Let X1, X2 , . . ., Xn be i.i.d. random variables with c.d.f. F .
Let 0 < α < 1 and denote the alpha’th quantile of the distribution by

qα = F−(α),
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where F− is defined in Definition 1.1.5. Assume F is differentiable at qα and
F ′(qα) = f(qα) > 0. Let Qn be any sample α quantile, by which we mean

X(bαnc) ≤ Qn ≤ X(dαne).

Then √
n (Qn − qα)

D→ N
(

0, α(1 − α)/f(qα)2
)

We used the notation f for the derivative of F as if F has a Lebesgue density,
but that is not necessary. Of course, usually it will be the case.
Proof. The application of Theorem 3.4.2 is a little tricky. Let

Zn =
Qn − qα

(
√

α(1 − α)/n)/f(qα)
.

We wish to show that for any z ∈ IR,

P [Zn ≤ z] → Φ(z)

as n→ ∞. From our assumption on Qn,

P
[

X(dαne) ≤ qα + z
√

α(1 − α)/n/f(qα)
]

≤ P [Zn ≤ z] ≤

P
[

X(bαnc) ≤ qα + z
√

α(1 − α)/n/f(qα)
]

,

where X(i) denotes the i’th order statistic. So, it suffices to show that the lower
and upper bounds have the same limit, Φ(z). We will treat only the upper bound,
it being clear from the argument that the lower bound follows as well.

To approximate the probability, let

Ynj =















1 if Xj ≤ qα + z
√

α(1 − α)/n/f(qα);

0 otherwise.

Then for each n, the Ynj’s are independent Bernoulli random variables with suc-
cess probability

pn = F
(

qα + z
√

α(1 − α)/n/f(qα)
)

= F (qα) + F ′(qα)z
√

α(1 − α)/n/f(qα) + o

(

1√
n

)

= α + z
√

α(1 − α)/n + o
(

n−1/2
)

Then

Sn =
n
∑

j=1

Ynj ∼ B(n, pn),
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has variance
s2

n = npn(1 − pn) ∼ nα(1 − α).

Checking the Lindeberg condition in this case is relatively easy. Note that |Ynj −
pn| < 1, so the set {|Ynj − pn| > εsn} is empty if εsn > 1, which is the same as n
> 1/[ε2pn(1 − pn)], and this can be guaranteed for all n large enough that both
pn(1 − pn) > α(1 − α)/2 and n > 2/[ε2α(1 − α)]. Thus, all the integrals in the
Lindeberg condition are eventually 0, so it holds trivially. Then we have

Sn − npn
√

npn(1 − pn)

D→ N(0, 1),

or by a Slutsky argument,

Sn − npn
√

nα(1 − α)

D→ N(0, 1).

Now the event
[

X(bαnc) ≤ qα + z
√

α(1 − α)/n/f(qα)
]

is the same as the event [Sn ≥ bαnc]. To approximate the probability of this
event by our CLT result about the Sn’s we would consider

P





Sn − npn
√

nα(1 − α)
≥ bαnc − npn

√

nα(1 − α)



 .

There is a slight problem here as the limit on the r.h.s. of the inequality in the
event is changing with n. However,

bαnc = αn + O(1)

and using our approximation of pn above we obtain

bαnc − npn
√

nα(1 − α)
=

n(α− pn) + O(1)
√

nα(1 − α)

=
−n[z

√

α(1 − α)/n + o(1/
√
n)] + O(1)

√

nα(1 − α)

= −z + o(1).

Thus,

Sn − npn
√

nα(1 − α)
−






bαnc − npn
√

nα(1 − α)
+ z
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is convergence equivalent with (Sn −npn)/
√

nα(1 − α). Hence, the desired result
follows from

P





Sn − npn
√

nα(1 − α)
≥ −z



 → Φ(z).

2

Proposition 3.4.4 Suppose Y 1, Y 2, . . ., are i.i.d. random k-vectors with E[‖Y i‖2]
< ∞, E[Y i] = µ, Cov[Y i] = V . Suppose for n = 1, 2, . . ., that cn1, . . ., cnn is a
triangular array of nonrandom vectors such that

max1≤i≤n ‖cni‖2

∑n
i=1 ‖cni‖2

→ 0, (3.33)

as n→ ∞. Assume

σ2
n =

n
∑

i=1

ctniV cni

is positive for all n sufficiently large. Put

Zn = σ−1
n

n
∑

i=1

ctni(Y i − µ).

Then Zn
D→ N(0, 1).

2

The proof is left as an exercise (Exercise 3.4.6). In fact, one can show that
the condition (3.33) is necessary and sufficient for the triangular array of r.v.’s
{Xni = cniYi : 1 ≤ i ≤ n, n = 1, 2, . . .} to satisfy the Lindeberg condition
(Exercise 3.4.7). In this setting (with a triangular array of constants that multiply
i.i.d. r.v.’s) we see that the Lindeberg condition is intuitively equivalent to the
notion that no single one of the r.v.’s dominates in the sum – that they are all
“small” compared to the sum. This result has useful applications in statistics.

3.4.3 Convergence to a Poisson.

The normal distribution is not the only distribution that occurs as the limit-
ing distribution for a triangular array of random variables. We next consider a
generalization of the Poisson approximation to the Binomial.

Proposition 3.4.5 Suppose 〈Yij : 1 ≤ j ≤ ni, i ≥ 1〉 is a triangular array of
row-wise independent Bernoulli r.v.’s with pij = P [Yij = 1]. Suppose

ni
∑

j=1

pij → λ > 0, (3.34)

max
1≤j≤ni

pij → 0. (3.35)
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Then

Si =
ni
∑

j=1

Yij
D→ Poisson(λ).

Proof. The ch.f. for Yij is

φij(u) = 1 + pij(e
iu − 1),

and the ch.f. for Si is

φi(u) =
ni
∏

j=1

[

1 + pij(e
iu − 1)

]

.

Now
log(1 + x) = x + R(x),

where
R(x) = O(|x|2), (3.36)

as x→ 0 in the complex plane. Thus

log φi(u) =
ni
∑

j=1

log
[

1 + pij(e
iu − 1)

]

= (eiu − 1)
ni
∑

j=1

pij +
ni
∑

j=1

R(pij(e
iu − 1)).

Using (3.36) there exists K and δ so that |x| < δ implies |R(x)| < K|x|2. By
(3.35), there is an i0 such that for all i ≥ i0, pij < δ/2 which implies pij|eiu−1| < δ.
For all i ≥ i0 we have

∣

∣

∣

∣

∣

∣

ni
∑

j=1

R(pij(e
iu − 1))

∣

∣

∣

∣

∣

∣

≤ K
ni
∑

j=1

p2
ij |eiu − 1|2

≤ 4K
ni
∑

j=1

p2
ij

≤ 4K
ni
∑

j=1

(

max
1≤k≤ni

pik

)

pij

=
(

max
1≤k≤ni

pik

)



4K
ni
∑

j=1

4K
ni
∑

j=1

pij



 .

By (3.34) the second factor in the last expression is O(1) as i→ ∞ and by (3.35)
the first factor is o(1), so the whole expression is o(1), i.e.

log φi(u) = (eiu − 1)
ni
∑

j=1

pij + o(1)

→ (eiu − 1)λ.
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One recognizes the last expression as the log of the characteristic function of the
Poisson(λ) distribution.

2

3.4.4 Extreme Value Theory.

Now we consider a very different situation: the maximum of a sequence of i.i.d.
r.v.’s as opposed to a mean or sum. For this subsection let Y1, Y2, . . ., be i.i.d.
r.v.’s with c.d.f. F and consider the largest order statistic

Xn = max
1≤i≤n

Yi.

The c.d.f. of Xn is of course

FXn
(x) = (F (x))n.

In order to make use of the limit relationship

[

1 +
a

n
+ o

(

1

n

)]n

→ ea, (3.37)

we will work with

F̄Xn
(x) = 1 − FXn

(x) =
(

1 − F̄ (x)
)n
,

where of course F̄ (x) = 1 − F (x). Our interest is in whether or not there exist

nonrandom sequences an and bn such that Wn = (Xn − an)/bn
D→ W where W

has a nondegenerate distribution. We see

FWn
(w) = FXn

(an + bnw).

If we can obtain a result utilizing (3.37), it must be that

F̄ (an + bnw) = −γ(w)

n
(1 + o(1)), (3.38)

for some function γ(w) and then

F̄Xn
(an + bnw) → exp[−γ(w)],

so that 1 − exp[−γ(w)] will give the limiting distribution.

Definition 3.4.1 A function h : (0,∞) −→ (0,∞) is called slowly varying if
and only if for any a > 0,

lim
x→∞

h(ax)/h(x) = 1.
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2

The most common nonconstant slowly varying function is log x, and one can
obtain others from it such as (log x)p, log log x, etc.

Theorem 3.4.6 (Extreme Value Distributions) Let Y1, Y2, . . ., be i.i.d. r.v.’s
with c.d.f. F and Xn = max1≤i≤n Yi. Let y0 = sup{y : F (y) < 1}. Put F̄ = 1−F .

(a) Suppose y0 = ∞ and F̄ (y) = y−ph(y) for some positive constant p and
some slowly varying function h. Let bn be any sequence such that

F̄ (bn) =
1

n
+ o

(

1

n

)

. (3.39)

Then Xn/bn
D→W where W has c.d.f.

G1,p(w) =











1 − exp(−w−p) if w ≥ 0,

0 if w < 0.
(3.40)

(b) Suppose y0 < ∞ and F̄ (y) = (y0 − y)ph(1/(y0 − y)) for some positive
constant p and some slowly varying function h. Let bn be any sequence satisfying

(3.39). Then (Xn − y0)/bn
D→ W where W has c.d.f.

G2,p(w) =











1 if w ≥ 0,

exp(−(−w)p) if w < 0.
(3.41)

(c) Suppose there exists a function g(y) such that for all t,

F̄ (y + tg(y))

F̄ (y)
→ e−t, as y ↑ y0. (3.42)

Then (Xn − an)/bn
D→W where an and bn satisfy

F̄ (an) =
1

n
+ o

(

1

n

)

,

bn ∼ g(an),

and W has c.d.f.
G3(w) = exp[−e−w]. (3.43)

Proof. For part (a), note that bn → ∞ and

F̄ (bnw) = (bnw)−ph(bnw)

= (bnw)−ph(w)(1 + o(1))

since h is slowly varying

= w−pF̄ (bn)(1 + o(1))

=
w−p

n
(1 + o(1)),
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where the last line follows from (3.39). The result now follows.
Part (b) is very similar to part (a) and is left as Exercise 3.4.8.
For part (c), consider first

F̄ (an + g(an)w) = F̄ (an)e−w(1 + o(1))

by (3.42)

=
e−w

n
(1 + o(1)),

where the last line follows from (3.43). This shows W̃n = (Xn − an)/g(an)
D→W

where W has the given distribution. Now (3.43) says bn/g(an) → 1, so by Slut-

sky’s theorem (bn/g(an))W̃n = (Xn − an)/bn
D→ W .

2

The distribution functions introduced in parts (a), (b), and (c) of the theorem
are called Extreme Value or Gumbel distributions of types I, II, and III, respec-
tively. It can be shown that these are the only possible limiting nondegenerate
distributions for Wn of the form (Xn − an)/bn, and that the distribution F must
satisfy one of the three conditions in the theorem. See reference ???.

Example 3.4.2 [The Weibull Distribution] Consider a distribution function F
which satisfies

F (y) = yqh(1/y), y ≥ 0, (3.44)

where h is a slowly varying function. For instance, if F is q times differentiable
from the right at 0 and the first q−1 derivatives vanish and whose q’th derivative
from the right is nonzero. (The derivative from the right is defined in the same
way as the ordinary derivative except one takes limits from the right, i.e. the
derivative from the right at y is F ′(y + 0) = limh↓0(F (x + h) − F (x))/h. It is
necessary to use derivatives from the right since F (y) = 0 for y < 0 and the usual
derivative (from both sides) won’t exist unless F ′(0 + 0) = 0.) Then

F (y) =
F (q)(0 + 0)

q!
yq + R(y), y ≥ 0,

where F (q)(0+0) is the q’th derivative from the right at y = 0 and R(y) = o(yq).
We define

h(x) = F (q)(0 + 0)/q! + R(1/x)xq, x > 0,

and then for any a > 0,

h(ax)

h(x)
=

F (q)(0 + 0)/q! + aqR(1/(ax))xq

F (q)(0 + 0)/q! + R(1/x)xq
.
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Now both R(1/(ax))xq and R(1/x)xq tend to 0 as x → ∞. Since F (q)(0 + 0)/q!
is nonzero, it follows that the last expression tends to 1 as x→ ∞.

A special case that satisfies (3.44) is the Gamma(α, β) distribution. Of course

F (y) =
1

Γ(α)βα

∫ y

0
x(α−1)e−x/β dx.

Since e−x/β ≤ 1 for all x ≥ 0 we have

F (y) ≤ 1

Γ(α)βα

∫ y

0
x(α−1) dx =

1

Γ(α + 1)βα
yα.

(Recall that αΓ(α) = Γ(α + 1).) On the other hand, for any x0 > 0 we have
e−x/β ≥ e−x0/β for all x ∈ [0, x0] and hence

F (y) ≥ 1

Γ(α + 1)βα
yαe−x0/β , ∀y ∈ [0, x0].

We see then that

F (y) =
1

Γ(α + 1)βα
yα [1 + o(1)]

=
1

Γ(α + 1)βα
yα + o(yα),

which implies that F satisfies (3.44) by the same argument as in the previous
paragraph. We could in fact have adapted the result of the previous paragraph
to this case, but it is easier to simply argue directly.

Now let Y1, Y2, . . . be i.i.d. with Yi > 0 a.s. and assume their distribution
function F satisfies (3.44). We consider

Xn = min
1≤i≤n

Yi.

Of course, we may put this in the framework of Theorem 3.4.6 (b) by taking Ỹi

= −Yi and applying the results to F̃ (y) = 1 − F (y − 0). These will give ãn =

sup{y : F̃ (y) < 1} = 0 and b̃n such that [(−Xn)− ãn]/b̃n
D→ W , which turns into

Xn/bn
D→ −W where and bn = b̃n. One easily sees that bn solves

F (bn) = 1/n + o(1/n).

The limiting distribution is

G−2,p(y) = 1 − exp[−wq].

In particular, if h(1/y) = c+ o(1) as in our examples, then we may take

bn = (nc)−1/q.
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It is simpler write the convergence in distribution result as

n1/qXn
D→ W,

where W has distribution function

FW (w) = 1 − exp[−(w/c1/q)], w > 0.

The distribution function 1−exp[−(x/β)α], x > 0, is known as the Weibull distri-
bution function with shape parameter α > 0 and scale parameter β > 0, denotes
Weibull(α, β). This is found to be applicable in many practical situations, e.g.
in breaking strength of materials or lifetimes of components where the weakest
or shortest lived component determines the overall result.

2

Example 3.4.3 Suppose the Yi’s have a N(0, 1) distribution. We know from
Example 3.1.1 that

F̄ (y) =
φ(y)

y
(1 + o(1)).

This clearly won’t satisfy (b) of the theorem as y0 = ∞, and neither will it
satisfy (a) since the F̄ (y) goes to 0 faster than any power of y, and the slowly
varying function goes slower than any power. Thus, we must try to fit it into the
framework of (c). Now

F̄ (y + tg(y))

F̄ (y)
∼ exp

[

−ytg(y)− (tg(y))2/2
] y

y + tg(y)
.

The first term in the exponent looks something like −t. Let us try

g(y) = 1/y.

Then
F̄ (y + tg(y))

F̄ (y)
∼ exp[−t− t2/(2y2)]

y

y + tg(y)
∼ e−t,

as y → ∞. Now let us find an so that

F̄ (an) ∼ φ(an)

an
= exp

[

−a2
n/2 − log an − log

√
2π
]

=
1

n
(1 + o(1)).

Taking logs and noting that log(1+o(1)) = o(1) we observe that the last equation
is equivalent to

a2
n/2 + log an + log

√
2π = logn + o(1). (3.45)
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Let’s try ignoring all but the first (and dominant) term on the l.h.s. which gives

an1 =
√

2 logn.

Clearly log an1 + log
√

2π is not o(1). In order to derive a “correction” to an1,
let’s use Newton’s method which says that if a1 is an approximate solution to
ψ(a) = 0, then we can possibly improve on a1 with a2 = a1−ψ(a1)/ψ

′(a1). Here,

ψ(a) = a2/2 + log a + log
√

2π − logn,

ψ′(a) = a + 1/a.

If one tries an2 = an1 − ψ(an1)/ψ
′(an1), one will see that the second term in the

ψ′(an1) can be dropped. So, let us try

an =
√

2 logn − log
√

2 logn + log
√

2π√
2 logn

=
√

2 logn − log
√

4π log n√
2 logn

.

Note that this is
√

2 logn+o(1). Also, log an = log[
√

2 logn+o(1)] = log[
√

2 logn(1+
o(1))] = log

√
2 logn+ o(1). Thus

a2
n/2 + log(

√
2πan)

= log n −
[

log
√

2 logn+ log
√

2π
]

+ o(1) + log
(

√

2 logn+ o(1)
)

+ log
√

2π

= log n + o(1).

We may take

1/an ∼ 1/
√

2 logn = bn.

Thus, for this case we have that if Xn is the largest order statistic in n i.i.d.
standard normal random variables, then

√

2 logn
[

Xn −
√

2 logn + log
√

4π logn/
√

2 logn
]

D→ W,

where W has the G3 distribution. Note in particular that we obtain

Xn =
√

2 logn − log
√

2 logn/
√

2 logn + OP

(

1/
√

2 logn
)

. (3.46)

One can show that the minimal order statistic is asymptotically independent
of the maximal order statistic, and hence that if Rn is the range (difference
between the maximal and minimal order statistics) in an i.i.d. sample of size n
from N(µ, σ2), then

√

2 logn(Rn − 2anσ)/σ
D→ W1 +W2, (3.47)
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where W1 andW2 are i.i.d. fromG3. See Exercise 3.4.9. This shows that Rn/(2an)
P→ σ and in fact we can get a rate of convergence as

Rn

2an
− σ = OP (1/ logn). (3.48)

This is much slower than the sample standard deviation which converges at the
rate OP (1/

√
n).

2
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Exercises for Section 3.4.

3.4.1 Suppose
√
n[Xn − µ]

D→ N(0, σ2). Let h(x) = x2. What is the limiting
distribution of h(

√
n[Xn − µ])? What is the limiting distribution of just h(Xn),

with no centering and scaling? What is the limiting distribution of
√
n[h(Xn) −

h(µ)]?

3.4.2 Let X1, X2, . . ., Xn be i.i.d. with the exponential density with mean
µ > 0, i.e. the density is

f(x) = µ−1 exp[−x/µ] , x > 0 .

(a) Find a limiting normal distribution for Xn, meaning for
√
n[Xn − µ].

(b) Suppose we wish to estimate the probability P [X > x0] = exp[−x0/µ],
where x0 is a given value. We use the estimate δn = exp[−x0/Xn]. Find a limiting
normal distribution for δn, after suitable centering and scaling, of course.

3.4.3 Let X1, X2, . . ., Xn be i.i.d. N(µ, σ2) random variables. Let Xn be the
sample mean and

S2
n =

1

n

n
∑

i=1

(Xi −Xn)2

the sample variance.
(a) Show that

√
n[S2

n − σ2] has a limiting normal distribution and find the
asymptotic variance. (Hint: nS2

n/σ
2 has exactly a χ2

n−1 distribution, which is the
same as the distribution of the sum of n− 1 i.i.d. χ2

1 random variables.)

(b) Let Sn =
√

S2
n be the sample standard deviation. Find the limiting normal

distribution for
√
n[Sn − σ].

3.4.4 Complete the proof of Theorem 3.4.1 for vector valued h. (Hint: Cramér–
Wold Device.)

3.4.5 Let X1, X2, . . ., Xn be i.i.d. N(µ, σ2) random variables. Let Xn be the
sample mean and S2

n the sample variance as defined in Exercise ??. Find the
asymptotic normal distribution (after appropriate centering and rescaling) for

δn = Φ([x0 −X]/Sn) .

Why might this quantity be of interest?

3.4.6 Give the proof of Proposition 3.4.4.

3.4.7 Suppose Y1, Y2, . . . are i.i.d. r.v.’s with finite second moments and σ2 =
Var[Yi] > 0. Let Xni = cniYi where cni is a triangular array of constants as in
Proposition 3.4.4. Show that a necessary condition for the Xni to satisfy the
Lindeberg condition is that

max1≤i≤n c
2
ni

∑n
i=1 c

2
ni

→ 0, as n→ ∞.
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3.4.8 Prove part (b) of Theorem 3.4.6.

3.4.9 Let Y1, Y2, . . ., be i.i.d. r.v.’s such that both FY and F−Y satisfy one of
the three conditions of Theorem 3.4.6 (not necessarily the same one). Let Xn1

= min{Yi : 1 ≤ i ≤ n} and Xn2 = max{Yi : 1 ≤ i ≤ n}. Let ani and bni be as

in Theorem 3.4.6 such that Wni = (Xni − ani)/bni
D→ Wi, i = 1, 2, where the Wi

have one of the three extreme value distributions. Let Rn = Xn2 − Xn1 be the
sample range of Y1, . . ., Yn.

(a) Show that (Wn1,Wn2)
D→ (W1,W2) where W1 and W2 are independent.

(Hint: Consider the limit of P [xn1 < Xn1, Xn2 ≤ xn2] for appropriate xni.)
(b) Assume that bn1 = cbn2 for some c > 0. Show that (Rn − (an2 − an1))/bn1

D→ W1 + cW2 where (W1,W2) are as in part (a).

(c) Suppose bn1 = o(bn2). Show that (Rn − an2)/bn2
D→ W2.
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3.5 Accuracy of Asymptotic Distributions.

??????????????????????????????????????????????????
The results of the previous two sections are widely used in statistics to derive

asymptotic distribution results. As discussed in the first section of this chapter,
any asymptotic result is an approximation, and one should have some idea of
how accurate the approximation is before using it in practice. In this section,
we study some examples of asymptotic approximations and assess their accuracy
with finite sample calculations. In the first example, the finite sample calculations
are possible without resorting to Monte Carlo simulation, but the second exam-
ple is easily dispensed with by simulation, although it too can be done without
simulation. However, Monte Carlo is quick and easy.

Example 3.5.1 We return to the setup of Example 3.4.1. Such a problem may
arise in practice as follows: a water chemist is interested in estimating the percent-
age of households in a certain area whose tap water lead concentrations exceed
a standard recently set by the Environmental Protection Agency. He takes tap
water samples from n houses more or less randomly selected in the study area.
(Of course, the selection process is of great concern to the statistician. Although
many scientists seem to think that one obtains a random sample rather easily by
simply not being too thoughtful about how to select houses, in this case, that in
fact is not true. Subtle and unconscious forces can operate to bias the sample,
but after the data is collected the statistician can do little more than gently warn
the scientist to seek assistance in sample selection in the future. The statistician
will then analyze the data as if it were a random sample and hope that it is
not too biased.) Some data snooping indicated that the log-normal distribution
seemed to fit reasonably well, so after taking logarithms of the data, a normal
distribution is fit by estimating mean and variance. In order to keep things simple
for now, we assume that the variance is known. A more practical result would be
obtained by using Exercise 3.4.5. One point to be made here – this experiment
will be carried out over and over for various locales. The water chemist wants a
statistical procedure that can be routinely applied in field work. Therefore, it is
important that it be simple, e.g. implementable on a hand calculator possibly in
conjunction with a book of tables.

Thus, we showed in Example 3.4.1 that δn = Φ(x0 − Xn) satisfies
√
n[δn −

Φ(x0 − µ)]
D→ N(0, φ2(x0 − µ)). Now in this case, we can obtain a closed form

solution for the c.d.f. of δn, or to make comparison with our asymptotic distri-
bution result more easy, for Zn :=

√
n[δn − Φ(x0 − µ)]/φ(x0 − µ), which has an

asymptotic N(0, 1) distribution. We have

Fn(z) = P [Zn ≤ z] = 1 − Φ
(√

n
{

ξ − Φ−1
(

Φ(ξ) + n−1/2φ(ξ)z
)})

,

(3.49)
where

ξ = x0 − µ .
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The derivation is left as Exercise 3.5.1. An S-Plus function was written to evaluate
Fn(z) for a given value of ξ and n. The listing of the function is

> pr1

function(z, x0, n)

{

#computes the c.d.f. at z of Phi(x0-barXn) under mu=0; accepts vector z

t1 <- sqrt(n)

t2 <- (dnorm(x0) * z)/t1

t2 <- pnorm(x0) + t2

t2 <- qnorm(t2)

t2 <- t1 * (x0 - t2)

t2 <- pnorm( - t2)

return(t2)

}

Some comments on this function. The argument z may be a whole vector, which is
especially convenient for generating plots. The argument x0 is what was denoted
ξ above. The function was already input into the system (see The New S Language
manual for a discussion of this), and we typed the function name “pr1” at the
S prompt (“> ”) to produce this listing. The first line (“function(z, x0, n)”)
just tells us that this S object is a function, and lists the arguments. Then the
lines between the braces “{ . . . }” give the actual statements in the function.
The line beginning with the pound sign “#” is a comment. Note that we have
broken up the evaluation of the function into a number of steps. For such a
complicated function, this is a good idea as it makes it easier to find possible
errors. The S functions dnorm, pnorm, and qnorm correspond to φ, Φ, and Φ−1,
respectively, in our notation, i.e. the standard normal density, distribution, and
quantile functions.

The c.d.f. Fn was evaluated 101 equally spaced values of z between ±2.5
inclusive, i.e. −2.50, −2.45, −2.40, . . ., 2.45, 2.50, and for ξ = 0, .5, 1.0, 1.5, 2.0,
2.5. A problem can arise here since 0 < Φ(x0 −Xn) < 1 which implies

−√
nΦ(ξ)

φ(ξ)
< Zn <

√
n[1 − Φ(ξ)]

φ(ξ)
.

If z goes outside this range, then the Φ−1(·) in (3.49) will fail to be defined (since
it’s argument must be inside (0, 1)). In fact, we had problems with this when ξ
= 2.0 and ξ = 2.5, so we eliminated them from further consideration. (In a more
careful study, we would have written the S code for the function Fn to recognize
this and give the right answer, either 0 or 1 depending on what side of the limits
in the last display z was.)

In Figure 3.5.1 in the upper left plot is shown the N(0, 1) c.d.f. and the 4
c.d.f.’s for the different ξ values. (We denoted ξ as x0 in this figure, since the two
agree when µ = 0.)
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The limiting N(0, 1) practically coincides with the ξ = 0 case, and the approx-
imation becomes worse as ξ increases to 1.5. In general, one might think the
approximation looks quite good, but this is somewhat misleading as the c.d.f.’s
have a roughly common shape and the “centering” is pretty close (note how well
they match in the neighborhoos of z = 0). We now consider some different ways
of looking at this approximation error. The first alternative we consider is the
probability-probability or P-P plot. Since Fn(z) is supposed to be close to Φ(z),
if we plot points (Φ(z), Fn(z)) for various values of z, they should fall nearly on
the 45 degree line within the unit square [0, 1] × [0, 1]. This plot is shown in the
upper right of Figure 3.5.1. In the lower left of Figure 3.5.1 we show a blowup
of the upper right corner of the upper right plot in Figure 3.5.1, and have also
overlaid the 45 degree line. We see for example that when ξ = 1.5, if Φ(z) = .95
then Fn(z) is approximately .99. Now this is important since we will be interested
in probabilities in this range when we construct approximate confidence intervals
in the next chapter (in particular, Φ(z) = .95 will be important for constructing
90% confidence intervals). Looking at 1 − Φ(z) and 1 − Fn(z), we see that the
approximation doesn’t look so great – the approximating value 1−Φ(z) is about
5 times the true value 1 − Fn(z).

Now in the construction of confidence intervals, we will want to find a value
z.05 such that Fn(z.05) = .95, i.e. z.05 = F−1

n (1 − .05). Using the approximating
normal distribution, we would use Φ−1(1 − .05) as the approximation. Now it is
clearly of interest to see how well the quantiles of Φ approximate the quantiles
of Fn. To assess this, we plot (Φ−1(p), F−1

n (p)) for various values of p in (0, 1).
This gives a Quantile-Quantile or QQ-plot. This is given in the lower right
of Figure 3.5.1. Note for instance that for ξ = 1.5, Φ−1(.975) = 1.96 is not
so close to F−1(.975) which is about 1.49. Based on this, we see that a 95%
confidence interval constructed from the asymptotic normal distribution might
tend to be too large, by roughly 1/3. There is an extra complication here – we
will have to estimate the standard deviation φ(x0 − µ) of the limiting normal
distribution, which will introduce further approximation errors. These matters
are taken up in the a subsequent chapter. As one can see by comparing the three
types of plots (c.d.f. plot, PP-plot, and QQ-plot), the QQ-plot tends most to
magnify differences between the distributions, especially in the tails for typical
distributions. See Exercise 3.5.2 for some justification of this. For this reason,
the QQ-plot is preferred by statisticians when comparing distributions. There
is an added advantage when one wishes to compare with a normal distribution
of unknown mean and variance – simply plotting against N(0,1) quantiles will
produce a straight line if the given distribution is N(µ, σ2), no matter what the
values are for µ and σ2. See Exercise 3.5.3.

What we have learned from this example is that the asymptotic approximation
is quite good when n = 30 if x0 is close to µ (i.e. ξ is close to 0). As x0 gets
bigger, the accuracy goes down, although it stays good in a neighborhood of
z = 0 (this is true roughly speaking since the Taylor series expansion is exact at
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z = 0). In the context of our practical example involving the logarithms of lead
concentrations in drinking water, the value of x0 is actually much larger than
µ (as the E.P.A. limit is somewhat larger than the lead concentrations typically
found in drinking water, at least we hope), so this suggests that the asymptotic
approximation may not work so well, certainly when n = 30. Further, at least
for x0 between 0 and 1.5, the tails of the actual distribution are lighter than the
normal on the right (note that Fn(z) > Φ(z) for z > 0, i.e. the right tail tends
to 1 more quickly than the normal approximation) and heavier on the left (the
left tails of Fn tend to 0 more slowly than the normal). One could of course
repeat this for a larger value of n, and would presumably find that the normal
approximation worked better. Given some values for how large an approximation
error is acceptable, one can find how large n must be to achieve that.

2

Example 3.5.2 It follows from Theorem 3.4.3 that if X1, . . ., Xn are i.i.d. from
a distribution which has a Lebesgue density f(x) which is continuous and posi-
tive at the median m then the sample median Mn has the following asymptotic
distribution: √

n[Mn −m]
D→ N(0, 1/[4f 2(m)]) .

We will investigate the accuracy of this asymptotic result for a couple of different
distributions. Monte Carlo simulation will be used for this purpose. We will
generate a large number N of samples of size n from given distributions, and for
each sample compute Mn and

Zn = 2f(m)
√
n[Mn −m]

and compare this with the standard normal as in the previous example. We
will use N = 1, 000 and n = 100. It is important to distinguish between the
underlying sample size n and the number of Monte Carlo trials N .

We first try this with the N(0, 1) distribution. Note that m = 0 and φ(m) =
1/
√

2π = 0.3989423. The following Splus code generates the 1000 sample medians
from samples of 100 N(0,1) random variables, centers and normalizes, and then
sorts (into ascending order):

> Zn_apply(matrix(rnorm(100*1000),nrow=100),2,median)

> dnorm(0)

[1] 0.3989423

> Zn_2*0.3989423*sqrt(100)*Zn

> Zn_sort(Zn)

The first line performs a lot of calculations with a few keystrokes. The command
“(rnorm(100*1000)” generates 100×1000 N(0,1) random variates (it is common
to speak of the output of a random number generator as a “ random variate”).
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These are returned in a big vector (think of it as a column vector) of length
100 × 1000. The matrix function takes a vector and constructs a matrix. In
this case, the first 100 entries of the vector returned by “(rnorm(100*1000)”
go into the first column, the second 100 entries into the second column, and so
forth, until the vector is exhausted, giving 1000 columns. The apply function is
extremely useful. If x is a matrix and func is a real valued function of a vector,
then “apply(x,2,func)” returns a vector whose length is the number of columns

of x, and whose ith entry is the result of applying func to the ith column of x.
To apply func to the rows of x, use “apply(x,1,func).” The first line above
could have been replaced with the following for the same result:

> Zn_NULL

> for(i in 1:1000) Zn_c(Zn,median(rnorm(100)))

However, this last piece of code is guaranteed to take much, much longer than
the apply statement. One should avoid the use of for loops in Splus
whenever possible.

Next, we turn on the graphics device and plot the empirical c.d.f. and overlay
the N(0,1) c.d.f. Recall that the empirical c.d.f. of data X1, . . ., Xn is given by

F̂n(x) =
1

n

n
∑

i=1

I(−∞,x](Xi) =
1

n
#{i : Xi ≤ x} .

The Splus code:

> X11() #on-screen graphics device in X-windows

> plot(Zn,(1:1000)/1000)

> lines(Zn,pnorm(Zn))

> #Almost perfect fit!

Note that it is critical that we used the sorted Zn in the plot command. The
plot may be found in the upper left of Figure 3.5.2. We also want to make
the corresponding QQ-plot. There is a minor difficulty here as the empirical
distribution is discontinuous at each of the data points. To overcome this, we

associate the ith order statistic of the data with the probability (i − .5)/N . In
particular, this way we avoid 0 and 1. The corresponding code is

> plot(qnorm((1:1000)/1000 -.5/1000),Zn)

> #find a good range for drawing in the 45 degree line

> range(Zn)

[1] -3.954932 2.769698

> qnorm(.5/1000)

[1] -3.290527

> lines(c(-3.290527,2.769698),c(-3.290527,2.769698))
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The plot may be found in upper right of Figure 3.5.2. Again, in this case the
asymptotic approximation works extremely well.

Turning now to another distribution, we consider n = 100 again but this time
from a gamma distribution with α = 1.5, which is also a χ2

3 distribution. The
code for generating the data, centering, and normalizing:

> Zn_apply(matrix(rgamma(100*1000,1.5),nrow=100),2,median)

> qgamma(.5,1.5)

[1] 1.182987

> dgamma(qgamma(.5,1.5),1.5)

[1] 0.3759935

> Zn_2*0.3759935*sqrt(100)*(Zn-1.182987)

The rest is the same as for the N(0, 1) case. The plot of the empirical c.d.f. and
the QQ-plot are given in the lower part of Figures 3.5.2. Again, the approximation
is excellent.

We don’t mean to leave the reader with the impression that the asymptotic
distribution of the median always works extremely well. One can construct dis-
tributions where it doesn’t work well, for instance if f(m) is rather small as for a
bimodal distribution where the median is between the two modes. See Exercise
3.5.4.

2
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Exercises for Section 3.5.

Elementary and Review Exercises.

3.5.1 Verify equation (3.49).

3.5.2 Here we investigate why the QQ-plot tends to magnify differences between
c.d.f.’s in the tails. Suppose F is a given c.d.f. with density f which is everywhere
positive and we consider c.d.f.’s G satisfying

sup
−∞<x<∞

|G(x) − F (x)| ≤ ε

where ε is a small positive number. Given u satisfying ε < u < 1 − ε, put
x = F−1(u).

(a) Given G in our class above, show that

F−1(u− ε) ≤ G−1(u) ≤ F−1(u+ ε) .

(b) Argue that, approximately,

F−1(u± ε)
.
= x ± ε

f(x)
.

(c) Assuming f(x) → 0 as |x| → ∞, give an heuristic justification for the
statement that the QQ-plot will magnify differences in the tails.

3.5.3 (a) Show that the QQ-plot of a N(µ, σ2) vs. a N(0, 1) will be a straight
line, and determine the slope and intercept.

(b) Generalize the result of part (a) to an arbitrary location–scale family, i.e.
a QQ-plot of Fa,b vs. F0,1 where Fa,b(y) = F0,1([y−a]/b). Here, a ∈ IR is arbitrary
and b > 0.

(c) Discuss the application of (b) to exponential distributions when the mean
is unknown. How can one “read off” the mean from the QQ-plot?

Advanced Exercises.

3.5.4 (a) Let Y be a Bernoulli random variable with success probability p = 1/2,
Z be a N(0, 1) random variable independent of Y , and µ > 0 be given. Put X
= Z + (2Y − 1)µ. Find the density for the distribution of X.

(b) Repeat the study of Example 3.5.2 when the observations are i.i.d. with
the same distribution as X in part (a). Use µ = 2.

3.5.5 Show that if one has available a function to compute the distribution of
B(n, p) for arbitrary (n, p) and to compute the c.d.f. of an individual observation
Xi, then it is unnecessary to use Monte Carlo simulation in Example 3.5.2, i.e.
one can compute P [2f(m)

√
n(Mn −m) ≤ z] similarly to Example 3.5.1.
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3.5.6 Perform a study of the accuracy of the asymptotic approximation in Ex-
ercise 3.4.2.

3.5.7 Perform a study of the accuracy of the asymptotic approximation in Ex-
ercise 3.4.5.


