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Chapter 1

Measure Spaces.

Theoretical statistics relies heavily on probability theory, which in turn is based
on measure theory. Thus, a student of advanced statistics needs to learn some
measure theory. A proper introduction to measure theory is not provided here.
Instead, definitions and concepts are given and the main theorems are stated
without proof. The student should take a course on the subject, such as one based
on the text Probability and Measure, by Billingsley. Other books on measure
theory and probability are discussed at the end of Section 1.

Measure theory is a rather difficult and dry subject, and many statisticians
believe it is unnecessary to learn measure theory in order to understand statis-
tics. To counter these views, we offer the following list of benefits from studying
measure theory:

(i) A good understanding of measure theory eliminates the artificial distinction
between discrete and continuous random variables. Summations become an
example of the abstract integral, so one need not dichotomize proofs into
the discrete and continuous cases, but can cover both at once.

(ii) One can understand probability models which cannot be classified as either
discrete or continuous. Such models do arise in practice, e.g. when censoring
a continuous lifetime and in Generalized Random Effects Models such as
the Beta-Binomial.

(iii) The measure theoretic statistics presented here provides a basis for under-
standing complex problems that arise in the statistical inference of stochas-
tic processes and other areas of statistics.

(iv) Measure theory provides a unifying theme for much of statistics. As an
example, consider the notion of likelihoods, which are rather mysterious in
some ways, but at least from a formal point of view are measure theoretically
quite simple. As with many mathematical theories, if one puts in the initial
effort to understand the theory, one is rewarded with a deeper and clearer
understanding of the subject.
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4 CHAPTER 1. MEASURE SPACES.

(v) Certain fundamental notions (such as conditional expectation) are arguably
not completely understandable except from a measure theoretic point of
view.

Rather than spend more words on motivation, let us embark on the subject
matter.

1.1 Measures.

A measure is a function µ defined for certain subsets A of a set Ω which assigns a
nonnegative number µ(A) to each “measurable” set A. In probability theory, the
probability is a measure, denoted by P instead of µ, which satisfies P (Ω) = 1. In
the context of probability theory, the subset A is called an event and Ω is called
the sample space. Unfortunately, probability developed somewhat independently
of measure theory, so there is a separate terminology, and we will frequently
learn two names and notations for the same concept. To introduce the subject
of measure theory and provide some insight into the technical difficulties (which
are many), we begin with some examples which are pertinent to our study. More
formal definitions are given below.

Example 1.1.1 Consider a die with 6 faces. Let the sample space Ω be the
finite set of integers { 1, 2, 3, 4, 5, 6 } corresponding to the possible outcomes if
we roll the die once and count the number of spots on the face that turns up. Let
the collection of events be all subsets of Ω. We define a probability measure P
on these events by P (A) = #(A)/6 where A ⊂ Ω and #(A) denotes the number
of elements or outcomes in A. It will turn out that # is a measure on Ω which
will be very useful for us.

Recall that probability was invented to describe the long run frequencies in-
volved with games of chance. Thus, in the context of this example, we expect
that if the die is rolled many, many times, then the relative frequency of A (which
is the ratio of the number of rolls where the outcome is in A to the total number
of rolls) will be approximately P (A) = #(A)/6. We will discuss these notions at
great length, but in fact there is no way to mathematically prove this claim that
the long run relative frequency equals P (A). One must simply perform the “ex-
periment” of rolling the die many, many times to see if it is a good approximation
to reality.

2

Example 1.1.2 Let a random real number be chosen in the interval [0, 1] such
that the probability of the number lying in any subinterval [a, b] (0 ≤ a < b ≤ 1)
is the length, i.e. P ([a, b]) = b − a. Here, Ω = [0, 1]. Such a random number is
said to be uniformly distributed on the interval [0, 1].
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A possible physical way of constructing such a random real number is the
following. Take a balanced wheel with a mark on it and a special fixed mark on
the supporting structure. Spin the wheel with a great force so it makes many
revolutions, and after it stops, measure in radians the counterclockwise angle
between the fixed mark and the mark on the wheel, then divide the measured
angle by 2π to obtain a real number in the range [0, 1]. Similarly to the previous
example with rolling a die, for [a, b] ⊂ [0, 1], we conjecture that the long run
relative frequency of the number of times the measured angle divided by 2π is in
[a, b] is b− a. Again, this can only be verified empirically.

We clearly can extend the probability measure P from closed intervals to other
subsets of [0, 1]. For instance, we can put P ((a, b)) = P ([a, b)) = P ((a, b]) =
P ([a, b]) = b − a for open intervals (a, b), left closed right open intervals [a, b),
and left open right closed intervals (a, b], all with 0 ≤ a ≤ b ≤ 1. Also, if [a1, b1],
[a2, b2], . . . is a finite or infinite sequence of disjoint closed intervals (one can also
allow open or semi–open intervals), then we can put P (

⋃

i[ai, bi]) =
∑

i(bi − ai).

It turns out for technical reasons that in this case, one cannot define the
probability measure of all subsets of [0, 1]. The reasons are very complicated
and we shall generally not discuss the issue, although some insight is given in
Remarks 1.1.4 below. The sets which are not “measurable” will never arise in
our work. For an example, see p. 41 of Billingsley.

The probability measure of this example is related to a (nonprobability) mea-
sure: let µ = m be a measure on arbitrary intervals of real numbers which equals
the length of the interval, i.e. m((a, b)) = b−a for any open interval (a, b), a < b,
and similarly for the other varieties of intervals. Here, Ω = IR, the set of all real
numbers, also denoted (−∞,∞). This measure m is called Lebesgue measure,
and will turn out to have many uses.

This probability measure (the uniform distribution on [0, 1]) plays a funda-
mental role in the computer generation of random numbers (or more correctly,
pseudorandom numbers). Indeed, the basic (pseudo)random numbers generated
by computers are uniformly distributed on [0, 1], except for round-off. To ob-
tain random numbers with other distributions, various transformations and other
tricks are employed. We shall refer to the subject of computer generation of ran-
dom numbers and their various applications as Monte Carlo simulation.

2

In the first example of rolling a die and counting spots, no technical difficulties
arise, but in the second example of the uniformly distributed random number
on [0, 1], the sample space is so complex that it is not possible to define the
probability or measure on all possible subsets. In general, it will be necessary to
restrict the domain of definition of the measure to a collection of subsets of the
sample space, and it will be necessary for this collection of subsets on which the
measure is defined to satisfy certain properties.
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1.1.1 σ–Fields.

Now we set forth the requisite properties for the class of sets on which a measure
is defined.

Definition 1.1.1 Let F be a collection of subsets of a set Ω. Then F is called a
sigma field (or sigma algebra; written σ-field or σ-algebra) if and only if (abbre-
viated iff) it satisfies the following properties:

(i) The empty set ∅ ∈ F ;

(ii) If A ∈ F , then the complement Ac ∈ F ;

(iii) If A1, A2, . . . is a sequence of elements of F , then their union
⋃∞
i=1 Ai ∈ F .

A pair (Ω,F) consisting of a set Ω and a σ-field of subsets F is called a measur-
able space. The elements of F are called measurable sets or events.

2

Remarks 1.1.1 (a) The set Ω is called the sample space in probability, but in
general measure theory it is simply called the underlying set or underlying space.

(b) Since ∅c = Ω, it follows from (i) and (ii) that Ω ∈ F .
(c) Given any set Ω, the trivial σ-field is F = {∅,Ω}. One easily verifies that

this is a σ-field, and is in fact the smallest σ-field on Ω.
(d) Given any set Ω, the power set

P(Ω) = {A : A ⊂ Ω}

consisting of all subsets of Ω is also a σ-field on Ω, and in fact is the largest σ-field
on Ω. (Note: Many authors denote P(Ω) by 2Ω.)

(e) It follows from the definition that if F is a σ-field and A1, A2, . . . is a
sequence in F , then the intersection

⋂∞
i=1 Ai ∈ F . To see this, first note that

(Ac)c = A, so we have for any A ⊂ Ω, A ∈ F iff Ac ∈ F . Thus it suffices to show
that [

⋂∞
i=1 Ai]

c ∈ F . But by DeMorgan’s law

[

∞
⋂

i=1

Ai

]c

=
∞
⋃

i=1

Aci

and the latter event is in F since each Aci ∈ F . This proves the result.
(f) Properties (i) and (iii) imply that the union of a finite sequence of sets

from a σ-field is again in the σ-field. To see this, let F be a σ-field and A1, A2,
. . ., An a finite sequence from F . Extend this to an infinite sequence by defining
Ak = ∅ for k > n. Then

∪ni=1Ai = ∪∞
i=1Ai ∈ F .
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(g) Property (iii) of the definition of a σ-field does not imply that the union of
an arbitrary collection of sets from F is again in F . There may exist collections
which cannot be “listed” as a sequence. This is discussed in more detail in Remark
1.1.2 below.
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Remarks 1.1.2 A set A is called countable if it can be listed as a sequence,
finite or infinite:

A = {a1, a2, . . .}.
We shall sometimes say that a set is countably infinite to indicate that it is count-
able but not finite. There are in fact various “orders of infinity,” and countable
infinity is the smallest one. Here, we mean by “infinity” a counting number used
to denote the number of elements in a set. We shall encounter another “infinity”
shortly. Two sets A and B have the same number of elements if there is a one
to one correspondence (or bijective map) between them. If there is no bijective
map between A and B, but there is a one to one correspondence beween A and
a subset of B, then B has more elements than A. Somewhat surprisingly, the
set of rational numbers (real numbers which can be written as fractions) have the
same number elements as its proper subset the integers (see Exercise 1.1.6). Any
set which can be put in one to one correspondence with a subset of the natural
numbers or “counting numbers” IN = { 1, 2, 3, . . . } is called countable. Such
sets can be listed as a sequence A = { a1, a2, a3, . . . }. Property (iii) of Definition
1.1.1 is sometimes expressed as “a σ-field is closed under countable unions.” It
turns out the the set of all real numbers IR (including irrational numbers like

√
2,

π, and e) cannot be put into a one to one correspondence with the natural num-
bers, so it has “more” elements, and is said to be uncountably infinite. These
issues are pertinent to the technical difficulties which make it impossible to extend
Lebesgue measure to all subsets of IR, and hence require us to consider the notion
of a σ-field (rather than just defining a measure on all subsets of the underlying
space).

2

It takes a certain amount of work to obtain σ-fields other than the trivial
σ-field or the power set. A standard approach is to consider the smallest σ-field
containing a given family of sets. We shall illustrate this concept. Let A ⊂ Ω be
a nonempty proper subset of Ω (i.e. ∅ 6= A 6= Ω), then

σ(A) = {∅, A, Ac,Ω} (1.1)

is a σ–algebra. If ∅ 6= B 6= Ω, A ∩B 6= ∅, and neither A nor B is a subset of the
other, then one can obtain a σ-field σ({A,B}) consisting of 16 elements.
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Definition 1.1.2 If C is any collection of subsets of Ω, then the σ-field generated
by C, denoted σ(C), is the smallest σ-field containing C. (Here, “smallest” means
that if F is any σ-field containing C, then σ(C) ⊂ F .)

2

The following result shows that σ(C) always exists and indicates how one may
“construct” it.

Proposition 1.1.1 Let Ω and C be as in Definition 1.1.2, and let Γ = {G : G is
a σ-field on Ω and C ⊂ G}. Then σ(C) =

⋂

G∈Γ G.

Proof. Let F denote
⋂

G∈Γ G. Since P(Ω) ∈ Γ, it follows Γ 6= ∅. By properities
of set intesection, F ⊂ G for all G ∈ Γ. Thus, we need only verify that F is a
σ-field.

We check properties (i) through (iii) of Definition 1.1.1. Property (i) follows
since ∅ ∈ G for all G ∈ Γ, so ∅ is in

⋂

G∈Γ G. Property (ii) follows similarly. Finally,
suppose A1, A2, . . . is a sequence of elements of F , then each Ai ∈ G for all G ∈ Γ,
so
⋃∞
i=1Ai ∈ G for all G ∈ Γ by property (iii) of Definition 1.1.1 applied to each

σ-field G, and hence
⋃∞
i=1Ai ∈ F by definition of intersection. This completes

the proof.

2

On the real line IR there is a special σ-field which we shall use often.

Definition 1.1.3 The Borel σ-field B on IR is the σ-field generated by the col-
lection of all finite open intervals. In symbols,

B = σ ({(a, b) : −∞ < a < b <∞}) .

The elements of B are called Borel sets.

2

Proposition 1.1.2 (a) The following are Borel sets: all open sets, all closed
sets, all intervals (e.g. the half open interval (a, b] or a semi-infinite interval
(a,∞)), and all finite subsets of IR.

(b) B = σ(O) where O is the collection of all open sets in IR, and B = σ(C)
where C is the collection of all closed sets in IR.

Partial Proof. The proof that open sets are Borel sets depends on the
following fact: any open set U ⊂ IR can be expressed as a countable union of a
of open intervals. Let

R = {(a, b) : a and b are rational, and (a, b) ⊂ U}.
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Since each (a, b) ⊂ U , clearly

⋃

(a,b)∈R

(a, b) ⊂ U.

If x ∈ U , then there is an open interval (c, d) such that x ∈ (c, d) ⊂ U (this is the
definition of an open set: every element of the set has a neighborhood contained
in the set). We may find rational numbers a, b such that c ≤ a < x < b ≤ d, and
then (a, b) ∈ R and so

x ∈
⋃

(a,b)∈R

(a, b).

As x was an arbitrary element of U , it follows that

U ⊂
⋃

(a,b)∈R

(a, b).

We have shown both inclusions, so

U =
⋃

(a,b)∈R

(a, b).

Now, the collection rational numbers is countable (Exercise 1.1.6 (b)), and so
also is the collections of ordered pairs of rational numbers (Exercise 1.1.6 (c)),
and the collection R can be put in one to one correspondence with a subset of
the collection of ordered pairs of rational numbers.

The remaining parts of the proof are left as an exercise (see Exercise 1.1.8).

2

1.1.2 Measures: Formal Definition.

Definition 1.1.4 A measure space (Ω,F , µ) is a triple, consisting of an under-
lying set Ω, a σ-field F , a function µ called the measure with domain F and
satisfying the following:

(i) 0 ≤ µ(A) ≤ ∞ for all A ∈ F ;

(ii) µ(∅) = 0;

(iii) If A1, A2, . . . is a sequence of disjoint elements of F (i.e. Ai ∩ Aj = ∅ for
all i 6= j), then

µ(
∞
⋃

i=1

Ai) =
∞
∑

i=1

µ(Ai) .

A probability space is a measure space (Ω,F , P ) for which P (Ω) = 1. A measure
on (IR,B) is called a Borel measure.
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2

In probability theory, disjoint events are usually called mutually exclusive.

Remarks 1.1.3 Note that µ(A) = ∞ is possible (unless A = ∅). In order for
(iii) to make sense, we must know how to do arithmetic with ∞. For now, it
suffices to know

∞ + x = ∞ , for all x ∈ IR ,

∞ + ∞ = ∞ . (1.2)

(Note that ∞ is not a real number.) Hence, if in (iii) in Definition 1.1.4, µ(Aj)
= ∞ for some j, then

∑

i µ(Ai) = ∞. Of course,
∑

i µ(Ai) may equal ∞ even if
all µ(Ai) < ∞.

We will also need to know some multiplication rules for ∞ very soon, namely

a · ∞ = ∞ , for all a > 0 ,

0 · ∞ = 0 . (1.3)

It is understood that addition and multiplication with ∞ is always commutative.

2

Now we consider some examples of measures.

Example 1.1.3 (Counting Measure) Let (Ω,F) be any measurable space.
Let A ∈ F and define the measure #(A) = the number of elements of A. If
A is an infinite set, then of course #(A) = ∞. It is fairly easy to check that
(Ω,F ,#) is a measure space, i.e. that the three defining properties in Definition
1.1.4. (Whenever we say something like, “It is fairly easy to check ... ,” the
reader should take it upon himself or herself to check the claim!) Unless other-
wise stated, we will use the power set for the σ–field when dealing with counting
measure, i.e. F = P(Ω), the collection of all subsets of Ω.

2

Remarks 1.1.4 In the contexts of Definition 1.1.4 and Example 1.1.3, there is
only one infinity, denoted ∞, which, together with its negative, is appended to the
set of real numbers to “close” it. This is a different notion than that of infinity as
a counting number discussed in Remarks 1.1.2. For counting measure in Example
1.1.3, “∞” is the extended real number ∞ since # is a measure. Property (iii)
of Definition 1.1.4 is sometimes called the “countable additivity property” of
a measure. Note that most of the unions and intersections above have been
“countable” unions and intersections, i.e. we wrote

⋃∞
i=1Ai or something similar.

The one exception is in the proof of Proposition 1.1.1. The intersection there
(namely

⋂

G∈Γ G) may be over an uncountable collection Γ of σ-fields. Further
discussion of these issues can be found in Royden.
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2

Example 1.1.4 (Unit Point Mass Measures) A special kind of measure which
is often useful is the unit point mass at x. Given a measurable space (Ω,F) and
x ∈ Ω, put

δx(A) =

{

1 if x ∈ A,
0 if x /∈ A.

It is easy to check that δx is a probability measure on (Ω,F).
Note that counting measure on {x1, x2, . . .} may be written in terms of unit

point masses as
# =

∑

i

δxi
.

See Proposition 1.1.5 for the fact that the sum of measures is a measure.

2

Elaborating somewhat on the last example, a useful intuitive interpretation
of a general measure is as a “mass distribution”. Indeed, think of Ω = IR as a
very long rod with varying “mass density” and µ(A) as the amount of “mass” in
a set A ⊂ IR. In the idealized situation of a unit mass at x ∈ IR that takes up
no space, we obtain δx. It could be argued that “mass theory” would be a better
name for “measure theory”.

Many of the measures we shall need for statistics are built from certain “ele-
mentary measures” using either product measures (Section 1.3) or densities (Sec-
tion 1.4). The counting measure in Example 1.1.3 and the unit point masses
of Example 1.1.4 will be useful in this context for defining discrete probability
distributions, but the one given in the next theorem will be needed for the usual
continuous distributions.

Theorem 1.1.3 (Existence of Lebesgue Measure) There is a unique Borel
measure m satisfying

m([a, b]) = b− a ,

for every finite closed interval [a, b], −∞ < a < b < ∞.

2

The proof of this theorem is long and difficult. (See pp. 32–41 of Billingsley.)
Intuitively, Lebesgue measure extends the notion of “length” to sets other than
intervals. The content of the above theorem is that this notion can be extended
to Borel sets, which is a very large collection of subsets of IR, although it does not
include all subsets of IR. It is difficult to “construct” a subset of IR which is not
a Borel set, but it is sometimes difficult to prove that a set which is “obviously”



12 CHAPTER 1. MEASURE SPACES.

a Borel set is in fact one. We shall generally ignore the issue, and in the future
whenever we mention a subset of IR it will be a Borel set, unless otherwise stated.

Thinking of Lebesgue measure as a “mass distribution,” we see that it is a
continuous distribution of mass which is “concentrated” on a line (the real line)
and assigns one unit of mass per length.

The following results are proved on pp. 22-23 of Billingsley.

Proposition 1.1.4 (Basic Properties of Measures) Let (Ω,F , µ) be a mea-
sure space.

(a) (Monotonicity) A ⊂ B implies µ(A) ≤ µ(B), assuming A and B are in
F .

(b) (Subadditivity) If A1, A2, . . . is any sequence of measurable sets, then

µ(
⋃

Ai) ≤
∑

µ(Ai) .

(c) If A1, A2, . . . is a decreasing sequence of measurable sets (i.e. A1 ⊃ A2 ⊃
. . .), and if µ(A1) < ∞, then

µ(
∞
⋂

i=1

Ai) = lim
i→∞

µ(Ai) .

2

The next proposition allows us to construct new measures from given mea-
sures.

Proposition 1.1.5 (a) Let µ1, µ2, . . . be a finite or infinite sequence of measures
on (Ω,F). Suppose a1, a2, . . . are nonnegative real numbers. Then µ =

∑

i aiµi
is a measure on (Ω,F).

(b) Consider the same setup as in part (a). If each of the µi is a probability
measure and if

∑

i ai = 1, then µ is a probability measure.
(c) Let µ be a measure on (Ω,F) and let A ∈ F . Define ν(B) = µ(B ∩ A)

for all B ∈ F . Then ν is a measure on (Ω,F).

2

In the proposition, µ =
∑

i aiµi means that for any A ∈ F , µ(A) =
∑

i aiµi(A).
Note that if any µ(Ai) = ∞, then our conventions from (1.3) are needed. The
proof of this proposition is not difficult, and is an exercise (Exercise 1.1.10).

1.1.3 Distribution Functions.

If P is a probability measure (abbreviated p.m.) on (IR,B), i.e. a Borel p.m.,
then we can define

F (x) = P ((−∞, x]) ,
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for −∞ < x <∞. F is called the (cumulative) distribution function (abbreviated
c.d.f.) for P . (Note: Sometimes a probability measure itself is referred to as
a distribution. In this text, we will never use “distribution” without the word
“function” to refer to the c.d.f. Note that the probability measure and the c.d.f.
are two different kinds of objects. One maps Borel sets to real numbers and the
other maps real numbers to real numbers.)

Theorem 1.1.6 (a) The c.d.f. of a Borel p.m. has the following properties:

(i) F (−∞) = limx→−∞ F (x) = 0.

(ii) F (∞) = limx→∞ F (x) = 1.

(iii) F is nondecreasing, i.e. if x ≤ y then F (x) ≤ F (y).

(iv) F is right continuous, i.e. F (x + 0) = limz↓x F (z) = F (x). (Here, limz↓x

means the limit is taken through values z > x.)

(b) Suppose F : IR −→ IR is any function satisfying (i) through (iv) above,
then F is the c.d.f. of a unique Borel p.m. on IR.

2

The proof of part (a) follows easily from previously stated properties of mea-
sures, but the proof of part (b) is very difficult, similarly to the proof of Theorem
1.1.3, which also asserts the existence of a Borel measure. See Billingsley, Theo-
rem 14.1, p. 190.

Figure 1.1 shows the graph of the c.d.f. F of the probability measure P =
1
2
Pu + 1

2
δ1/2 where Pu is the uniform distribution on [0, 1] introduced in Example

1.1.2. Note that there is a jump discontinuity in F (x) at x = 1/2. The filled
circle on the top branch of the graph indicates that F (1/2) = 3/4 whereas the
open circle on the lower branch shows F (1/2 − 0) = 1/4. Here, we use F (x− 0)
to denote the limit from the left or from below:

F (x− 0) = lim
z↑x

F (z) = lim
z→x, z<x

F (z).

The magnitude of the jump F (1/2) − F (1/2 − 0) = 1/2 shows that the point
x = 1/2 has a probability of 1/2, i.e. P ({1/2}) = 1/2. Also, the c.d.f. is flat over
an interval if that interval has no probability measure. In this case, the c.d.f. is
flat over any interval [a, b] ⊂ [1,∞) or [a, b] ⊂ (−∞, 0].

The inverse of a c.d.f. or quantile function is very useful in statistics. Strictly
speaking, F−1(u) is defined for all u ∈ (0, 1) if and only if F is continuous and
strictly increasing. However, we can get around this and define a quantile function
for an arbitrary distribution as shown next.
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Figure 1.1: Graph of a c.d.f.

Definition 1.1.5 Let F be any c.d.f. For 0 ≤ α ≤ 1, the lower quantile function
and upper quantile function for F are given by

F−(α) = inf { x : F (x) ≥ α },
F+(α) = sup { x : F (x) ≤ α },

respectively. We adopt the conventions that

inf ∅ = +∞ and sup ∅ = −∞.

2

It is easy to show (see Exercise 1.1.15)

F−(α) ≤ F+(α), ∀α ∈ (0, 1).

Also, F−(α) = F+(α) = x if for all ε > 0 there exist x1 ∈ (x − ε, x) and x2 ∈
(x, x + ε) with F (x1) < F (x) < F (x2). When this happens, we say x is a point
of increase for F . Furthermore, if F is continuous and strictly increasing, then
F−(α) = F+(α) = F−1(α) for all α ∈ (0, 1).

The median of a c.d.f. is defined as

Med(F ) =
1

2

[

F−(1/2) + F+(1/2)
]

.

One can unambiguously define other quantiles as averages of the upper and lower
quantiles.

We use the c.d.f. depicted in Figure 1.2 to illustrate the lower and upper
quantile functions. Note that F is constant on the intervals (−∞, 0], [1, 2], and
[3.1,∞). The reader should verify the following claims:
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Figure 1.2: Example c.d.f. for discussion of quantile functions.

(i) For α = 0, F−(α) = −∞ and F+(α) = 0.

(ii) For 0 < α < 1/2, F−(α) = F+(α) = F−1(α).

(iii) For 1/2 ≤ α < 3/4, F−(α) = F+(α) = 1, but there is no value of x such
that F (x) = α in this case.

(iv) F−(3/4) = 1 and F+(3/4) = 2.

(v) For 3/4 < α < 1, F−(α) = F+(α) = F−1(α).

(vi) F−(1) = 3.1 and F+(1) = ∞.

1.1.4 Empirical Distributions.

Now we introduce an important notion in statistics. Suppose (x1, x2, . . . , xn) is
a data set where the xi’s are elements of some set Ω, e.g. Ω = IR. We denote
the data set as an ordered n–tuple and not a set since we wish to keep track of
replications. That is to say, if xi = xj for some i 6= j, then we count the value xi
twice (at least; more times if there are further replications), whereas replicated
values do not count in a set. For instance {1, 2, 2} = {1, 2}, as sets, but (1, 2, 2)
6= (1, 2). Another way to think of an ordered n–tuple is as a finite sequence of
length n. However, the ordering within the n–tuple is often not important in
statistics. The empirical distribution of the data set is the probability measure

P̂n(A) =
1

n

n
∑

i=1

δxi
(A)

=
1

n
#{i : xi ∈ A} . (1.4)
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Figure 1.3: Empirical c.d.f. of times between airplane crashes.

Note that P̂n(A) is the relative frequency of A, i.e. the proportion of observations
that lie in A. We can recover the data set except for the ordering from P̂n, so if
the order is immaterial, the empirical distribution is just as good as the original
data set. If the xi’s are real valued, then the c.d.f. corresponding to P̂n is called
the empirical c.d.f. or empirical distribution function and will be denoted F̂n.

As an example, there were 21 major commercial airline crashes in the 15
year period ending 8 September 1994, and the times between crashes rounded off
to the nearest month are (2, 27, 13, 1, 12, 4, 2, 11, 9, 1, 3, 12, 2, 9, 1, 6, 8, 11, 6, 32), or
in sorted order (1, 1, 1, 2, 2, 2, 3, 4, 6, 6, 8, 9, 9, 11, 11, 12, 12, 13, 27, 32). The corre-
sponding empirical distribution function is shown in Figure 1.3.

Empirical distributions are useful for many purposes. For one, they allow us
to apply concepts from probability to data analysis. We have already introduced
the notion of quantiles, and in dealing with real valued data we can define the
lower and upper α sample quantiles as F̂−

n (α) and F̂+
n (α), respectively. Of course,

the sample median is just Med(F̂n). In the airplane intercrash time data set intro-
duced above, the median is (6+8)/2 = 7 months, since there are 20 observations

in all and the 10th and 11th largest observations are 6 and 8 months. As we
learn more about probability measures, we will acquire tools that can be used on
data.

There is however a deeper connection between data and probability theory
via empirical distributions. We have already mentioned the long run relative
frequency interpretation of probability in Example 1.1.1. With the notation in-
troduced here, we may state this as follows. Suppose we have a probability
space (Ω,F , P ) which is to “model” some “experiment” that can be repeated
indefinitely under identical conditions. It is understood that the “outcome” of
each trial of the experiment is an element x of Ω. Given the series of outcomes

(x1, x2, . . . , xn) (where it is understood that xi is the outcome from the ith trial),
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we can form the empirical measure P̂n as above. Then the model is “valid” if

lim
n→∞

P̂n(A) = P (A) , for all A ∈ F . (1.5)

That is, P “correctly models” the experiment if the long run relative frequen-
cies converge to P . We shall refer to this as the frequentist interpretation of
probability.

We hasten to mention that this is just one way of trying to “connect” proba-
bility models with the “real world,” and has nothing to do per se with probability
theory as a mathematical discipline (although the frequentist notion that proba-
bility is long run relative frequency was the motivation for founding probability
theory in the first place). In fact, if one insists on being very realistic, there is
no way to verify (1.5) since one cannot repeat any real “experiment” infinitely
many times. In practice, one must be satisfied if P (A) is a “good approximation”
to P̂n(A) for some relatively large number n and some class of sets A which is
not the whole σ–field. Indeed, one can never know the “true model” or even if
some real world process is “truly random” (and hence governable by the laws
of probability). A useful maxim to keep in mind when doing statistics is, “All
models are false but some are useful.”

We should mention that probability theory is used to model other things,
such as degrees of subjective belief. For instance, if I say, “the chance it will
rain today is 25%,” this may be based solely on my subjective belief about the
likelihood of rain and have nothing to do with a probability model based on many
observations. It could mean that if someone wants to bet me that it will rain, I
will bet $3 to his $1.

We will have much occasion to return to the notion of empirical distributions
and the philosophical issues raised here.

1.1.5 References

We shall “key” our discussion to Billingsley’s text Probability and Measure. Other
good texts for an introduction to measure theory are Real Analysis by Royden,
Real Analysis and Probability by Ash, and A Course in Probability Theory by
Chung. Several statistics texts give a sketchy introduction, such as Linear Statis-
tical Inference and Its Applications by Rao and the Lehmann volumes, Theory of
Point Estimation and Testing Statistical Hypotheses. One may also find a brief
introduction to measure theory in Principles of Mathematical Analysis by Rudin.
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Exercises for Section 1.1.

1.1.1 Prove DeMorgan’s laws: If A is a collection of sets, then
[

⋂

A∈A

A

]c

=
⋃

A∈A

Ac , (1.6)

and
[

⋃

A∈A

A

]c

=
⋂

A∈A

Ac .

Hint: Recall that
⋂

A∈A

A = {x : x ∈ A for all A ∈ A}.

Thus, x is an element of the l.h.s. of (1.6) if and only if there is at least one A1

∈ A such that x is not an element of A1, in which case x ∈ Ac1 and hence x is an
element of the r.h.s. of (1.6) (since the union of a collection of sets is the set of
elements which are in any one of them, and we have shown that x is in one of
them, namely A1.) This shows the l.h.s. of (1.6) is a subset of the r.h.s. (since
any element of the l.h.s. has been shown to belong to the r.h.s.). Now show the
r.h.s. is a subset of the l.h.s. and similarly for the second of DeMorgan’s laws.

1.1.2 (a) Show that the trivial σ-field is the smallest possible σ-field on Ω in
that (i) it is a σ-field, and (ii) it is contained in any other σ-field on Ω.

(b) Similarly to part (a), show that the power set is the largest σ-field on Ω.

1.1.3 Suppose A and B are nonempty subsets of Ω with A∪B 6= Ω, A∩B 6= ∅,
and neither is a subset of the other. Show that σ({A,B}) contains 16 elements,
and give an explicit listing of the elements. (Hint: partition Ω into A1 = A∩Bc,
A2 = A ∩B, A3 = Ac ∩ B, and A4 = Ac ∩Bc.) What happens if A ⊂ B?

1.1.4 Suppose A1, A2, ... , An is a partition of Ω into nonempty sets (by a
partition, we mean Ai ∩ Aj = ∅ for all i and j, and

⋃n
i=1Ai = Ω). Show that

the σ-field generated by { A1, A2, ... , An } contains 2n elements and give a
description of the general element.

1.1.5 Verify that the unit point mass of Example 1.1.4 is a measure.

1.1.6 (a) Suppose A = {a1, a2, . . .} and B = {b1, b2, . . .} are countably infinite
sets. Let C = A × B = {(a, b) : a ∈ A and b ∈ B} be the Cartesian product.
Show that C is countable. (Hint: Recognize the pattern in this listing of C as a
sequence: { (a1, b1), (a1, b2), (a2, b1), (a1, b3), (a2, b2), (a3, b1), (a1, b4), . . . }. We
claim that C can be listed as {c1, c2, . . .} where ck = (ai, bj) with k being given
by a function of (i, j).

(b) Show that the collection of rational numbers is a countable set. Hint:
A rational number is of the form p/q, where p is an integer and q is a positive
integer, and p and q have no nontrivial factors (so the fraction is in lowest terms).
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1.1.7 Assuming initially that the only sets which you know are Borel sets are the
finite closed intervals, show the following are Borel sets by using the properties
of σ-fields.

(a) Any singleton set {a}.

(b) Any finite open interval (a, b).

(c) A semiopen interval (a, b].

(d) A semi-infinite interval (a,∞).

(e) A finite set.

(f) The set of rational numbers. You may assume the truth of Exercise 1.1.6 for
this problem.

1.1.8 Complete the proof of Proposition 1.1.2.

1.1.9 Prove Proposition 1.1.4 using the defining properties of a measure.

1.1.10 Prove Proposition 1.1.5 (a) and (b).

1.1.11 Assuming initially only that you know that the Lebesgue measure of a
finite closed interval is its length (as in Theorem 1.1.3), find the Lebesgue measure
of each of the Borel sets in Exercise 1.1.7.

1.1.12 (a) Let (Ω,F) be a measurable space and Ω0 ⊂ Ω. Put

F0 = {A ∩ Ω0 : A ∈ F } .

Show that (Ω0,F0) is a measurable space.
(b) Let (Ω,F) be a measurable space and Ω0 ∈ F . Put

F1 = {A : A ∈ F and A ⊂ Ω0 } .

Show that (Ω0,F1) is a measurable space.
(c) Let Ω0 ∈ F as in part (b) and define F0 and F1 as above. Show F0 = F1.
(d) Let (Ω,F), Ω0, and F1 be as in part (b). Let µ be a measure on (Ω,F)

and define

µ1(A) = µ(A) , for all A ∈ F1. (1.7)

Show that (Ω0,F1, µ1) is a measure space.
(e) Let (Ω,F), Ω0 be as in part (b), and µ as in part (d). Define

µ2(A) = µ(A ∩ Ω0) , for all A ∈ F . (1.8)
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Show that (Ω,F , µ2) is a measure space. Note that this proves Proposition 1.1.5
(c).

(f) Show that if A ∈ F and A ⊂ Ω0, then µ1(A) = µ2(A).
(g) Assume that 0 < µ(Ω0) <∞ and define

P1(A) =
µ(A)

µ(Ω0)
, for all A ∈ F1, (1.9)

P2(A) =
µ(A ∩ Ω0)

µ(Ω0)
, for all A ∈ F . (1.10)

Show that P1 and P2 are probability measures on suitable measurable spaces.

1.1.13 Let θ = [θ1, θ2] with −∞ < θ1 < θ2 < ∞ be a given closed interval. For
Borel sets B let

Pθ(B) =
m(B ∩ θ)
θ2 − θ1

.

Show that for each such θ, (IR,B, Pθ) is a probability space. (Note: The Pθ
defined here is called the uniform distribution on the interval θ.)

1.1.14 Prove Theorem 1.1.6 (a).

1.1.15 Verify the claims made about the c.d.f. pictured in Figure 1.2.

1.1.16 Show the following facts about the lower and upper quantile functions.

(i) F−(α) ≤ F+(α) for all α ∈ (0, 1).

(ii) F−(α) = F+(α) if and only if F−(α) is a point of increase for F .

(iii) If F (x) is continuous and strictly increasing for all x ∈ IR, then F−(α) =
F+(α) = F−1(α) for all α ∈ (0, 1).

(iv) For any c.d.f. F , F−(0) = −∞ and F+(1) = ∞.

(v) F (F−(α) − 0) ≤ α but F (F−(α)) ≥ α. Also the same statements hold if
F− is replaced with F+.

(vi) F−(F (x)) ≤ x ≤ F+(F (x)).

1.1.17 (a) Suppose x = (x1, . . . , xn) is a univariate sample (i.e. each xi is a
single real number) and let F̂n be the corresponding empirical c.d.f. Let y = (y1,
. . . , yn) be the ordered xi’s, i.e. the same values appear in y as in x (replicated

the same number of times) but y1 ≤ y2 ≤ . . . ≤ yn−1 ≤ yn. Show that F̂−
n (i/n)

= yi and F̂+
n (i/n) = yi+1. For what range of i is each of these equations valid.
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(b) If x and y are as given in part (a), define the sample median of x by

med(x) =

{

y(n+1)/2 if n is odd,
(yn/2 + y(n+1)/2)/2 if n is even.

Show med(x) = F̂−
n (1/2) = F̂+

n (1/2) if n is odd and med(x) = [F̂−
n (1/2) +

F̂+
n (1/2)]/2 if n is even, and in either event med(x) = Med(F̂n) = [F−(1/2) +
F+(1/2)]/2.

1.1.18 For the data set of times between airplane crashes, determine F+(α) and
F−(α) for α = .25, .5, and .75.
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1.2 Measurable Functions and Integration.

In the previous section, a measure µ was defined as a real valued function µ
defined on a class of subsets F of Ω. Now every set A ⊂ Ω is associated with a
unique real valued function called the indicator function of A. It is given by

IA(x) =

{

1 if x ∈ A,
0 if x 6∈ A.

(Indicator are usually called characteristic functions by mathematicians, but we
shall reserve the term “characteristic function” to mean something very different.)
Thus, we may think of a measure as being defined on the class of indicator
functions of sets A ∈ F . Instead of writing µ(A), we could write “µ(IA).” In this
section we define the abstract notion of integration which extends the definition
of µ to a large class of real valued functions, i.e. we can define “µ(f),” usually
written

∫

f dµ (so that µ(A) =
∫

IA dµ). First, we must consider the class of
functions to which the definition will apply.

1.2.1 Measurable Functions.

Consider two sets Ω and Λ. Let f : Ω −→ Λ be any function and A ⊂ Λ. Then
the inverse image of A under f is

f−1(A) = {ω ∈ Ω : f(ω) ∈ A} .

Note that f−1(A) is defined even if the inverse function f−1 does not exist. The
inverse image operation has some nice properties, such as

f−1(Ac) = [f−1(A)]c , (1.11)

for any A ⊂ Λ. Also, if A1, A2, ... are subsets of Λ, then

f−1

(

⋃

i

Ai

)

=
⋃

i

f−1(Ai) . (1.12)

To prove (1.12), take ω ∈ f−1 (
⋃

iAi ). By definition of the inverse image, f(ω)
∈ ⋃

iAi, and by definition of set union, f(ω) ∈ An for some n. From this latter,
ω ∈ f−1(An) some n, and this implies ω ∈ ⋃

i f
−1(Ai). So we have shown that

f−1 (
⋃

iAi ) ⊂ ⋃

i f
−1(Ai). A similar argument shows the reverse inclusion.

A statement similar to (1.12) but with ∩ replacing ∪ holds as well (use De-
Morgan’s laws). One can also define the forward image for B ⊂ Ω by

f(B) = {f(ω) : ω ∈ B} ,

but the forward image does not have the nice properties above and is not so
useful.
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If A ⊂ P(Λ), i.e. A is a collection of subsets of Λ, then we write

f−1(A) = {f−1(A) : A ∈ A} ,

to denote all inverse images of sets in A.

Definition 1.2.1 Let (Ω,F) and (Λ,G) be measurable spaces and f : Ω −→ Λ
a function. Then f is a measurable function iff f−1(G) ⊂ F , in which case we
shall write f : (Ω,F) −→ (Λ,G). If Λ = IR and G is the Borel σ-field, then we
say f is Borel measurable or a (real valued) Borel function.

In probability theory, a measurable function is called a random object or ran-
dom element and usually denoted X, Y , ..., and a real valued Borel function is
called a random variable (abbreviated r.v.).

2

If f : (Ω,F) −→ (Λ,G) then one can check that f−1(G) is a σ-field on Ω, and
since f−1(G) ⊂ F , it is a sub-σ-field of F .

Definition 1.2.2 If f : (Ω,F) → (Λ,G), then the σ–field generated by f is
f−1(G) and is denoted σ(f).

2

Just as all subsets of IR that arise in “practice” are Borel sets, it is also the
case that all real valued functions that arise in “practice” are Borel functions.
Furthermore, any way of constructing new functions from Borel functions leads
to Borel functions, in “practice”.

Now we consider some examples of Borel functions. Let (Ω,F) be any mea-
surable space and A ∈ F , i.e. A ⊂ Ω is measurable. We will determine σ(IA).
Let B ⊂ IR, then

I−1
A (B) =



















∅ if 0, 1 6∈ B,
A if 1 ∈ B but 0 6∈ B,
Ac if 0 ∈ B but 1 6∈ B,
Ω if both 1 ∈ B and 0 ∈ B.

(1.13)

Since I−1
A (B) = {∅, A, Ac, Ω} ⊂ F , it follows that IA is a Borel function (note

that we are using measurability of A here). In this example, σ(IA) = σ({A}).
The class of simple functions is obtained by taking linear combinations of

indicators, i.e. a generic simple function has the form

φ(ω) =
n
∑

i=1

aiIAi
(ω) ,

where A1, A2, ... An are in F and a1, a2, ... an are real numbers. Here, n is
any finite positive integer. One can show directly that such a simple function is
measurable, but if follows easily from the next result.
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Proposition 1.2.1 All functions below have domain Ω and range IR, and (Ω,F)
is a measurable space.

(a) f is Borel iff f−1((a,∞)) ∈ F for all a ∈ IR.
(b) If f and g are Borel, then so are f+g and fg. Also, f/g is Borel provided

g(ω) 6= 0 for all ω ∈ Ω. In particular, linear combinations af + bg (a, b ∈ IR) of
Borel functions are Borel.

(c) Suppose g, f1, f2, ... are Borel. Let

L = {ω ∈ Ω : lim
n→∞

fn(x) exists } .

Then L is a measurable set in Ω and the function

h(x) =











limn→∞ fn(x) if x ∈ L,

g(x) if x 6∈ L.

is Borel.

2

See Theorem 13.4, pp. 183–185 of Billingsley for a proof of the above result.

Proposition 1.2.2 Let Ω ⊂ IR be a Borel set and let

F = {Ω ∩ B : B ∈ B } .

F is a σ-field on Ω and if f : Ω −→ IR is continuous at all points of Ω, then f is
a Borel function.

2

The last proposition is Theorem 10.1, p. 156 of Billingsley. It is left to the
reader to verify that F defined in the last proposition is a σ–field, and in fact
the same one as given in Exercise 1.1.12 with Ω0 replaced by Ω and Ω of that
exercise replaced by IR.

Proposition 1.2.3 Suppose

f : (Ω,F) −→ (Λ,G) , g : (Λ,G) −→ (Ξ,H) .

Then the composite function h = g ◦ f is measurable (Ω,F) −→ (Ξ,H). (Recall
that (g ◦ f)(ω) = g(f(ω))).

Proof. Let C ∈ H, and we will show that h−1(C) ∈ F . Now we claim (see
Exercise 1.2.1) that h−1(C) = (g ◦f)−1(C) = f−1(g−1(C)), and since g−1(C) ∈ G
by measurability of g, it follows that f−1(g−1(C)) ∈ F by measurability of f ,
which is what was needed.

2
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1.2.2 Induced Measures.

Now we show how measurable functions can be used to construct measures. Let
(Ω,F , µ) be a measure space, (Λ,G) a measurable space, and f : (Ω,F) −→ (Λ,G)
a measurable function. Define a function µ ◦ f−1 on G by

(µ ◦ f−1)(C) = µ(f−1(C)) , C ∈ G .

Note that f−1(C) ∈ F so the r.h.s. above is well defined. We claim that µ ◦ f−1

is a measure. The first two properties of Definition 1.1.4 are left as an exercise,
so we verify the third. Let C1, C2, ... be a sequence of disjoint sets in G, then
f−1(C1), f

−1(C2), ... are disjoint (by the analog of (1.12) for intersections) and
are in F , so

µ(
∞
⋃

i=1

f−1(Ci)) =
∞
∑

i=1

(µ ◦ f−1)(Ci)

but by (1.12)
∞
⋃

i=1

f−1(Ci) = f−1(
∞
⋃

i=1

Ci)

which shows (µ ◦ f−1)(
⋃

i Ci) =
∑

(µ ◦ f−1)(Ci), and hence that (µ ◦ f−1) satisfies
property (iii) of Definition 1.1.4. We call (µ ◦ f−1) the measure induced by f .

Just as a clarifying remark, note that measurable function f : (Ω,F) −→
(Λ,G) pulls a σ-field backwards (i.e. σ(f) ⊂ F on the domain space) but takes
a measure µ on (Ω,F) forwards (i.e. µ ◦ f−1 is a measure on the range space
(Λ,G)).

If µ = P is a probability measure and X is a r.v., then P ◦ X−1 is called
the distribution of X or the law of X and is sometimes denoted PX or Law[X].
It should be kept in mind that although we emphasize the role of the r.v. in
this latter notation, the distribution of X also depends on the underlying p.m.
P . There is much confusion that arises in probability because the underlying
probability space (measure space) is typically suppressed in notation. Let X be
a r.v. on the underlying probability space (Ω,F , P ). Let B ⊂ IR be a Borel set.
In general, we will use square brackets to denote events wherein the underlying
measure space has been suppressed, as in

[X ∈ B] = {ω ∈ Ω : X(ω) ∈ B} = X−1(B).

Note the following:

P{ω ∈ Ω : X(ω) ∈ B} = P [X ∈ B] = P ◦X−1(B) = PX(B). (1.14)

It would be technically incorrect to write “PX [X ∈ B],” or “P (B),” in this
context. Whenever in doubt, it is helpful to write out the event in detail as in
the first expression in (1.14).

The notions of random variables and their distributions have profound import
in applied statistics, at least from a conceptual point of view. Statistics is used
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in a wide range of other disciplines, from precise measurements in the physical
sciences to more variable and fuzzy measurements in the biological and social
sciences. It is amazing that one subject can have such a diversity of application.
One of the main reasons it is so widely useful is that virtually all of the data that is
collected in these various subjects is numerical. Whether the observation results
from a randomly selected person recording his or her preference on a one to five
scale, or from careful measurement on a replication of a chemical experiment,
we deal with numerical data. Because of this, it is generally not necessary to
concern oneself too much with the “underlying probability space” but only with
the distribution of the random variable being observed. Thus, statisticians can
concentrate mostly on the study of Borel probability measures on the reals, or a
cartesian product of the real line with itself.

The notions of induced measures is also very important in Monte Carlo sim-
ulation. The following result is sometimes called the “fundamental theorem of
simulation.”

Proposition 1.2.4 Let U be a random variable which is uniformly distributed
on [0, 1], i.e. the c.d.f. of U is given by

P [U ≤ u] =











0 if u < 0,
u if 0 ≤ u ≤ 1,
1 if u > 1.

Let F be any c.d.f. Then the random variable X = F−(U) has c.d.f. F .

Proof. We shall claim that ∀x ∈ IR, the event [X ≤ x] = [U ≤ F (x)]. Then
from the formula for the c.d.f. of U we obtain that P [X ≤ x] = P [U ≤ F (x)] =
F (x).

We first show that u ≤ F (x) is necessary and sufficient F−(u) ≤ x. Now
F−(u) = inf{y : F (y) ≥ u}, so if u ≤ F (x), then x ∈ {y : F (y) ≥ u} and hence
x ≥ F−(u) by definition of the infimum. This establishes the sufficiency. On the
other hand, if F (x) < u, then by right continuity of F there is an ε > 0 such that
F (x+ ε) < u, and then x+ ε /∈ {y : F (y) ≥ u}, which implies x+ ε ≤ F−(u), and
we conclude that x < F−(u). By contraposition, this yields F−(u) ≤ x implies
u ≤ F (x).

Now to establish the original claim, note that [X ≤ x] = {ω ∈ Ω : X(ω) ≤ x},
= {ω ∈ Ω : F−(U(ω)) ≤ x}. By the previous paragraph, for all ω, F−(U(ω)) ≤ x
if and only if U(ω) ≤ F (x), which is to say {ω ∈ Ω : F−(U(ω)) ≤ x} =
{ω ∈ Ω : U(ω) ≤ F (x)}, as claimed.

2

Using this result, we can start with random numbers which are uniformly dis-
tributed on [0, 1] and generate random numbers with any distribution, provided
we can compute F−. In fact, in many cases one can generate random numbers
from a given distribution more efficiently than the computation of F−(U).
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1.2.3 The General Definition of an Integral.

It is sometimes useful to extend the real number system to include ±∞, and we
define ĪR = [−∞,+∞] = IR∪{−∞,∞} to be the extended real number system.
Some arithmetic properties with ±∞ are defined by

±∞ + a = a+ (±∞) = ±∞ , a ∈ IR

a · (±∞) = (±∞) · a =











±∞ if a > 0,
0 if a = 0,

∓∞ if a < 0.
(1.15)

∞ + ∞ = ∞ , ∞ ·∞ = ∞ .

However, ∞−∞ is always undefined (this is important!). Also

a/0 =











+∞ if 0 < a ≤ ∞,
undefined if a = 0,

−∞ if −∞ ≤ a < 0.
(1.16)

Let B̄, the extended Borel σ–field on ĪR be the the collection of all sets of the form
B, B∪{∞}, B∪{−∞}, orB∪{∞,−∞}, where B ∈ B is a Borel set. (The student
should check that B̄ is a σ-field.) A measurable function f : (Ω,F) −→ (ĪR, B̄) is
called an extended Borel function.

We would now like to define the integration of an extended Borel function
w.r.t. a measure µ. The definition proceeds in a stepwise fashion, starting with
functions for which the definition of the integral is obvious and proceeding to
general extended Borel functions. If A ∈ F , put

∫

IA(ω) dµ(ω) = µ(A) . (1.17)

Now let φ be a simple function, say

φ(ω) =
n
∑

i=1

aiIAi
(ω) .

If either µ(Ai) <∞ for 1 ≤ i ≤ n, or all ai have the same sign (all positive or all
negative) then we define

∫

φ dµ =
∫

φ(ω) dµ(ω) =
n
∑

i=1

aiµ(Ai) . (1.18)

We see this is what the definition should be if the integral has the usual linearity
property, i.e.

∫

[

n
∑

i=1

aiIAi
(ω)

]

dµ(ω) =
n
∑

i=1

ai

∫

IAi
(ω) dµ(ω) .
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There is a possible problem with (1.18), namely that different Ai and ai can give
the same simple function. For instance, with Ω = IR, note that

I(0,2)(x) + I(0,1)(x) = 2I(0,1)(x) + I[1,2)(x) .

However, one can show (with a tedious argument) that different representations
of the same simple function in (1.18) give the same value to

∫

φ dµ (see Royden’s
text, p. 76). Our restriction that either µ(Ai) < ∞ for 1 ≤ i ≤ n, or all ai have
the same sign comes from the fact that ∞−∞ is undefined, so the r.h.s. of (1.18)
would not be defined for instance if µ(A1) = µ(A2) = ∞ but a1 < 0 < a2.

Now we define the integral of a nonnegative extended Borel function. This is
the most difficult step in the stepwise definition of the integral. If f(ω) ≥ 0 for
all ω ∈ Ω, then

∫

fdµ =
∫

f(ω) dµ(ω) =

sup {
∫

φdµ : φ is a simple function (1.19)

and 0 ≤ φ(ω) ≤ f(ω), for all ω ∈ Ω } .

In words,
∫

fdµ is the least upper bound of all integrals of nonnegative sim-
ple functions which are below f . Note that the set of such simple functions is
nonempty since it contains I∅ = 0. Note also that

∫

fdµ = ∞ is possible.
For any f : (Ω,F) −→ (ĪR, B̄) define the positive part and negative part,

respectively, by

f+(ω) = max {f(ω), 0} , f−(ω) = max {−f(ω), 0} . (1.20)

Note that for all ω ∈ Ω,

f+(ω) ≥ 0 , f−(ω) ≥ 0 , (1.21)

f(ω) = f+(ω) − f−(ω) , (1.22)

|f(ω)| = f+(ω) + f−(ω) . (1.23)

We say
∫

fdµ exists or is defined iff at least one of
∫

f+dµ and
∫

f−dµ is finite
(these integrals are defined by (1.19)). If

∫

fdµ is defined, then it is given by

∫

fdµ =
∫

f(ω) dµ(ω) =
∫

f+dµ −
∫

f−dµ . (1.24)

Note that our requirement that at least one of the latter two integrals be finite
avoids the undefined form ∞ − ∞. We say f is integrable iff both

∫

f+dµ and
∫

f−dµ are finite.
Finally, we define the integral of f over the set A ∈ F as

∫

A
fdµ =

∫

IAfdµ , (1.25)
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provided the latter integral is defined. If µ is a Borel measure (i.e. defined on the
measurable space (IR,B)), and if A = [a, b] is a closed interval, then we often will
use the “limits of integration” notation as in

∫

[a,b]
fdµ =

∫ b

a
fdµ .

We also note that it is common to write dµ(ω) as µ(dω), as in
∫

f(ω) dµ(ω) =
∫

f(ω)µ(dω) . (1.26)

To explain this notation, if
∑

aiIAi
is a simple function approximation to f(x) so

that
∫
∑

aiIAi
dµ =

∑

aiµ(Ai)
.
=
∫

f dµ, then the values ai will be approximately
f(ωi) for some ωi ∈ Ai and the sets Ai will have small measure. If we write dωi
to represent the “differential” set Ai, then we obtain notationally

∑

f(ωi)µ(dωi)
.
=
∫

f dµ. The notation µ(dω) is meant to remind us of the measure of these
differential sets, which are multiplied by f(ω) and summed. We will sometimes
use this notation when it helps to aid understanding.

In probability,
∫

X(ω) dP (ω) is usually called the expected value or expectation
of the r.v. X, and commonly denoted E[X]. If P is a Borel p.m. with c.d.f. F ,
then it is common to write dF (x) in place of dP (x).

If f : (IR,B) −→ (ĪR, B̄) then integrals w.r.t. Lebesgue measure (referred to as
Lebesgue integrals) are generally written

∫

f(x) dx rather than
∫

f(x) dm(x) since
they are the same as the usual Riemann integral when it is defined, as will be seen
shortly. Thus, all of the integration theory that the reader has learned heretofore
may be applied to the calculation of Lebesgue integrals. Note that the Lebesgue
integral

∫

f(x)dm(x) is in general an improper Riemann integral since it is over
the entire real line IR = (−∞,∞). Of course, an integral over a finite interval
∫ b
a f(x)dx =

∫

I[a,b](x)f(x)dm(x) will still be an improper Riemann integral if f(x)
tends to ±∞ at some point in [a, b], and one must use an appropriate method
for calculating its value as a Riemann or Lebesgue integral.

To introduce another class of examples of integrals that frequently arise in
practice, let Ω = {a1, a2, ...} be a discrete set, by which we mean one that can
be listed as a sequence, finite or infinite. Take F = P(Ω) as the σ-field, and µ
= #, counting measure. Then one can easily see that that any f : Ω −→ IR is
measurable, and it can be shown (see Exercise 1.2.26) that

∫

fd# =
∑

i

f(ai) , (1.27)

whenever the l.h.s. is defined. Thus, we see that measure theory includes the
classical theory of summmation and Riemann integration.

For another example of the integral, let δx denote a unit point mass measure
on a measurable space (Ω,F). If φ =

∑

i ciIAi
is a simple function, then

∫

φ dδx
=
∑

i ciδx(Ai) =
∑

i ciIAi
(x) = φ(x). Note that in general

δx(A) = IA(x).
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If f : Ω −→ IR is measurable and f ≥ 0, then for simple functions φ such
that 0 ≤ φ ≤ f , we have

∫

φ dδx = φ(x) ≤ f(x), and taking φ = f(x)I{x}, we
get

∫

φ dδx = φ(x) = f(x), so
∫

f dδx = f(x). Finally, if f : Ω −→ IR is any
measurable function, then

∫

f dδx =
∫

f+ dδx −
∫

f− dδx = f+(x)−f−(x) = f(x).
We have established the formula

∫

f dδx = f(x). (1.28)

For a linear combination of unit point mass measures, by Exercise 1.2.35 we have
the following formula:

If µ =
∑

i

aiδxi
, then

∫

f dµ =
∑

i

aif(xi). (1.29)

We have already seen that the empirical distribution defined in (1.4) is very
useful for motivating data analytic tools (such as sample quantiles) using notions
from probability theory. Let (x1, x2, . . . , xn) be a data set. In the context of
integration, if g is a real valued function defined on the space Ω of possible
observations, then by (1.29),

∫

Ω
g(x) dP̂n(x) =

1

n

n
∑

i=1

g(xi). (1.30)

We may interpret this as saying that the integral of g w.r.t. the empirical dis-
tribution is the sample average of g(xi). If P is the true probability model for
the experiment (in the long run relative frequency sense of (1.5)), then a sim-
ple method for estimating an expectation E[g(X)] =

∫

g(x) dP (x) is to use the
sample average

∫

g(x) dP̂n(x). Again, our association of a data set with the cor-
responding empirical distribution provides a connection of sorts between sample
averages (which are widely used in data analysis) and concepts from measure
theory and probability theory. Of course, we are interested if in some sense
∫

g(x) dP̂n(x) converges to E[g(X)] as n → ∞. In general, under a suitable
mathematical model, sample averages do tend to the theoretical expectations
as sample size increases. Making this result rigorous has been a big concern of
probabilists for centuries, and generally goes under the names of “law of large
numbers” or “ergodic theorem.” Refining the result leads to the central limit
theorem, the law of the iterated logarithm, and numerous other results.

1.2.4 Riemann Integrals.

Our development here will closely follow that of Rudin, Chapter 6. We will begin
by considering functions only on a finite interval [a, b). The Riemann integral is
defined as follows. A step function on [a, b) is a function of the form

ψ(x) =
n
∑

i=1

ciI[ai−1,ai)(x) (1.31)
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where a = a0 < a1 < ... < an−1 < an = b. Note that step function is a simple
function

∑

i ciIAi
where the measurable sets Ai are required to be intervals. Now

the intervals [a0, a1), [a1, a2), . . ., [an−1, an) form a partition Π of [a, b) consisting
of finitely many intervals. The mesh of Π is max{ai − ai−1 : 1 ≤ i ≤ n}, i.e.
the length of the longest interval in Π. Given such a partition and a bounded
function f : [a, b) −→ IR, define

U(f,Π) =
n
∑

i=1

(

sup
[ai−1,ai)

f

)

(ai − ai−1)

=
∫

ψ̄f,Π(x) dx

where ψ̄f,Π is the step function

ψ̄f,Π(x) =
n
∑

i=1

(

sup
[ai−1,ai)

f

)

I[ai−1,ai)(x).

The upper Riemann integral is defined by

¯∫ b

a
f(x)dx = inf

Π
U(f,Π)

where the infimum is over partitions Π of [a, b) into finitely many intervals. A
similar definition for the lower Riemann integral holds, viz.

L(f,Π) =
n
∑

i=1

(

inf
[ai−1,ai)

f

)

(ai − ai−1) =
∫

ψ
f,Π

(x) dx

ψ
f,Π

(x)) =
n
∑

i=1

(

inf
[ai−1,ai)

f

)

I[ai−1,ai)(x)

∫ b

a

f(x)dx = sup
Π

L(f,Π).

The Riemann integral exists provided the upper and lower integrals are equal,
and their common value is denoted R ∫ b

a f(x)dx and called the Riemann integral.
Let f be a nonnegative bounded measurable function on the interval [a, b),

and then the Lebesgue integral
∫

[a,b) f(x)dm(x) exists. We will show that the
value of the Lebesgue integral is between the lower and upper Riemann integrals,
so if the Riemann integral exists, it must equal the Lebesgue integral. (Note: one
can show that existence of the Riemann integral implies existence of the Lebesgue
integral; see Exercise 1.2.29.) We may re-express the lower Riemann integral as

∫ b

a

f(x)dx = sup
ψ

f,Π

∫

ψ
f,Π

(x) dx



32 CHAPTER 1. MEASURE SPACES.

where the supremum is over step functions ψ
f,Π

=
∑

i

(

inf [ai−1,ai) f
)

I[ai−1,ai)(x)

corresponding to some partition Π into finitely many intervals. Now notice that
each of the step functions used in defining the lower Riemann integral are simple
functions satisfying 0 ≤ ψ ≤ f , on [a, b) (set all functions to 0 outside of [a, b)
for purposes of this discussion). Hence, the class of step functions over which the
suprememum is taken is a subclass of the simple functions over which one takes
supremum to get the Lebesgue integral as in (1.19). Since the supremum of a
subset is smaller than a superset,

∫ b

a

f(x) dx ≤
∫

[a,b)
f(x) dm(x).

Now we show that the Lebesgue integral is bounded above by the upper Riemann
integral. Each of the step functions ψ̄f,Π that goes into the definition of the upper
Riemann integral satisfies f ≤ ψ̄f,Π, so

∫

[a,b) f(x)dm(x) ≤ ∫

[a,b) ψ̄f,Πdm(x) (see
Proposition 1.2.5(c) below). Taking infimum over all such step functions gives
∫

[a,b) f(x)dm(x) ≤ ¯∫ b
af(x)dx, as claimed.

Not all Lebesgue integrable functions are Riemann integrable. For instance,
let f(x) = IA(x) be the indicator of A = {x ∈ [0, 1) : x is rational }, then the
Lebesgue integral is m(A) = 0. Now any interval [ai−1, ai) with ai−1 < ai contains
both rational and irrational numbers, so sup[ai−1,ai) IA = 1 and inf [ai−1,ai) IA = 0.

Thus, ψ̄f,Π ≡ 1 on [0, 1) and ψ
f,Π

≡ 0 on [0, 1) for all allowable partitions Π of

[0, 1). Thus, ¯∫ 1

0IA(x)dx = 1 and
∫ 1

0
IA(x)dx = 0, and hence the Riemann integral

does not exist.

Thus we see that the Lebesgue integral is more general than the Riemann
integral. The reason for the generality is not hard to see – the Riemann integral
is derived as the limit of integrals of step functions, whereas the Lebesgue integral
is derived as the limit of integrals of simple functions, and the class of simple
functions is larger than the class of step functions. Now our discussion of the
Riemann integral above was based on one of several definitions that appear in the
literature. In Exercise 1.2.30, the reader is asked to consider another definition
of the Riemann integral that is often used and to show it is equivalent to the
definition above.

We close this subsection with a brief discussion of the situation of improper
integrals. In the Riemann theory of integration, and integral is improper if it is
over an inifinite interval or if the function is not bounded, and improper integrals
are defined as limits of proper integrals. For instance,

R
∫ ∞

0
f(x) dx = lim

b→∞
R
∫ b

0
f(x) dx.

For the Lebesgue theory, there is no distinction between “proper” and “improper”
integrals. An improper Riemann integral may exist, but its Lebesgue integral may
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fail to exist. For example consider

f(x) =































1/n if 2n− 1 ≤ x < 2n,

−1/n if 2n ≤ x < 2n+ 1,

0 if x < 1.

where n ranges over integers ≥ 1. Then for b > 1

∫ b

0
f(x) dx =











[b− (2n− 1)]/n if 2n− 1 ≤ b < 2n,

[1 − (b− 2n)]/n if 2n ≤ b < 2n + 1.

Note that
∣

∣

∣

∫ b
0 f(x) dx

∣

∣

∣ ≤ 1/n → 0 as b → ∞, so the improper Riemann integral

R ∫∞
0 f(x) dx is 0. However, the Lebesgue integral does not exist since

∫

f+(x) dm(x) =
∫

f−(x) dm(x) =
∞
∑

n=1

1

n
= ∞.

Basically, the Lebesgue integral exists whenever the improper Riemann integral
is absolutely convergent.

1.2.5 Properties of the Integral.

Proposition 1.2.5 (Basic properties of the integral.) Let (Ω,F , µ) be a mea-
sure space and f , g extended Borel functions on Ω.

(a) If
∫

fdµ exists and a ∈ IR, then
∫

afdµ exists and equals a
∫

fdµ.
(b) If

∫

fdµ and
∫

gdµ both exist and
∫

fdµ +
∫

gdµ is defined (i.e. not of the
form ∞−∞), then

∫

(f + g)dµ is defined and equals
∫

fdµ +
∫

gdµ.
(c) If f(ω) ≤ g(ω) for all ω ∈ Ω, then

∫

fdµ ≤ ∫

gdµ, provided the integrals
exist.

(d) | ∫ fdµ| ≤ ∫ |f |dµ, provided
∫

fdµ exists.

2

The last result appears in Billingsley, Theorem 16.1, p. 209. Note in the above
that our conventions regarding arithmetic with ±∞ will often be necessary.

Let (Ω,F , µ) be a measure space, and let S(ω) be a logical statement about
a general element ω ∈ Ω. For instance, if f and g are extended Borel functions
on Ω then “f(ω) ≤ g(ω)” is an example of such a logical statement, which may
be true for some ω and false for other ω. We say S holds µ–almost everywhere,
abbreviated µ-a.e. (or simply a.e. if the measure µ is clear from context), iff
there is a set N ∈ F such that µ(N) = 0 and S(ω) is true for ω 6∈ N . Such a
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set N of µ-measure 0 is sometimes called a µ–null set or simply a null set if µ is
clear. In probability, P–almost surely or P–a.s. means the same as P -a.e., with
similar remarks about omitting the measure. With this terminology, we can give
an extension of Proposition 1.2.5 (c) as in part (a) below.

Proposition 1.2.6 (a) If f and g are extended Borel functions on (Ω,F , µ) and
f ≤ g µ–a.e., then

∫

fdµ ≤ ∫

gdµ, provided the integrals exist.
(b) If f ≥ 0 µ–a.e. and

∫

fdµ = 0 then f = 0 µ–a.e.

2

The proof of part (b) is Exercise 1.2.32.
Perhaps the main use of the a.e. concept is with sequences of functions. A

sequence f1, f2, ... often converges to a function f except on a null set. For
example

fn(x) = nI[0,1/n](x) . (1.32)

Then

lim
n→∞

fn(x) =

{

∞ if x = 0,
0 if x 6= 0.

Since m({0}) = 0, we may say fn → 0 m-a.e., where of course m is Lebesgue
measure. Notice that

lim
n→∞

∫

fndm = 1 ,
∫

lim
n→∞

fndm = 0 . (1.33)

This example indicates that the interchange of limn→∞ and
∫

is not always per-
missable. One of the nice features of measure theory is that there are fairly simple
conditions which can be used to justify this interchange. The following results
appear in Billingsley, Theorem 15.1, p. 206, and Theorem 16.4, p. 213.

Theorem 1.2.7 All functions here are extended Borel functions on (Ω,F , µ).
(a) (Monotone convergence theorem.) Suppose fn is an increasing sequence

of nonnegative functions (i.e. 0 ≤ f1 ≤ f2 ≤ ... ≤ fn ≤ fn+1 ≤ ...) and f(ω) =
lim fn(ω). Then lim

∫

fndµ =
∫

fdµ.
(b) (Lebesgue’s dominated convergence theorem.) Suppose fn → f a.e. as

n → ∞ and that there is an integrable function g such that for all n, |fn| ≤ g
a.e. Then lim

∫

fndµ =
∫

fdµ.

A convenient notation for a sequence fn satisfying the hypotheses of the
monotone convergence theorem is 0 ≤ fn ↑ f . Note that for each ω the limit f(ω)
= limn→∞ fn(ω) exists, but may be +∞ (why?). In the dominated convergence
theorem, g is called the dominating function. There is no unique dominating
function, and one can be very flexible in choosing a convenient one. One of the
conclusions of the dominated convergence theorem is that lim

∫

fndµ exists. The
next result in combination with the convergence theorems is a very powerful tool.
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Proposition 1.2.8 Let f : (Ω,F) −→ (ĪR, B̄). Then there exists a sequence of
simple functions φn on Ω such that φn → f and |φn| ≤ |f | for all n. If f ≥ 0
then we may take φn ≥ 0 for all n.

Further, if µ is a measure on (Ω,F) and
∫

fdµ is defined, then
∫

φndµ →
∫

fdµ.

Proof. Suppose f ≥ 0 for now and put

φn(ω) =
22n

−1
∑

k=0

k2−nI[k2−n,(k+1)2−n)(f(ω)) + 2nI[2n,∞](f(ω)) . (1.34)

It is left an exercise to check the following:

(i) 0 ≤ φn(ω) ≤ f(ω) for all ω and n.

(ii) If f(ω) < ∞ then for all n such that 2n > f(ω), |f(ω) − φn(ω)| ≤ 2−n.

(iii) If f(ω) = ∞ then for all n, φn(ω) = 2n.

(iv) 0 ≤ φ1 ≤ φ2 ≤ ...

These claims are easy to see from a picture with a small value of n. In either
of case (ii) or (iii) we clearly have φn(ω) → f(ω), and by the MCT,

∫

φndµ →
∫

fdµ. This proves the the proposition for f ≥ 0.
The claim for general f is easily established from f = f+ − f−, and nonneg-

ativity of f+ and f−.

2

See Billingsley, Theorem 13.5, p. 185 for the above.

1.2.6 Applications.

As an example of an application of the above results, we have the following
important theorems which are very useful in probability and statistics. One of
the most important results is another method for constructing new measures out
of old ones.

Theorem 1.2.9 (Measures Defined by Densities.) Let f : (Ω,F , µ) −→ (ĪR, B̄)
be nonnegative, and put

ν(A) =
∫

A
fdµ , A ∈ F . (1.35)

Show that ν is a measure on (Ω,F).

2
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The proof is left as Exercise 1.2.38. In the context of this theorem, the function
f is called the density of ν with respect to (w.r.t.) µ. Most of the probability
measures we use in practice will be constructed through densities, either w.r.t.
Lebesgue measure (so-called continuous distributions) or w.r.t. counting measure
(discrete distributions). We will later provide necessary and sufficient conditions
for when one measure has a density w.r.t another measure (the Radon-Nikodym
theorem). This result has many ramifications in probability and statistics.

The next result is very subtle, and illustrates the power of abstract measure
theory. As with the previous theorem, there will be many important conse-
quences.

Theorem 1.2.10 (Change of variables.) Suppose f : (Ω,F , µ) −→ (Λ,G)
and g : (Λ,G) −→ (ĪR, B̄). Then

∫

Ω
(g ◦ f)(ω) dµ(ω) =

∫

Λ
g(λ) d(µ ◦ f−1)(λ) , (1.36)

where this has the following interpretation: if either integral is defined, then so
is the other and the two are equal.

Proof. First assume g is a nonnegative simple function, say

g(λ) =
n
∑

i=1

aiIAi
(λ)

where ai ≥ 0 for all i. Then g ◦ f ≥ 0 so both integrals exist. Now
∫

Ω
(g ◦ f)dµ =

∫

∑

aiIAi
(f(ω))dµ(ω)

=
∑

ai

∫

IAi
(f(ω))dµ(ω)

by Proposition 1.2.5 (b). Note that IA(f(ω)) = 1 iff f(ω) ∈ A iff ω ∈ f−1(A) iff
If−1(A)(ω) = 1, so IA ◦ f = If−1(A). Using this in the last display gives

∫

Ω
(g ◦ f)dµ =

∑

ai

∫

If−1(Ai)(ω)dµ(ω)

=
∑

aiµ(f−1(Ai))

=
∑

ai(µ ◦ f−1)(Ai)

=
∑

ai

∫

IAi
d(µ ◦ f−1)

=
∫

g d(µ ◦ f−1) .

This completes the proof for nonnegative simple functions g.
Now suppose that g ≥ 0. Then both integrals are still defined. Let φn be

simple functions with 0 ≤ φn ↑ g by Proposition 1.2.8. Then
∫

φnd(µ ◦ f−1) →
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∫

g d(µ ◦ f−1) by the monotone convergence theorem (Theorem 1.2.7 (a)). The
argument above that IA ◦ f = If−1(A) shows that φn ◦ f are nonnegative simple
functions on Ω, and it is easy to see that 0 ≤ φn ◦ f ↑ g ◦ f , so

∫

(φn ◦ f)dµ →
∫

(g ◦ f)dµ by the monotone convergence theorem. Since
∫

(φn ◦ f)dµ =
∫

φnd(µ ◦
f−1) by the first part of the proof, we have

∫

(g ◦ f)dµ =
∫

g d(µ ◦ f−1).
Now let g be a general extended Borel function on Λ and consider the positive

and negative parts, g+ and g−, respectively. Note that (g ◦ f)+ = g+ ◦ f , and
(g ◦f)− = g− ◦f , so by the preceding part of the proof for nonnegative functions,

∫

(g ◦ f)+dµ =
∫

g+d(µ ◦ f−1) ,
∫

(g ◦ f)−dµ =
∫

g−d(µ ◦ f−1) .

Hence, if say
∫

(g◦f)−dµ <∞, so that the l.h.s. of (1.36) is defined, then
∫

g−d(µ◦
f−1) < ∞ and the r.h.s. is defined, and

∫

g ◦ fdµ =
∫

(g ◦ f)+dµ −
∫

(g ◦ f)−dµ

=
∫

g+d(µ ◦ f−1) −
∫

g−d(µ ◦ f−1)

=
∫

g d(µ ◦ f−1) .

A similar argument applies if
∫

(g ◦ f)+dµ < ∞, which is the other way the l.h.s.
of (1.36) can exist. The r.h.s. of (1.36) exists just in case one of

∫

g+d(µ ◦ f−1) <
∞ or

∫

g−d(µ ◦ f−1) < ∞, and the proof goes through without difficulty again.

2

The above result appears in Billingsley, Lemma 16.12, page 219. The tech-
nique of proof of the last theorem is important: start with simple functions, use
Proposition 1.2.8 and Theorem 1.2.7 to extend to nonnegative functions, and
finally to general functions using the decomposition into positive and negative
parts.

We briefly indicate the importance of Theorem 1.2.10. Let (Ω,F , P ) be a
probability space and X a r.v. defined thereon. If E[X] =

∫

XdP exists, then
one usually computes E[X] by

∫

IR x dPX(x) where PX = P ◦X−1 = Law[X] is the
distribution of X. Thus, we compute an integral over the real line rather than an
integral over the original probability space. If g : IR −→ IR, then E[g(X)] is typ-
ically computed as

∫

IR g(x)dPX(x) rather than
∫

IR y dPg(X)(y), i.e. one integrates
w.r.t. the distribution of the original r.v. X rather than w.r.t. the distribution
of g(X). Theorem 1.2.10 is used so often by statisticians without giving it any
thought that it is sometimes referred to as “the law of the unconscious statisti-
cian.” It should be noted that calculation of µ ◦ f−1 may be complicated, e.g.
involving Jacobians, a subject treated in Chapter 2, Section 2.4

The next result is used frequently in statistics. It also appears in Billingsley,
Theorem 16.8, p. 213.
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Theorem 1.2.11 (Interchange of differentiation and integration.) Let (Ω,
F , µ) be a measure space and suppose g(ω, θ) is a real valued function on the carte-
sian product space Ω × (a, b) where (a, b) is a finite open interval in IR. Assume
g satisfies the following:

(i) For each fixed θ ∈ (a, b), the function fθ(ω) = g(ω, θ) is a Borel function of
ω and ∫

|g(ω, θ)| dω < ∞.

(ii) There is a null set N such that for all ω 6∈ N , the derivative ∂g(ω, θ)/∂θ
exists for all θ ∈ (a, b).

(iii) There is an integrable function G : Ω −→ ĪR such that for all ω 6∈ N and
all θ ∈ (a, b),

∣

∣

∣

∣

∣

∂g

∂θ
(ω, θ)

∣

∣

∣

∣

∣

≤ G(ω) .

Then for each fixed θ ∈ (a, b), ∂g(ω, θ)/∂θ is integrable w.r.t. µ and

d

dθ

∫

Ω
g(ω, θ) dµ(ω) =

∫

Ω

∂g

∂θ
(ω, θ) dµ(ω) .

Proof. For convenience, let H(θ) =
∫

g(ω, θ) dµ(ω). Suppose ω 6∈ N , then
by the mean value theorem (Theorem 5.10, p. 108 of Rudin), if θ ∈ (a, b) and
θ + δ ∈ (a, b), then

g(ω, θ + δ) − g(ω, θ)

δ
=

∂g

∂θ
(ω, θ + αδ)

for some α ∈ [0, 1], and in particular for all ω 6∈ N ,
∣

∣

∣

∣

∣

g(ω, θ + δ) − g(ω, θ)

δ

∣

∣

∣

∣

∣

≤ G(ω) . (1.37)

Now let ηn be any sequence in IR converging to 0. Then by Proposition 1.2.6,

H(θ + ηn) −H(θ)

ηn
=
∫

g(ω, θ + ηn) − g(ω, θ)

ηn
dµ(ω) .

Thus, we have for each fixed θ ∈ (a, b), the sequence of functions

fn(ω) =
g(ω, θ + ηn) − g(ω, θ)

ηn

converges µ-a.e. to ∂g(ω, θ)/∂θ, and by (1.37), |fn| ≤ G, µ-a.e., and G is µ-
integrable by assumption. Hence, by the dominated convergence theorem (The-
orem 1.2.7 (b)),

∫

fndµ → ∫

[∂g(ω, θ)/∂θ]dµ, i.e.

lim
n→∞

H(θ + ηn) −H(θ)

ηn
=

∫

Ω

∂g

∂θ
(ω, θ) dµ(ω) .



1.2. MEASURABLE FUNCTIONS AND INTEGRATION. 39

Since the sequence ηn → 0 was arbitrary, it follows that

lim
δ→0

H(θ + δ) −H(θ)

δ
=
∫

Ω

∂g

∂θ
(ω, θ) dµ(ω) .

(See e.g. Theorem 4.2, p. 84 of Rudin for this result which extends a limit from
an arbitrary sequence to a continuous limit.) This last display states that H(θ)
is differentiable and the derivative is the r.h.s. This proves the Theorem.

2

1.2.7 Final Notes.

(a) Most of the results of this section are standard measure theory, except the
last two theorems. Theorem 1.2.10 may be found in Billingsley and Theorem
1.2.11 may be found in Ash. (b) The use of dF (x) is place of dP (x) when P is
a Borel probability measure is more than an abuse of notation since it is derived
from the theory of Stieltjes integrals (see Ash or Rudin). However, we shall not
need that theory here.
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Problems for Section 1.2.

1.2.1 Verify (1.11).

1.2.2 Show that the analogue of relation (1.11) for forward images does hold.
Give a counterexample to the analogue of (1.12) for forward images to show it is
not valid.

1.2.3 Verify the analogue of (1.12) for intersections by (a) using DeMorgan’s
laws, and (b) arguing directly as was done to show (1.12).

1.2.4 Let f : IR −→ IR be given by f(x) = min{|x|, 1}. Show that the inverse
image of an arbitrary Borel set B ⊂ IR is given by

f−1(B) =

{

{x : |x| ∈ B ∩ [0, 1)} if 1 /∈ B,
{x : |x| ∈ B ∩ [0, 1)} ∪ {1} if 1 ∈ B.

1.2.5 Suppose A and B are disjoint, nonempty, proper subsets of Ω and let φ(ω)
= −3IA(ω) + 3IB(ω). Find φ−1(C) for C ⊂ IR. List all elements of σ(φ). Show
σ(φ) = σ({A,B}).

1.2.6 Prove that (g ◦ f)−1(A) = f−1(g−1(A)) where f : Ω −→ Λ, g : Λ −→ Ξ,
and A ⊂ Ξ.

1.2.7 Let Ω = IR and F = B. Show that each of the following functions on Ω
is a Borel function.

(i) f(ω) = | sin[exp(3 cosω)]|.

(ii) f(ω) = 2I[0,∞)(ω) − 1.

(iii)

f(ω) =

{

|ω| if ω is rational,
0 otherwise.

1.2.8 Let A ⊂ Ω be a measurable set in the measure space (Ω,F , µ), then show
that the induced measure ν = µ ◦ I−1

A is given by

ν(B) =



















0 if neither 1 ∈ B nor 0 ∈ B,
µ(A) if 1 ∈ B but 0 6∈ B,
µ(Ac) if 0 ∈ B but 1 6∈ B,
µ(Ω) if both 1 ∈ B and 0 ∈ B.

Here, B is an arbitrary Borel set. Show that ν is the same as

µ(A)δ1 + µ(Ac)δ0 ,

where δx is a unit point mass measure at x.
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1.2.9 Verify that B̄ is a σ-field.

1.2.10 Show that Proposition 1.2.4 holds if we replace F− by F+.

1.2.11 Verify equations (1.21), (1.22), and (1.23).

1.2.12 Assuming f : (Ω,F) −→ (ĪR, B̄), show that the following are equivalent:

(i) f is integrable w.r.t. µ;

(ii)
∫

fdµ is defined and −∞ <
∫

fdµ < ∞;

(iii)
∫ |f |dµ < ∞.

1.2.13 Let Ω be equipped with the power set P(Ω) for the σ-field. Show that
if (Λ,G) is any other measurable space, and f : Ω −→ Λ is any function, then f
is measurable.

1.2.14 Show Proposition 1.2.5 (d) follows from Proposition 1.2.5 (c).

1.2.15 Verify both relations in (1.33). Check that the sequence fn there does
not satisfy the hypothesis for either the dominated convergence theorem or the
monotone convergence theorem.

1.2.16 Let N1, N2, ... be a sequence of null sets. Show that
⋃

iNi is a null set.

1.2.17 Let N be an arbitrary collection of null sets. Show by counterexample
that

⋃

N∈N N is not necessarily a null set.

1.2.18 Suppose (Ω,F) and (Λ,G) are measurable spaces and that G = σ(A)
for some A ⊂ P(Λ). Suppose f : Ω −→ Λ and f−1(A) ⊂ F . Show that
f : (Ω,F) −→ (Λ,G), i.e., that f is measurable.

1.2.19 Let f : Ω −→ Λ and let G be a σ-field on Λ. Show that f−1(G) is a
σ-field on Ω.

1.2.20 Suppose f : Ω −→ Λ is an arbitrary function and F is a σ-field on Ω.
Let

C = {C : C ⊂ Ω and f−1(C) ∈ F } .

Show that C is a σ-field on Λ. Is f measurable from (Ω,F) −→ (Λ, C)?

1.2.21 Suppose φ =
∑n
i=1 aiIAi

is a simple function on (Ω,F). Show that there
is a unique representation φ =

∑m
i=1 biIBi

where b1, b2, ... , bm are distinct and
nonzero, and B1, B2, ... , Bm are disjoint and nonempty. (Hint: {b1, b2, ... , bm}
= φ(Ω) \ {0} and Bi = φ−1(bi).)
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1.2.22 Let φ be as given in Exercise 1.2.21. Find σ(φ). You may wish to
consider Exercise 1.2.5 first.

1.2.23 Let φ be as given in Exercises 1.2.21 and 1.2.22. Let µ be a measure on
(Ω,F). Find µ ◦ φ−1.

1.2.24 For each of the following functions f : IR −→ IR, determine the induced
measure m ◦ f−1.

(a) f(x) = x+ a, some a ∈ IR.

(b) f(x) = ax, a 6= 0.

(c) Same as (b), but a = 0.

1.2.25 Suppose φ =
∑n
i=1 aiIAi

=
∑p
i=1 ciICi

are two different representations of
the same simple function. Show that the integrals of the two representations as
given by (1.18) are equal. (Hint: use Exercise 1.2.21.)

1.2.26 Let Ω = {a1, a2, ...} be a discrete set (i.e. a set which can be listed as
a finite or infinite sequence). Equip Ω with the F = P(Ω) σ-field, and let # be
counting measure on Ω. Prove equation (1.27). (Hint: proceed stepwise through
the definition of the integral, i.e. verify (1.27) first for indicator functions, then
simple functions, nonnegative functions, and finally general functions for which
the l.h.s. is defined.)

1.2.27 Let (Ω,F) be as in Exercise 1.2.26. Let µ be any measure on (Ω,F).
Show that

∫

fdµ =
∑

i

f(ai)µ({ai}) , (1.38)

provided the l.h.s. is defined.

1.2.28 Let (Ω,F) be as in Exercise 1.2.26. Let f : Ω −→ Λ be a one to one
function. Find the induced measure # ◦ f−1.

1.2.29 Suppose that f ≥ 0 is bounded, f(x) = 0 for x /∈ [a, b) where −∞ <
a < b <∞, and the Riemann integral exists, i.e.

¯∫ b

a
f(x)dx =

∫ b

a

f(x)dx.

Show that f is Borel measurable and hence that the Lebesgue integral exists and
is finite.

(Hint: If the Riemann integral exists, you can show that f is a limit of step
functions, and then apply Proposition 1.2.1 (c).)
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1.2.30 Here we discuss another definition of Riemann integrals that is often
used. Suppose f is a nonnegative bounded function on the finite interval [a, b).
Given a partition Π = { [a0, a1), [a1, a2), . . ., [an−1, an) } as in the text, the
mesh of Π is |Π| = max{ai − ai−1 : 1 ≤ i ≤ n}, i.e. the length of the longest
interval in Π. Also, we the set of points Ξ = {ξ1, . . . , ξn} is compatible with Π
if ξi ∈ [ai−1, ai), 1 ≤ i ≤ n. For such a partition Π and Ξ compatible with Π, a
Riemann sum approximation to

∫ b
a f(x) dx is

M(f,Π,Ξ) =
n
∑

i=1

f(ξi)[ai − ai−1].

We write

R′
∫ b

a
f(x) dx = lim

|Π|→0
M(f,Π,Ξ)

if the limit exists no matter what compatible set of points Ξ is used. What we
mean by this is there exists a real number I such that given ε > 0, there exists
a δ > 0 such that for all partitions Π of [a, b) into finitely many intervals with
|Π| < δ and for all sets of points Ξ compatible with Π,

|I −M(f,Π,Ξ)| < ε.

When such an I exists, it is the value of R′
∫ b
a f(x) dx.

Show that if the Riemann integral exists by this definition, then it exists under
the definition given in the text, and the two integrals are equal.

Hint: It is easy to see that L(f,Π) ≤ M(f,Π,Ξ) ≤ U(f,Π), and hence if
R ∫ b

a f(x)dx, then so does R′
∫ b
a f(x)dx and the two are equal. For the converse,

given Π, one can select Ξ so that M(f,Π,Ξ) is arbitrarily close to L(f,Π), and
one can select another Ξ so that M(f,Π,Ξ) is arbitrarily close to U(f,Π).

1.2.31 Suppose f is an integrable function. Show |f | < ∞ a.e. (Hint: Suppose
f ≥ 0. If µ({ω : f(ω) = ∞}) > 0, then there is a sequence of simple functions
φn with 0 ≤ φn ≤ f and

∫

φn dµ → ∞.)

1.2.32 Prove that f ≥ 0 a.e. and
∫

fdµ = 0 implies f = 0 a.e. (Hint: Show
that µ{ω : f(ω) > 0} > 0 implies µ{ω : f(ω) > 1/n} > 0 for some n.).

1.2.33 Suppose anm, n = 1, 2, ..., m = 1, 2, ... is a doubly indexed sequence of
nonnegative real numbers. Show using the monotone convergence theorem that

∞
∑

n=1

∞
∑

m=1

anm =
∞
∑

m=1

∞
∑

n=1

anm .

1.2.34 Suppose X, X1, X2, ... are r.v.’s on a common probability space, that
Xn → X a.s., and that for all n, P [|Xn| ≤M ] = 1, where M is a fixed constant.
Show E[Xn] → E[X]. Be careful with sets of probability 0.
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1.2.35 Suppose µ1, µ2, ... is a finite or infinite sequence of measures on (Ω,F).
Define µ(A) =

∑

i µi(A) for A ∈ F . We know from Proposition 1.1.5 (a) that µ is
a measure on (Ω,F). Show

∫

f dµ =
∑

i

∫

fdµi whenever both sides are defined.

1.2.36 Let Ω = {a1, a2, ...} be a discrete set (see Exercise 1.2.26) and put

µ =
∑

i

δai
.

Identify µ as a measure we know by another name.

1.2.37 Let f1, f2, ... be a sequence of nonnegative functions on (Ω,F , µ). Show
that

∫ ∑∞
i=1 fi dµ =

∑∞
i=1

∫

fidµ.

1.2.38 Prove Theorem 1.2.9. Show further that if ν has a density w.r.t. µ, and
if µ(A) = 0, then also ν(A) = 0.
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1.3 Measures on Product Spaces.

Given two measure spaces (Ω2,F1, µ1) and (Ω2,F2, µ2), we shall show one can
construct a “natural” measure on the cartesian product

Ω1 × Ω2 = { (ω1, ω2) : ω1 ∈ Ω1 and ω2 ∈ Ω2 } .

This naturally extends to a finite product of n measure spaces defined through
ordered n–tuples.

1.3.1 Basic Definitions and Results.

First, we define the appropriate σ–field on the product space.

Definition 1.3.1 Given measurable spaces (Ω1,F1) and (Ω2,F2), let C = {A1×
A2 : A1 ∈ F1 and A2 ∈ F2 }. Elements of C are sometimes called rectangle sets,
cylinder sets or rectangles. Then the product σ–field is given by

F1 × F2 = σ(C) .

2

Note that F1 ×F2 is not simply the cartesian product of F1 with F2, despite
what the notation suggests. The elements of F1 × F2 are subsets of Ω1 × Ω2,
whereas the cartesian product of F1 with F2 is a collection of ordered pairs of
sets. We will denote the measurable space (Ω1 × Ω2,F1 × F2) by (Ω1,F1) ×
(Ω2,F2). When several factor spaces are involved, we shall not hesitate to use
the

∏

notation, as in

n
∏

i=1

Ωi = Ω1 × Ω2 × ...× Ωn ,

n
∏

i=1

Fi = σ

(

{
n
∏

i=1

Ai : each Ai ∈ Fi }
)

.

The σ–field on IRn which is the product σ–field of n copies of B is called the σ–
field of n–dimensional Borel sets and is denoted Bn. As with the 1–dimensional
case, all subsets of IRn that arise “in practice” are Borel sets, and all functions
f : IRn −→ IRm that arise “in practice” are measurable functions when the
spaces are equipped with their Borel σ–fields.

A measure space (Λ,G, µ) with Λ ∈ Bn and G = {B ∩ Λ : B ∈ Bn} is called
a Euclidean space. Most applications of statistics involve Euclidean spaces.

Given measure spaces (Ω2,F1, µ1) and (Ω2,F2, µ2), we wish to define a “nat-
ural” measure on the product measurable space (Ω1,F1)× (Ω2,F2). Before doing
this, we will need a technical condition which arises frequently in measure theory.
It will also be used in the next section.
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Definition 1.3.2 A measure space (Ω,F , µ) is called σ–finite iff there is an in-
finite sequence A1, A2, . . . in F such that

(i) µ(Ai) < ∞ for each i;

(ii) Ω =
⋃∞
i=1Ai.

2

It is easy to check that (IR,B, m) is σ–finite and (ZZ,P(ZZ),#) is also, where
ZZ is the set of integers, positive and negative. Non–σ–finite measure spaces tend
to be somewhat pathological (see e.g. Exercise 1.3.1) so little is lost by restricting
attention to σ–finite spaces.

See Billingsley, Theorems 18.1 and 18.2, pp. 234–236 for the following impor-
tant theorem.

Theorem 1.3.1 (Product Measure Theorem) Let (Ω2,F1, µ1) and (Ω2,F2, µ2)
be σ–finite measure spaces. Then there exists a unique measure µ1 × µ2 (called
product measure) on (Ω1,F1) × (Ω2,F2) such that for all A1 ∈ F1 and A2 ∈ F2,

(µ1 × µ2)(A1 × A2) = µ1(A1) × µ2(A2) . (1.39)

2

Equation (1.39) states that the product measure of a rectangle set is the
product of the measures of the factor sets. The theorem extends by induction to
an arbitrary finite number of σ–finite measures. We will briefly explain in the
case of 3 σ–finite measure spaces (Ωi,Fi, µi), i = 1, 2, 3. The theorem tells us that
there is a product measure ν = µ1 ×µ2 on (Λ,G) = (Ω1,F1)× (Ω2,F2). Now ν is
also σ–finite; see Exercise 1.3.8. Therefore, applying again the Product Measure
Theorem, there is a product measure ν × µ3 on (Λ,G) × (Ω3,F3). Technically
speaking, the underlying space in this last product is collections of ordered pairs
of the form (λ, ω3) where λ = (ω1, ω2), but we may identify such an ordered pair
((ω1, ω2), ω3) with the ordered triple (ω1, ω2, ω3). In this way, we can simply think
of ν × µ3 as a measure on the underlying space Ω1 × Ω2 × Ω3.

The measure on (IRn,Bn) obtained by taking the n–fold product of Lebesgue
measure is called n–dimensional Lebesgue measure and is denoted mn or simply
m if n is clear from context. Note that equation (1.11) gives

m2((a1, b1) × (a2, b2)) = m((a1, b1)) ×m((a2, b2)) = (b1 − a1) × (b2 − a2) ,

where (a1, b1)× (a2, b2) is the two dimensional rectangle { (x1, x2) : a1 < x1 < b1
and a2 < x2 < b2 }. Thus, the 2–dimensional Lebesgue measure of a rectangle is
simply its area. Since any “nice” geometric figure in 2 dimensions can be “filled”
up with disjoint rectangles, it follows that m2 in general measures area. Similarly,
m3 measures volume in 3–dimensional space.
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1.3.2 Integration with Product Measures.

The next theorem shows how to integrate with product measures using iterated
integrals. See Billingsley, p. 238 (Theorem 18.3) for a proof.

Theorem 1.3.2 (Fubini’s theorem) Let Ω = Ω1 × Ω2, F = F1 × F2, and µ
= µ1 × µ2 where µ1 and µ2 are σ–finite. If f is a Borel function on Ω whose
integral w.r.t. µ exists, then

∫

Ω
f(ω) dµ(ω) =

∫

Ω1×Ω2

f(ω1, ω2) d(µ1 × µ2)(ω1, ω2)

=
∫

Ω2

[ ∫

Ω1

f(ω1, ω2) dµ1(ω1)
]

dµ2(ω2) . (1.40)

Part of the conclusion here is that

g(ω2) =
∫

Ω1

f(ω1, ω2) dµ1(ω1) , (1.41)

exists µ2–a.e. and defines a Borel function on Ω2 whose integral w.r.t. µ2 exists.

2

The first line in equation (1.40) is simply a change of notation from ω to
(ω1, ω2), etc. The second line is the meaningful one. Note that in the inner
integral of (1.40) (i.e. the r.h.s. of (1.41)), we integrate w.r.t. dµ1(ω1) while holding
ω2 fixed (or constant), after which ω1 “disappears” as a variable (as in the l.h.s.
of (1.41)). The student is already familiar with such iterated integrals w.r.t.
Lebesgue measure m2. A “symmetry” argument shows that

∫

Ω
f dµ =

∫

Ω1

[ ∫

Ω2

f(ω1, ω2) dµ2(ω2)
]

dµ1(ω1) , (1.42)

i.e. the integral may be evaluated in either order. The mathematical proof of
this is actually a bit difficult. One notes that there is an “isomorphism” of
measure spaces (Ω1,F1, µ1) × (Ω2,F2, µ2) and (Ω2,F2, µ2) × (Ω1,F1, µ1) given
by the point map (ω1, ω2) 7→ (ω2, ω1). Then,

∫

f(ω1, ω2) d(µ1 × µ2)(ω1, ω2) =
∫

f(ω1, ω2) d(µ2 × µ1)(ω2, ω1). Hopefully, the student finds obvious the appeal
to “symmetry” and doesn’t need the long winded argument to be convinced of
(1.42).

Example 1.3.1 Let Ω1 = Ω2 = IN = {0, 1, 2, ...} the natural numbers, and µ1

= µ2 = #. One can check that #×# on IN×IN is # on IN2. See Exercise 1.3.2.
A function f(n,m) on IN2, otherwise known as a double sequence, is integrable
w.r.t. # iff

∞
∑

n=1

∞
∑

m=1

|f(n,m)| < ∞ , (1.43)
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and then
∫

fd# =
∫ [ ∫

f(n,m) d#(n)
]

d#(m) (1.44)

=
∞
∑

n=1

∞
∑

m=1

f(n,m) (1.45)

=
∞
∑

m=1

∞
∑

n=1

f(n,m) .

Thus we have shown a well known fact from advanced calculus: if a double series
is absolutely summable (i.e. (1.43) holds), then it can be summed in either order.
In fact, by Fubini’s theorem, it suffices for either the sum of the positive terms
to be finite or the sum of the negative terms to be finite. That some condition
is required for interchanging the order of the summations is shown by Exercise
1.3.3. See also Exercise 1.2.33.

2

1.3.3 Random Vectors and Stochastic Independence.

We now explore the ramifications of this theory in probability. A function X :
(Ω,F , P ) −→ IRn is called an n–dimensional random vector, or random n–vector,
abbreviated r.v. Just as for n = 1, the induced measure P ◦X−1 on IRn is called
the distribution or law of X and is denoted PX or Law[X]. We will write a vector
as a column vector or as an ordered n–tuple, i.e.

(x1, x2, ..., xn) =





















x1

x2

.

.

.
xn





















.

We need to use the r.h.s. of this last equation wherein x is represented as an
n× 1 matrix whenever we do matrix operations. Some authors insist on writing
a vector as a row vector (1 × n matrix in this case), but this author is more
accustomed to column vectors. Of course, it doesn’t make any difference as long
as the reader knows which convention is in use. The component functions X1, X2,
... Xn of a random n–vector X are random variables (Exercise 1.3.13), and their
distributions on IR1 are referred to as marginal distributions. The distribution of
X on IRn is sometimes referred to as the joint distribution of X1, X2, ..., Xn.

The random variables X1, X2, ..., Xn are said to be (jointly) independent iff
for all B1, B2, ..., Bn ∈ B,

P{X1 ∈ B1, X2 ∈ B2, ... and Xn ∈ Bn} =
n
∏

i=1

P{Xi ∈ Bi} . (1.46)
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This definition extends to arbitrary random elements X1, X2, ..., Xn. This last
displayed equation is equivalent to

(P ◦X−1)(
n
∏

i=1

Bi) =
n
∏

i=1

(P ◦X−1
i )(Bi) , (1.47)

where X = (X1, X2, ..., Xn).

Proposition 1.3.3 Let X = (X1, X2, ..., Xn) be a random vector. Then X1,
X2, ..., Xn are independent iff

Law[X] =
n
∏

i=1

Law[Xi] .

Proof. Suppose X1, X2, ..., Xn are jointly independent, so (1.46) holds
for all B1, B2, ..., Bn ∈ B. Note that the l.h.s. of (1.46) is the joint distribution
P = Law[X] evaluated at the rectangle set B1×B2× ...×Bn, and (1.46) says that
this equals the product of the corresponding measures of the factor sets. Since
this holds for arbitrary rectangle sets, it follows that P ◦X−1 =

∏

(P ◦X−1
i ) by

uniqueness in the Product Measure Theorem, as claimed.
Conversely, if P ◦X−1 =

∏

(P ◦X−1
i ), then (1.46) holds for all B1, B2, ..., Bn

by the definition of the product measure, and hence X1, X2, ..., Xn are jointly
independent.

2

We say X1, X2, ..., Xn are pairwise independent iff for all i 6= j, the pair Xi

and Xj are independent. Joint independence implies pairwise independence, but
the converse is false as the counterexample of Exercise 1.3.5 shows. The following
result gives some useful consequences of independence.

Theorem 1.3.4 Let X and Y be random elements defined on a common proba-
bility space.

(a) If X and Y are independent, then so are g(X) and h(Y ) where g and h
are appropriately measurable functions.

(b) If g and h in part (a) are real valued, then

E[g(X)h(Y )] = E[g(X)]E[h(Y )] (1.48)

provided all three functions are integrable.

Proof. Part (a) is left as Exercise 1.3.6. For (b), let P = Law[g(X)] and
Q = Law[h(Y )]. By part (a), Law[(g(X), h(Y ))] = P × Q. By the law of the
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unconscious statistician (Theorem 1.2.10),

E[g(X)h(Y )] =
∫

IR2
g · h d(P ×Q)(g, h)

=
∫

IR

[ ∫

IR
g · h dP (g)

]

dQ(h)

=
∫

IR

[ ∫

IR
g dP (g)

]

h dQ(h)

=
[
∫

IR
gdP (g)

]

·
[
∫

IR
h dQ(h)

]

= E[g(X)] · E[h(Y )] .

In the above, the second equality follows from Fubini’s theorem (Theorem 1.3.2),
the third from Proposition 1.2.5 (a) (note that h can be factored out of the integral
w.r.t. dP (g) as it is constant within this integral), the fourth from Proposition
1.2.5 (a) again (

∫

gdP (g) is a constant), and the last equality from the law of the
unconscious statistician applied to each factor integral. This completes the proof
of (b).

2

Remarks 1.3.1 While we generally avoid checking measurability in this text,
the following shows that measurability w.r.t. a product σ–field on the range space
follows from measurability of the component functions w.r.t. the factor σ–fields.
Suppose f : Ω −→ Λ1 × Λ2 is any function. Define the projections

πi : Λ1 × Λ2 −→ Λi , πi(λ1, λ2) = λi ,

and the coordinate or component functions of f by

fi(ω) = (πi ◦ f)(ω) = πi(f(ω)) .

So we may write f in ordered pair notation by f(ω) = (f1(ω), f2(ω)).

Theorem 1.3.5 Suppose f : Ω −→ Λ1 ×Λ2 where (Ω,F), (Λ1,G1), and (Λ2,G2)
are measurable spaces. Then f is measurable from (Ω,F) to (Λ1,G1) × (Λ2,G2)
iff each coordinate function fi is measurable (from (Ω,F) to (Λi,Gi)), for i = 1, 2.

Proof. That measurability of f implies measurability of the coordinate func-
tions is Exercise 1.3.13. For the converse, assume the coordinate functions f1 and
f2 are measurable. If C1 × C2 is a rectangle set (i.e. each Ci ∈ Gi), then

f−1(C1 × C2) = {ω : f(ω) ∈ C1 × C2 }
= {ω : f1(ω) ∈ C1 and f2(ω) ∈ C2 }
= f−1

1 (C1) ∩ f−1
2 (C2)

∈ F ,
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since each f−1
i (Ci) ∈ F . This shows that the inverse image of a rectangle set

under f is measurable, but we must show this works for an arbitrary element of
G1 × G2. Now by Exercise 1.2.20,

C = {C ⊂ Λ1 × Λ2 : f−1(C) ∈ F }

is a σ–field on Λ1×Λ2, and we have just shown that C includes the rectangle sets.
Since G1 ×G2 is the smallest σ–field which includes the rectangle sets (Definition
1.3.1), it follows that G1 ×G2 ⊂ C, and hence that f−1(G1 ×G2) ⊂ C by definition
of C. This shows f is measurable from (Ω,F) to (Λ1,G1) × (Λ2,G2).

2

As an application of this last result, suppose X1, X2, ..., Xn are r.v.’s defined
on a common probability space. Then X = (X1, X2, ..., Xn) is automatically a
random vector.
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Exercises for Section 1.3.

1.3.1 Let (Ω,F , µ) be any measure space with µ(Ω) > 0 and define ν on (Ω,F)
by

ν(A) =

{

0 if µ(A) = 0,
∞ if µ(A) 6= 0.

Show that ν is a measure and that (Ω,F , ν) is not σ-finite.

1.3.2 Show that the product of counting measures on two discrete sets is count-
ing measure on the product set.

1.3.3 Let f : IN × IN −→ IR be given by

f(n,m) =











1 if n = m,
−1 if n = m− 1,
0 otherwise.

Show that
∞
∑

n=1

[

∞
∑

m=1

f(n,m)

]

6=
∞
∑

n=1

[

∞
∑

m=1

f(n,m)

]

.

Is f integrable w.r.t. #×#? Determine the answer to this last question directly
from the definition of integrability.

1.3.4 Show that (1.46) and (1.47) are equivalent.

1.3.5 Let (X1, X2, X3) have distribution on IR3 which puts measure 1/4 on
each of the points (0, 0, 0), (1, 1, 0), (1, 0, 1), and (0, 1, 1).

(a) Show that the distribution of any pair of the r.v.’s is the product of two
copies of the measure on IR which puts measure 1/2 at each point 0 and 1.
Conclude that (X1, X2, X3) are pairwise independent.

(b) Show that (X1, X2, X3) are not jointly independent.

1.3.6 Prove Theorem 1.3.4 (a).

1.3.7 Suppose (1.48) holds for all bounded real valued functions g and h on the
ranges of X and Y , respectively. Show X and Y are independent.

1.3.8 Show that the product of two σ-finite measure spaces is also σ-finite. Hint:
Let (Ω2,F1, µ1) and (Ω2,F2, µ2) be σ-finite, say Ω1 =

⋃∞
n=1An where µ1(An) <

∞, and Ω2 =
⋃∞
m=1Bm where µ2(Bm) < ∞. Let Cnm = An×Bm. The collection

{Cnm : n,m = 1, 2, . . .} is countable by Exercise 1.1.6 (a).

1.3.9 Define by induction the product of n measurable spaces and the product
of n measure spaces.
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1.3.10 Evaluate the integral
∫

f d(µ1 × µ2) when f , µ1, and µ2 are as given
below.

(a) µ1 and µ2 are both m, Lebesgue measure, and

f(x1, x2) =











1 if x2
1 + x2

2 ≤ 1,

0 otherwise.

(b) µ1 and µ2 are the same as in (a) but

f(x1, x2) =











e−x1/x2 if 0 ≤ x1 <∞ and 0 < x2 < 1,

0 otherwise.

(c) µ1 and µ2 are counting measure on IN , and f(n,m) = 2−(n+m).
(d) µ1 is Lebesgue measure, µ2 is counting measure on IN , and

f(x, n) =











xn if 0 < x1 ≤ 1/2,

0 otherwise.

(e) µ1 is Lebesgue measure m2 on IR2, µ2 is counting measure on {0, π, 2π},
and f((x1, x2), x3) = exp[|x1| − |x2| + cos(x3)].

1.3.11 Generalize Theorem 1.3.4 to the case of n random elements.

1.3.12 Suppose X1, X2, ..., Xn are independent r.v.’s with c.d.f.’s given by F1,
F2, ..., Fn, respectively. What is the c.d.f. of Y = max { X1, X2, ..., Xn}?

1.3.13 Let f = (f1, f2) : (Ω,F) −→ (Λ1,G1) × (Λ2,G2). Show that each of the
component functions f1 and f2 are measurable, i.e. that f1 : (Ω,F) −→ (Λ1,G1).

1.3.14 Prove or disprove the following: Let f : Ω1 × Ω2 −→ Λ where (Ωi,Fi),
i = 1, 2, and (Λ,G) are measurable spaces. Suppose f(ω1, ω2) is a measurable
function of ω1 for each fixed ω2 and is also a measurable function of ω2 for each
fixed ω1. Then f is measurable (Ω1,F1) × (Ω2,F2) −→ (Λ,G). You may assume
the existence of non–Borel sets V ⊂ IR. (Hint: Let V be such a subset of IR and
consider the indicator of D = {(x1, x2) ∈ IR2 : x1 = x2 ∈ V }.) Contrast this
claim with Theorem 1.3.5.

1.3.15 Give an alternate solution to Exercise 1.2.37 using Fubini’s theorem.
State and prove a possible result when the fi’s are not required to be nonnegative.

1.3.16 Let µ1 and µ2 be σ-finite measures on (Ω,F), and let ν be a σ-finite
measure on (Λ,G).

(a) Show µ1 + µ2 is σ-finite. See Exercise 1.2.35 for the definition of µ1 + µ2.
Hint: Similarly to Exercise 1.3.8, but consider Cnm = An ∩ Bm.

(b) Show that (µ1 + µ2) × ν = (µ1 × ν) + (µ2 × ν).
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1.3.17 Let A be a measurable set on the product space (Ω2,F1, µ1)×(Ω2,F2, µ2)
and for each ω1 ∈ Ω1 put

A(ω1) = {ω2 : (ω1, ω2) ∈ A } .

(Note: Drawing a picture of an example when Ωi = IR may be helpful here.)
Show that µ2(A(ω1)) = 0 µ1-a.e. iff (µ1 × µ2)(A) = 0. Apply this to determine
m2({(x1, x2) : x1 = x2 }).

1.3.18 Find mn({ (x1, x2, ..., xn) : xi = xj for some i 6= j}). (Hint: consider
the special cases n = 2 and n = 3 first. In these cases, you can “see” the set.)

1.3.19 Determine whether or not the following function is integrable w.r.t. m2:

f(x1, x2) =











(x1x2)/(x
2
1 + x2

2)
2 if |x1| ≤ 1 and |x2| ≤ 1,

0 otherwise.
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1.4 Densities and The Radon-Nikodym Theo-

rem.

In this section, we introduce the basic notion of a “density,” also called a “Radon-
Nikodym derivative.” The definition we will give here is very general.

1.4.1 Basic Definitions and Results.

Definition 1.4.1 Let µ and ν be measures on (Ω,F). We say ν is absolutely
continuous w.r.t. µ and write ν � µ iff for all A ∈ F , µ(A) = 0 implies ν(A) = 0.
We sometimes say µ dominates ν, or that µ is a dominating measure for ν. We
say ν and µ are equivalent (and write ν ' µ) iff both ν � µ and µ � ν.

2

In words, ν � µ if the collection of µ-null sets is a subcollection of the
collection of ν-null sets, i.e. ν “has more null sets than” µ. By Exercise 1.2.38, if
(Ω,F , µ) is a measure space and f : Ω −→ [0,∞] is Borel measurable, then

ν(A) =
∫

A
fdµ (1.49)

defines a measure ν on the same measurable space (Ω,F). It is easy to show that
ν � µ (Exercise 1.4.1). It turns out that a converse is true also, provided µ is
σ–finite. See Billingsley, Theorem 32.2, p. 443.

Theorem 1.4.1 (Radon-Nikodym Thoerem.) Let (Ω,F , µ) be a σ–finite mea-
sure space and suppose ν � µ. Then there is a nonnegative Borel function f such
that

ν(A) =
∫

A
fdµ , for all A ∈ F . (1.50)

Furthermore, f is unique µ-a.e.; i.e. if ν(A) =
∫

A g dµ for all A ∈ F , then g = f
µ-a.e.

2

The function f given in (1.50) is called the Radon-Nikodym derivative or
density of ν w.r.t. µ, and is often denoted dν/dµ. If µ = m is Lebesgue measure,
then f is called a Lebesgue density or a density of the continuous type. We say
a random variable X is a continuous random variable iff Law[X] has a Lebesgue
density, and we refer to this density at the density of X and will often write

fX(x) =
dLaw[X]

dm
(x) .
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Similarly, if X is a random n–vector and Law[X] � mn, then we say X is a
continuous random vector with a similar notation for its Lebesgue density, which
is sometimes also called a density of the continuous type.

We may write (1.50) in the form

ν(A) =
∫

A
1 dν =

∫

A

dν

dµ
dµ =

∫

A

dν

dµ
(ω) dµ(ω) . (1.51)

Notice how the dµ’s “cancel” on the r.h.s. Also, the Radon-Nikodym derivative
is only determined µ-a.e., i.e. we can change its value on a set of µ-measure 0
and not change the measure ν defined by the density. A particular choice for
the function dν/dµ is called a version of the Radon-Nikodym derivative. Two
versions of dν/dµ are equal µ-a.e. Another way we will sometimes indicate a
Radon-Nikodym derivative is the following notation:

dν = fdµ or dν(x) = f(x)dµ(x).

One can formally divide both sides of the equation by dµ to obtain dν/dµ = f .
Radon-Nikodym derivatives or densities are widely used in probability and

statistics. The student is no doubt familiar with the usage of the term “density”
when refering to a Lebesgue density, but we may also have densities for discrete
measures as the next example shows.

Example 1.4.1 Let Ω = {a1, a2, ...} be a discrete set (finite or infinite), and let
µ be a measure on (Ω,P(Ω)). Put

f(a) = µ({a}) . (1.52)

Then we claim that dµ/d# = f , where # is counting measure on Ω. To see this,
note that by property (iii) of a measure (Definition 1.1.4),

µ(A) =
∑

ai∈A

µ({ai}) =
∑

ai∈A

f(ai) =
∫

fd# .

The last equality follows from (1.27) In this context, it is sometimes said that f
is a density of the discrete type for µ. If µ is a probability measure, the density
of the discrete type is also sometimes called the probability mass function. If a
random variable has a distribution which is dominated by counting measure, then
it is called a discrete random variable.

2

Recall that a unit point mass measure at ω is given by

δω(A) =











1 if ω ∈ A,

0 otherwise.
(1.53)

Then a measure µ as given in (1.52) can be written as µ =
∑

i f(ai)δai
. The

following example shows that point mass measures can be useful components of
dominating measures for distributions which arise in applied statistics.
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Example 1.4.2 Suppose a r.v. X is obtained by measuring the concentration
of a chemical in water, but because of limitations of the measuring instrument,
concentrations less than some amount x0 are reported as x0. (For instance, an
instrument which measures lead concentration in water may register x0 = 10−5

grams per liter for any concentration at or below this value.) Suppose Y is the
true concentration, then we might think of X as given by X = max{x0, Y }.
Suppose Y has Lebesgue density fY (y) = e−y, y > 0, and 0 otherwise. Then X
does not have a Lebesgue density because P [X = x0] = 1−e−x0 but m({x0}) = 0
so we do not have Law[X] � m. But X does have a density w.r.t. the measure

µ = m+ δx0 ,

which is given by

fX(x) =
dLaw[X]

dµ
(x) =











e−x if x > x0,
1 − e−x0 if x = x0,

0 otherwise.
(1.54)

The details are left to Exercise 1.4.3.

2

In the last example we said “X does have a density ...” when we really meant
“Law[X] does have a density ...” This is a common abuse of terminology one
sees in probability and statistics.

Proposition 1.4.2 (Calculus with Radon-Nikodym derivatives.) Let (Ω,F)
be a measurable space with measures µ, ν, ν1, ν2, and λ. Assume µ and λ are
σ–finite.

(a) If ν � µ and f ≥ 0, then

∫

fdν =
∫

f

(

dν

dµ

)

dµ .

(b) If νi � µ, then ν1 + ν2 � µ and

d(ν1 + ν2)

dµ
=

dν1

dµ
+
dν2

dµ
, µ− a.e.

(c) (Chain rule.) If ν � µ� λ, then

dν

dλ
=

dν

dµ

dµ

dλ
, λ− a.e.

In particular, if µ ' ν then

dν

dµ
=

(

dµ

dν

)−1

, µ− (or ν−)a.e.
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Partial Proof. (a) The result is obviously true for indicators. Proceed to
simple functions, then take limits using the Monotone Convergence Theorem and
Proposition 1.2.8.

(b) Note that ν1 + ν2 is a measure by Exercise 1.2.35 (a). Now νi � µ for
i = 1, 2 implies ν1 + ν2 � µ (Exercise 1.4.6). If A ∈ F then

(ν1 + ν2)(A) = ν1(A) + ν2(A)

=
∫

A

dν1

dµ
dµ +

∫

A

dν2

dµ
dµ

=
∫

A

[

dν1

dµ
+
dν2

dµ

]

dµ .

The first equality follows from the definition of ν1 + ν2, the second from the
definition of dνi/dµ, and the third from linearity of the integral. By uniqueness
of the Radon-Nykodym derivative, the integrand (dν1/dµ) + (dν2/dµ) in the last
displayed expression must be a version of d(ν1 + ν2)/dµ, as required.

(c) This follows from a similar appeal to uniqueness of the Radon-Nykodym
derivative along with part (a). See Exercise 1.4.9.

2

Note how the dµ “cancels” from the r.h.s. of the equations in part (a) to give
the l.h.s. Part (a) of the last proposition is familiar in the context of probability
and statistics in the following way: if X is a continuous r.v. with Lebesgue
density f and g is a Borel measurable function IR −→ IR, then

E[g(X)] =
∫

IR
g dLaw[X] =

∫ ∞

−∞
g(x)f(x) dx .

Note that the first equality is the law of the unconscious statistician (Theorem
1.2.10).

1.4.2 Densities w.r.t. Product Measures.

Proposition 1.4.3 Let (Ωi,Fi, µi) and (Ωi,Fi, νi), i = 1, 2 be σ–finite measure
spaces, with νi � µi, i = 1, 2. Then ν1 × ν2 � µ1 × µ2 and

d(ν1 × ν2)

d(µ1 × µ2)
(ω1, ω2) =

[

dν1

dµ1
(ω1)

] [

dν2

dµ1
(ω2)

]

, µ1 × µ2 − a.e.

Proof. Let Ai ∈ Fi for i = 1, 2. Then

(ν1 × ν2)(A1 ×A2) = ν1(A1)ν2(A2) ,

=
∫

A1

dν1

dµ1

(ω1) dµ1(ω1)
∫

A2

dν2

dµ2

(ω2) dµ2(ω2)
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=
∫

A1

∫

A2

dν1

dµ1

(ω1)
dν2

dµ2

(ω2) dµ2(ω2)dµ1(ω1)

=
∫

Ω1

∫

Ω2

IA1(ω1)IA2(ω2)
dν1

dµ1
(ω1)

dν2

dµ2
(ω2) dµ2(ω2)dµ1(ω1)

=
∫

Ω1

∫

Ω2

IA1×A2(ω1, ω2)
dν1

dµ1

(ω1)
dν2

dµ2

(ω2) dµ2(ω2)dµ1(ω1)

=
∫

Ω1×Ω2

IA1×A2(ω)
dν1

dµ1
(ω1)

dν2

dµ2
(ω2) d(µ1 × µ2)(ω1, ω2)

=
∫

A1×A2

dν1

dµ1

(ω1)
dν2

dµ2

(ω2) d(µ1 × µ2)(ω1, ω2) ,

where the second to last equality follows from Fubini’s theorem. By the unique-
ness part of the Product Measure Theorem (Theorem 1.3.1), it follows that the
measure

ν(C) =
∫

C

dν1

dµ1

(ω1)
dν2

dµ2

(ω2) d(µ1 × µ2)(ω1, ω2) ,

defined on (Ω1,F1, µ1) × (Ω2,F2, µ2) is in fact ν1 × ν2. Now ν � µ1 × µ2 by
Exercise 1.4.1, and so by the uniqueness part of the Radon-Nikodym theorem,

dν

d(µ1 × µ2)
(ω1, ω2) =

[

dν1

dµ1
(ω1)

] [

dν2

dµ1
(ω2)

]

, µ1 × µ2 − a.e.

2

Remarks 1.4.1 The last result implies that if X1 and X2 are independent con-
tinuous r.v.’s with (Lebesgue) densities f1 and f2, then the joint distribution of
(X1, X2) is also continuous (i.e. Law[(X1, X2)] � m2) and the joint density f
w.r.t. m2 is the product of the marginal densities, i.e. f(x1, x2) = f1(x1)f2(x2).
Of course, this remark (and the preceding Proposition) can be extended to more
than two r.v.’s (measures, respectively) by induction. The converse of this remark
is also true (Exercise 1.4.11).

2

Under independence, we can construct the joint density w.r.t. the product of
the dominating measures from the marginal densities by simple multiplication.
In general, there is no such nice relationship between the joint and the marginal
densities, but we can always recover the marginal densities from the joint density.

Proposition 1.4.4 (Marginalization of a density) Let (Ωi,Fi, µi), i = 1, 2
be σ–finite measure spaces, and suppose ν � µ1 × µ2. Let π1 : Ω1 × Ω2 → Ω1

be the coordinate projection given by π1(ω1, ω2) = ω1, and similarly for π2. Then
ν ◦ π−1

i � µi, i = 1, 2, and

d(ν ◦ π−1
1 )

dµ1
(ω1) =

∫

Ω2

dν

d(µ1 × µ2)
(ω1, ω2) dµ2(ω2) .
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Proof. For notational simplicity put

ν1 = ν ◦ π−1
1 ,

f(ω1, ω2) =
dν

d(µ1 × µ2)
(ω1, ω2) ,

f1(ω1) =
∫

Ω2

f(ω1, ω2) dµ2(ω2) .

Note that ν1 is a measure on (Ω1,F1). Our goal in this proof is to show that
ν1 � µ1, and then that dν1/dµ1 = f1, µ1–a.e.

Now if A ∈ F1 then π−1
1 (A) = A× Ω2 is a rectangle set. Thus

ν1(A) = ν
(

π−1
1 (A)

)

= ν(A× Ω2)

=
∫

A×Ω2

f(ω1, ω2) d(µ1 × µ2)(ω1, ω2)

=
∫

A

[∫

Ω2

f(ω1, ω2) dµ2(ω2)
]

dµ1(ω1)

=
∫

A
f1(ω1) dµ1(ω1) .

Note that Fubini’s theorem was used at the fourth line. The other steps in the
above calculation follow from plugging in definitions. Now if µ1(A) = 0, then the
last integral above is 0, so ν1(A) = 0 and we have that ν1 � µ1. Furthermore,
since A ∈ F1 was arbitrary, the last display shows that we can calculate the ν1

measure of a set by integrating w.r.t. dµ1 the function f1 over the set. Hence, by
the uniqueness part of the Radon–Nikodym theorem, dν1/dµ1 = f1, µ1–a.e.

2

See Exercise 1.4.12 for specialization of this last result to probability theory.

1.4.3 Support of a Measure.

Before introducing the next important concept from measure theory, we briefly
review the topology of Euclidean spaces. This is discussed at much greater length
in Rudin’s book, Principles of Mathematical Analysis. Let x ∈ IRn, then a
neighborhood of x is any ball (or sphere) of positive radius ε centered at x. A ball
of positive radius ε centered at x is a set of the form

B(x, ε) = { y ∈ IRn : ‖x− y‖ < ε } .

Here, ‖ · ‖ denotes the norm on IRn given by

‖x‖ = ‖(x1, ..., xn)‖ =
√

x2
1 + ...x2

n .



1.4. DENSITIES AND THE RADON-NIKODYM THEOREM. 61

A set A ⊂ IRn is called open iff for every x ∈ A, there is some ε > 0 such that
B(x, ε) ⊂ A. A set C ⊂ IRn is called closed iff it is the complement of an open
set. One can show that a union of open sets is also open, and hence that an
intersection of closed sets is also closed. Also, the sets IRn and ∅ are both open
and closed. Thus, any set D ⊂ IRn is contained in some closed set (namely IRn),
and the intersection of all closed sets which contain D is also a closed set, namely
the smallest closed set containing D. This set is called the closure of D and
denoted D̄. D̄ is also given by the following

D̄ = { lim
n
xn : x1, x2, ..., xn, ... is a sequence of

points in D for which the lim
n

exists.} (1.55)

Otherwise said, D̄ is the set of limit points of D. Now we briefly explore a concept
related to absolutely continuity.

Definition 1.4.2 Suppose ν is a measure on (IRn,Bn). The support of ν is the
set

supp(ν) = { x ∈ IRn : ν(B(x, ε)) > 0 for all ε > 0 } .

2

One can show that supp(ν) is a closed set (Exercise 1.4.13), and if ν is a p.m.,
then supp(ν) is the smallest closed set with probability 1 (Exercise 1.4.14).

Proposition 1.4.5 Suppose µ and ν are Borel measures on IRn, µ is σ–finite,
and ν � µ. Then supp(ν) ⊂ S̄ where

S = { x ∈ supp(µ) :
dν

dµ
(x) > 0 } .

Proof. Let x ∈ supp(ν), then for any ε > 0 we have

ν(B(x, ε)) =
∫

B(x,ε)

dν

dµ
dµ > 0 .

In particular, the nonnegative function IB(x,ε)(y)·(dν/dµ)(y) cannot be identically
0 on B(x, ε), i.e. [dν/dµ](y) > 0 for some y ∈ B(x, ε).

Now let An be the sequence of balls B(x, 1/n) and yn ∈ An such that
[dν/dµ](yn) > 0. One checks that yn → x, i.e. x is a limit point of S, so x ∈ S̄,
as asserted.

2
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Remarks 1.4.2 As a corollary to this and Exercise 1.4.16, ν � µ σ–finite im-
plies supp(ν) ⊂ supp(µ). The converse is false, i.e. supp(ν) ⊂ supp(µ) does not
imply ν � µ. Also, we cannot in general claim supp(ν) = S̄ in Proposition 1.4.5
(see Exercise 1.4.15). One does however have the next result.

2

Proposition 1.4.6 Let U ⊂ IRn be open. Suppose

(i) µ is Lebesgue measure restricted to U , i.e. µ(B) = m(B ∩U) for all B ∈ Bn;

(ii) ν � µ;

(iii) the version of f = dν/dµ is continuous on U ;

Then supp(ν) = S̄ where

S = { x ∈ U : f(x) > 0 }. (1.56)

Proof. Now f continuous on U and f(x) > 0 for some x ∈ U implies there is
a ε > 0 such that f(y) > ε for all y in some neighborhood B(x, δ0) of x. Hence,
for x ∈ S where S is given in (1.56), we have for all δ > 0 that

ν (B(x, δ)) ≥ εmn ( B( x , min{δ, δ0} ) ) .

Since the r.h.s. above is positive, it follows that S ⊂ supp(ν).
On the other hand, if x ∈ supp(ν), then for all δ > 0

0 <
∫

B(x,δ)
f(y) dm(y)

so in particular, for all δ > 0 there is a y ∈ B(x, δ) with f(y) > 0 and we
can find a sequence yn ∈ S with yn → x. Thus, x ∈ S̄, and we have shown
that supp(ν) ⊂ S̄. Since S̄ is the smallest closed set containg S and supp(ν) is a
closed set containing S (by the first part of the proof), it follows that supp(ν) = S̄.

2

Example 1.4.3 Consider the exponential distribution with Lebesgue density

f(x) =











e−x if x ≥ 0,

0 otherwise.
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We cannot apply the previous proposition to this version of the density, but we
can apply it to

f(x) =











e−x if x > 0,

0 otherwise.

which is another version (that agrees with the first version except on the set {0},
which has Lebesgue measure 0). In this second version, the density is positive on
the open set (0,∞), and so the support is the (closed) set [0,∞).

2
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Exercises for Section 1.4.

1.4.1 Let ν be defined as in (1.49). Show that ν � µ.

1.4.2 True or false: If µ is a σ–finite measure and ν � µ, then ν is σ–finite.

1.4.3 Verify equation (1.54).

1.4.4 A lightbulb has an exponential lifetime T with mean λ, i.e. T is a r.v.
with Lebesgue density fT (t) = λ−1 exp[−t/λ]I(0,∞)(t). However, we only observe
Y = min{T, τ} where τ , the maximum time allowed for the experiment, is a
positive constant. Find a σ–finite measure µ such that Law[Y ] � µ and give the
density dLaw[Y ]/dµ.

1.4.5 Let Pλ be the Poisson distribution on IN = {0, 1, 2, . . .} given by

Pλ({n}) = e−λλn/n! , n ∈ IN .

Show that Pλ � P1 and find dPλ/dP1. Here, P1 is the Poisson distribution with
λ = 1.

1.4.6 Verify that νi � µ for i = 1, 2 implies ν1 + ν2 � µ.

1.4.7 Show that if f is not restricted to be nonnegative in Proposition 1.4.2 (a),
then existence of either integral implies existence of the other and equality of the
two.

1.4.8 Fill in the details of the proof of Proposition 1.4.2 (a).

1.4.9 Fill in the details of the proof of Proposition 1.4.2 (c).

1.4.10 Verify that Proposition 1.4.3 and Remark 1.4.1 extend to n measures
and r.v.’s, respectively.

1.4.11 (a) Show the following converse of Remark 1.4.1: Suppose (X1, X2) have
joint density w.r.t. a product measure µ1 × µ2 which factors into the product of
the marginals, as in f(x1, x2) = f1(x1)f2(x2), then X1 and X2 are independent.

(b) Extend to more than two r.v.’s.

1.4.12 (a) Show that Proposition 1.4.4 has the following application in proba-
bility theory: Let X and Y be r.v.’s with joint distribution Law[X, Y ] � µ1 ×µ2

where µ1 and µ2 are σ–finite. Write the joint density as

fXY (x, y) =
dLaw[X, Y ]

d(µ1 × µ2)
(x, y) .

Show that Law[X] � µ1 and the marginal density is given by

fX(x) =
∫

fXY (x, y) dµ2(y) .

(b) Let X be a random (n + k)–vector with Lebesgue density f . Let Y =
(X1, ..., Xn) be the random n-vector given by the first n components of X. Show
Law[Y ] � mn and find a formula for the Lebesgue density of Y .
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1.4.13 Show that supp(ν) is a closed set. Hint: Show the complement is open.

1.4.14 Let P be a Borel p.m. on IRn. Show that supp(P ) is the smallest closed
set C such that P (C) = 1.

1.4.15 Suppose ν has Lebesgue density given by

f(x) =











1 if 0 < x < 1 or x = 2,

0 otherwise.

(a) Find supp(ν).
(b) Show that supp(ν) is a proper subset of S̄ given in Proposition 1.4.5.

1.4.16 Suppose ν � µ σ–finite are Borel measures and µ is σ–finite. Let f be
a version of dν/dµ. Show that the following is also a version of dν/dµ:

g(x) =











f(x) if x ∈ supp(µ),

0 otherwise.

1.4.17 Suppose µ is any Borel measure on IR with supp(µ) ⊂ IN . Show that
µ� #, counting measure on IN , and find dµ/d#.

1.4.18 P is a Borel p.m. on IR with c.d.f. F . Show that supp(P ) = [a, b], a
finite closed interval, iff F (a− 0) = 1 − F (b) = 0 and F is strictly increasing on
[a, b].

1.4.19 (a) Show that supp(ν1 × ν2) = supp(ν1) × supp(ν2) for σ–finite Borel
measures ν1 and ν2.

(b) Suppose ν is a Borel measure on IR2 but supp(ν) is not a product set, i.e.
not of the form of a Cartesian product B1×B2 for Borel sets Bi ⊂ IR. Show that
ν cannot be a product measure.

1.4.20 Suppose h : U −→ V is one to one and h(U) = V , where U and V are
open sets in IRn. Suppose h(W ) is an open set for each open W ⊂ U . Show that
h−1 : V −→ U is Borel measurable.
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1.5 Conditional Expectation.

Suppose X : (Ω,F , P ) −→ (IR,B) is a r.v. and Y : (Ω,F , P ) −→ (Λ,G) is any
random element. Knowing the value of Y tells us something about the particular
outcome ω which occurred, and hence possibly also something about the value of
X, i.e. X(ω). It is often of interest to find the “best predictor” or “estimator” of
X based on the observed value of Y . By “based on the observed value of Y ”, we
mean this predictor is a function of Y . For mathematical convenience, we take
“best” to mean “mimimizes the mean squared prediction error,” which is defined
to be

MSPE(Z) = E[(Z −X)2] . (1.57)

It will be necessary to assume E[X2] < ∞, and then to restrict attention to Z’s
which are (Borel measurable) functions of Y and satisfy E[Z2] < ∞. This latter
requirement on Z is needed to guarantee that E[(Z −X)2] < ∞.

Suppose Z∗ minimizes MSPE, and let W be any other r.v. which is a function
of Y with E[W 2] < ∞. Then consider the quadratic function of t ∈ IR given by

M(t) = MSPE(Z∗ + tW )

= E[{(Z∗ −X) + tW}2]

= E[(Z∗ −X)2] + 2tE[(Z∗ −X)W ] + t2E[W 2] .

Since Z∗ minimizes MSPE, M(t) has its minimum at t = 0. Since a quadratic
function of t of the form M(t) = at2 + bt + c has its minimum at t = −b/2a, it
follows that b = 0, i.e.,

E[W (Z∗ −X)] = 0 ,

that is
E[WX] = E[WZ∗] . (1.58)

Now W was an arbitrary function of Y with E[W 2] < ∞. In particular, (1.58)
holds for all indicatorsW = IA(Y ), where A ⊂ Λ is G–measurable, since indicators
trivially have finite second moments. Conversely, if

E[IA(Y )X] = E[IA(Y )Z∗] , for all A ∈ G , (1.59)

then (1.58) holds for any W = h(Y ) with h real valued and W having finite
second moment. This follows by taking a sequence of simple functions on IR
converging to h (Exercise 1.5.5). Since IA(Y (ω)) = IY −1(A)(ω), and Y −1(A) is a
generic element of σ(Y ), (1.59) is equivalent to

E[ICX] = E[ICZ∗] , for all C ∈ σ(Y ) , (1.60)

Now (1.60) provides us with a possibly useful characterization of the “best” pre-
dictor of X which is a function of Y . We will denote the Z∗ which is a function
of Y and satisfies (1.60) by E[X|Y ], referred to as the conditional expectation of



1.5. CONDITIONAL EXPECTATION. 67

X given Y . There are several issues to deal with here, such as does such a Z∗

exist, and is it unique? Is such an abstract characterization really useful? In the
end, we will make the definition even more abstract by focusing attention on the
σ–field rather than Y .

1.5.1 Characterization of Measurable Transformations of
a Random Element.

Recall that we wanted E[X|Y ] to be a function of Y satisfying other conditions
(namely (1.60)). The next result is a very useful characterization of the class of
r.v.’s which are functions of Y .

Theorem 1.5.1 Suppose Y : (Ω,F) −→ (Λ,G) and Z : (Ω,F) −→ (IRn,Bn).
Then Z is σ(Y )-measurable if and only if there is a Borel function h : (Λ,G) −→
(IRn,Bn) such that Z = h(Y ).

Remarks 1.5.1 To say “Z is σ(Y )–measurable” means Z : (Ω, σ(Y )) −→ (IRn,Bn),
i.e. σ(Z) = Z−1(Bn) ⊂ σ(Y ). Note that σ(Y ) is a sub–σ–field of F . The theorem
may be summarized pictorially as follows:

(Λ,G)

Y

(Ω,F)
�
�
�
�
�
�
�
�
�3

h exists iff σ(Z) ⊂ σ(Y )

Z

(IRn,Bn)
?

Q
Q
Q
Q
Q
Q
Q
Q
Qs

2

Proof. Assume that σ(Z) ⊂ σ(Y ) and we will show the existence of such an
h. Also, assume for now n = 1. We proceed in steps, as usual.

Step 1. If Z is a simple function, say

Z =
m
∑

i=1

aiIAi
,



68 CHAPTER 1. MEASURE SPACES.

where the sets Ai are disjoint and coefficients ai are distinct and nonzero, i.e.

ai 6= aj if i 6= j .

See Exercise 1.2.21. Then Ai = Z−1({ai}) ∈ σ(Z) and hence also Ai ∈ σ(Y ),
1 ≤ i ≤ m, i.e. Ai = Y −1(Ci) for some Ci ∈ G since all Ai ∈ σ(Y ) are of this
form by definition of σ(Y ). Put

h =
m
∑

i=1

aiICi
.

Then

h(Y (ω)) =
m
∑

i=1

aiICi
(Y (ω)) =

m
∑

i=1

aiIY −1(Ci)(ω) =
m
∑

i=1

aiIAi
(ω) .

This completes the proof if Z is a simple function.
Step 2. If Z is not simple, then there exist simple functions Zn such that

Zn(ω) → Z(ω) for all ω ∈ Ω by Proposition 1.2.8. By Step 1, each Zn = gn(Y )
for some gn : (Λ,G) −→ (IRn,Bn). Now put L = {λ ∈ Λ : limn gn(λ) exists }.
Let hn = gnIL. Clearly there is a function h = limn hn (since if λ ∈ L then hn(λ)
= gn(λ) and the sequence of real numbers gn(λ) has a limit by definition of L, and
if λ 6∈ L then hn(λ) = 0, which has the limit 0 as n → ∞), and h is measurable
by Proposition 1.2.1 (c).

We will show Z(ω) = h(Y (ω)) for all ω ∈ Ω. Note that Y (ω) ∈ L because
gn(Y (ω)) = Zn(ω) → Z(ω). so by definition of hn, hn(Y (ω)) = gn(Y (ω)) →
Z(ω), but hn(Y (ω)) → h(Y (ω)) by definition of h, so Z(ω) = h(Y (ω)). This
finishes Step 2.

Finally, to remove the restriction n = 1, use the result for n = 1 on each
component of Z = (Z1, ..., Zn) and apply Theorem 1.3.5 to conclude that Z is
σ(Y ) measurable when each component is σ(Y ) measurable.

To prove the converse, assuming Z = h(Y ) = h ◦ Y for some h : (Λ,G) −→
(IRn,Bn), we have Z−1(B) = (h ◦ Y )−1(B) = Y −1(h−1(B)) by Exercise 1.2.6. If
B ∈ Bn, then h−1(B) ∈ G, so it follows that Y −1(h−1(B)) ∈ σ(Y ). This shows
σ(Z) ⊂ σ(Y ).

2

1.5.2 Formal Definition of Conditional Expectation.

We have shown that equation (1.60) is necessary for Z∗ to be the “best” predictor
of X based on Y . One can show that it is also sufficient (Exercise 1.5.10).
Realizing that (1.60) characterizes the “best” such predictor when X has finite
second moment allows us to generalize this notion of “best” predictor when X
has only first moment. Also, notice that it only depends on the σ–field σ(Y ), so
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we can generalize the definition of conditional expectation to the situation where
the given “information” is in the form of a σ–field (which may not often be the
case in practical applications).

Definition 1.5.1 Let X : (Ω,F , P ) −→ (IR,B) be a r.v. with E[|X|] < ∞, and
suppose G is a sub–σ–field of F . Then the conditional expectation of X given G,
denoted E[X|G], is the essentially unique r.v. Z∗ satisfying

(i) Z∗ is G measurable;

(ii)
∫

A Z∗dP =
∫

AXdP , for all A ∈ G.

Here, “essentially unique” means that if Z is any other r.v. on (Ω,F , P ) sat-
isfying (i) and (ii), then Z = Z∗ a.s. Such Z’s satisfying (i) and (ii) are called
versions of E[X|G].

If Y is a random element on (Ω,F), then E[X|Y ] = E[X|σ(Y )]. If B ∈ F
then the conditional probability of B given G is P [B|G] = E[IB|G].

2

Remarks 1.5.2 (a) It is shown in the next theorem that such a Z∗ exists and is
essentially unique.

(b) Note that E[X|G] is a r.v., i.e. a mapping from (Ω,F) −→ (IR,B). Thus,
E[X|G](ω) ∈ IR for each ω ∈ Ω.

(c) Since E[|X|] < ∞ we also have E[|IAX|] < ∞ for all A ∈ G so the r.h.s.
of (ii) is defined and is a finite real number.

(d) Note that (ii) is the same as (1.60) with G = σ(Y ), which justifies in some
sense writing E[X|Y ] = E[X|σ(Y )]. From a probabilistic point of view, one can
say that σ(Y ) “contains the information in Y ” useful for prediction of any r.v.
X. Note that from the observed value Y (ω) one can only determine whether or
not ω ∈ A if A ∈ σ(Y ).

We try to clarify this even more with the following. If σ(W ) = σ(Y ), then we
know from Theorem 1.5.1 that W = h(Y ) for some function h, and Y = g(W )
for some function g, so g = h−1. Thus, if we know the value of W (ω), then we
know Y (ω) and conversely, so it is reasonable to say W and Y “contain the same
information”. If it is only true that W = h(Y ) for some function h, then knowing
Y we can determine W , but not conversely in general, so it is reasonable that Y
“contains more information than” W , which means that σ(W ) ⊂ σ(Y ) as follows
again from Theorem 1.5.1.

2

Theorem 1.5.2 (Existence and uniqueness of conditional expectation.)
There is an essentially unique r.v. Z∗ satisfying (i) and (ii) of Definition 1.5.1.
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Proof. First assume X ≥ 0. Define a measure ν on (Ω,F) by

ν(A) =
∫

A
X dP , for all A ∈ F .

Note that ν � P and dν/dP = X, a.s. Let ν0 and P0 denote the restrictions of ν
and P to G, i.e. ν0 is the measure on (Ω,G) given by ν0(A) = ν(A) for all A ∈ G.
Then we still have ν0 � P0, but not necessarily that dν0/dP0 = X since X is
not necessarily G-measurable, i.e. we may not have σ(X) ⊂ G. However, by the
Radon-Nikodym theorem (note that P0 is trivially σ–finite) we have that there
is a r.v. Z∗ = dν0/dP0, P0-a.s. such that Z∗ is G-measurable (i.e. property (i) of
the definition holds) and

ν0(A) =
∫

A
Z∗ dP0 , for all A ∈ G .

Since ν0(A) = ν(A) =
∫

AXdP , we have

∫

A
X dP =

∫

A
Z∗ dP0 , for all A ∈ G . (1.61)

Now we claim that for any r.v. W on (Ω,G, P0),
∫

WdP0 =
∫

WdP . (Note
that W is automatically a r.v. on (Ω,F , P ).) This is certainly true if W is an
indicator by definition of P0, and then it follows immediately for simple func-
tions by linearity of integrals. For W ≥ 0, consider a sequence of G-measurable
simple functions 0 ≤ φn ↑ W as in Proposition 1.2.8 and apply monotone con-
vergence. Finally, the general case (which we do not actually need here) follows
from linearity and the decomposition of W into its positive and negative parts.

Hence, from (1.61) we have

∫

A
X dP =

∫

A
Z∗ dP , for all A ∈ G , (1.62)

which is property (ii).
If Z ′ is any other r.v. satisfying (i) and (ii), then Z ′ = dν0/dP0 = Z∗, P0-

a.s. by the essential uniqueness of Radon-Nikodym derivatives. Note that P0-a.s.
implies P -a.s. since a P0-null set is just a P -null set which happens to belong to
G.

If we drop the restriction that X ≥ 0 but require E[|X|] < ∞, then apply
the previous argument to X+ and X− to obtain essentially unique r.v.’s Z∗+ and
Z∗− which are G-measurable and satisfy

∫

A
X+dP =

∫

A
Z∗+dP ,

∫

A
X−dP =

∫

A
Z∗−dP , for all A ∈ G .

We claim Z∗+ and Z∗− are both finite a.s. so that the r.v. Z∗ = Z∗+ − Z∗− is
defined a.s. (i.e. it can be of the form ∞ − ∞ only on a null set, and we may
define it arbitrarily there). Now X+ and X− are both finite a.s. (Exercise 1.2.31),
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and if say A = [Z∗+ = ∞] satisfied P (A) > 0, then since A = Z−1
∗+({∞}) ∈ G,

∫

AX+dP =
∫

A Z∗+dP = ∞. However, since X is integrable,
∫

AX+dP ≤ ∫

X+dP
< ∞, a contradiction. This establishes the claim for Z∗+ and the claim that Z∗−

< ∞ a.s. follows similarly.

Verification of properties (i) and (ii) is easy. If Z ′ is any other r.v. satisfying
(i) and (ii), then let D = Z∗ −Z ′. Then D is G–measurable by Proposition 1.2.1
(b), so A = [D ≥ 0] is in G. Since both Z∗ and Z ′ satisfy (ii)

∫

Ω
IADdP =

∫

A
Z∗ dP −

∫

A
Z ′ dP =

∫

A
X dP −

∫

A
X dP = 0.

However, IAD is a nonnegative function, so by Proposition 1.2.6 (b), IAD = 0,
a.s. A similar argument shows IAcD = 0, a.s., and hence Z∗ = Z ′, a.s., which
completes the proof.

2

The proof may also be found in Billingsley, p. 466 ff.

Now we introduce another object sometimes known as the “conditional ex-
pectation.” Let Y : (Ω,F , P ) −→ (Λ,G) be any random element, and let X be
an integrable r.v. Now

Z(ω) = E[X|Y ](ω) ω ∈ Ω ,

is a r.v. on Ω which is σ(Y )-measurable by definition. Hence, by Theorem 1.5.1
there is a function

h : (Λ,G) −→ (IR,B)

such that Z(ω) = h(Y (ω)) = (h ◦ Y )(ω). Furthermore, this function is Law[Y ]-
essentially unique in the sense that Z = h′◦Y for some other h′ : (Λ,G) −→ (IR,B)
implies that h′ = h Law[Y ]-a.s., i.e. P [h(Y ) = h′(Y )] = 1. Any such version is
defined to be the conditional expectation of X given Y = y, and denoted

E[X|Y = y] = h(y) , y ∈ Λ .

The following picture may help the student keep matters clear:
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(Λ,G)

Y

(Ω,F)
�
�
�
�
�
�
�
�
�3

E[X|Y = · ]

E[X|Y ]

(IR,B)
?

Q
Q
Q
Q
Q
Q
Q
Q
Qs

The notations here are very confusing for many students, so we will try to
explain some of the subtleties. One difficulty is that E[X|Y = y] is a function
of y ∈ Λ in our setup, and the argument of the function y does not appear in
a convenient place. Indeed, in the defining equation above E[X|Y = y] = h(y)
where h is the function such that h(Y ) = E[X|Y ], if we substitute the random
object Y for y we obtain the seemingly nonsensical “E[X|Y ] = E[X|Y = Y ].”
The following may be a little clearer:

E[X|Y ](ω) = E[X|Y = Y (ω)] . (1.63)

The argument of the function E[X|Y = · ] is whatever appears on the r.h.s. of
the equals sign “=” after the conditioning bar “|”. We do not call E[X|Y = ·]
a random variable in general since it is not a function defined on the underlying
probability space (Ω,F , P ), although it is a function on the probability space
(Λ,G,Law[Y ]), so technically we could call it a random variable.

1.5.3 Examples of Conditional Expectations.

The definition of E[X|G] is very unsatisfactory from an intuitive point of view,
although it turns out to be very convenient from a formal mathematical point
of view. In order to make it more appealing intuitively, we shall verify that it
gives the “right answer” in a number of circumstances with which the student is
already familiar.

Proposition 1.5.3 Suppose A1, A2, ..., An are events which partition Ω (i.e. the
Ai are mutually exclusive and Ω =

⋃n
i=1Ai). Suppose P (Ai) > 0 for each i and

a1, a2, ..., an are distinct real numbers. Let

Y =
n
∑

i=1

aiIAi
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be a simple r.v. If X is an integrable r.v., then

E[X|Y ] =
n
∑

i=1

∫

Ai
XdP

P (Ai)
IAi

, a.s. (1.64)

Remarks 1.5.3 Consider the elementary case n = 2 and X = IB for some event
B. Write A = A1 and Ac = A2. The values of a1 and a2 are irrelevant, as long as
they are distinct, since any such Y contains the same “information”, namely the
σ–field σ(Y ) = {∅, A, Ac, Ω} (see the example after Definition 1.2.2). We may
take Y = IA for simpicity. Then, according to (1.64),

E[X|Y ] = P [B|Y ] =

∫

A IBdP

P (A)
IA +

∫

Ac IBdP

P (Ac)
IAc , a.s. (1.65)

That is, almost surely

P [B|Y ](ω) =











P (A ∩ B)/P (A) if ω ∈ A,

P (Ac ∩ B)/P (Ac) if ω ∈ Ac.

Note that for ω ∈ A, P [B|IA](ω) = P [B|A] = P (A ∩B)/P (A), with probability
1, where P [B|A] denotes the “classical” or “elementary” conditional probability
of B given A. Similarly, for ω ∈ Ac, P [B|IA](ω) = P [B|Ac] a.s. Thus, we have

P [B|IA] = P [B|A]IA + P [B|Ac]IAc .

Note that we have mixed meanings for conditional probability in the last dis-
play. The l.h.s. is the “sophisticated” type of conditional probability defined in
Definition 1.5.1, whereas both conditional probabilities on the r.h.s. are of the
elementary variety. It will always be clear when we intend elementary conditional
probability (which is a fixed number) rather than our more sophisticated kind
(which is a random variable) since the second member of the conditional proba-
bility operator will be a set in the case of elementary conditional probability but
will be a random variable or a σ-field for the more sophisticated variety.

2

Remarks 1.5.4 We may also express the result of Proposition 1.5.3 in terms of
the “other” kind of conditional expectation. The reader should be able to check
that

E[X|Y = y] =
n
∑

i=1

∫

Ai
XdP

P (Ai)
I{ai}(y) , Law[Y ] − a.s.

2
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Proof. Let Z denote the proposed E[X|Y ] on the r.h.s. of (1.64). Since Ai
= Y −1({ai}), it follows that Z is σ(Y )-measurable. In fact, one can show that
σ(Y ) is the collection of all unions of the Ai. For instance, if B ∈ B, then

Y −1(B) =
⋃

{i:ai∈B}

Ai .

See also Exercises 1.2.21 and 1.2.22. Hence, if A ∈ σ(Y ), say A = Y −1(B) for
B ∈ B, then

∫

A
X dP =

∫

Y −1(B)
X dP =

∑

{i:ai∈B}

∫

Ai

X dP . (1.66)

Now,
∫

A
Z dP =

∑

{i:ai∈B}

∫

Ai

n
∑

j=1

∫

Aj
X(ω1)dP (ω1)

P (Aj)
IAj

(ω)dP (ω)

=
∑

{i:ai∈B}

n
∑

j=1

∫

Aj
X(ω1)dP (ω1)

P (Aj)

∫

Ai

IAj
(ω)dP (ω) .

Note in the last expression that when i is fixed in the outer summation, then
∫

Ai
IAj

dP is nonzero only when j = i since otherwise Ai and Aj are disjoint. If
i = j then this integral is P (Ai). Hence,

∫

A
Z dP =

∑

{i:ai∈B}

∫

Ai
XdP

P (Ai)

∫

Ai

IAi
(ω)dP (ω) =

∑

{i:ai∈B}

∫

Ai

X dP . (1.67)

This shows the proposed E[X|Y ] satisfies property (ii) of the definition by (1.66)
and (1.67).

2

One virtue of the abstract definition of conditional expectation is that it allows
us to make sense of P [B|X] even when P [X = x] = 0 for any single value x. The
next result makes this clearer.

Proposition 1.5.4 Suppose X : (Ω,F , P ) −→ (Λ1,G1) and Y : (Ω,F , P ) −→
(Λ2,G2) are random elements and µi is a σ-finite measure on (Λi,Gi) for i = 1, 2
such that Law[X, Y ] � µ1×µ2. Let f(x, y) denote the corresponding joint density.
Let g(x, y) be any Borel function Λ1×Λ2 −→ IR such that E|g(X, Y )| <∞. Then

E[g(X, Y )|Y ] =

∫

Λ1
g(x, Y ) f(x, Y ) dµ1(x)
∫

Λ1
f(x, Y ) dµ1(x)

, a.s. (1.68)
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Remarks 1.5.5 Note that the denominator is fY (Y ), which is the marginal
density of Y w.r.t. µ2. See Exercise 1.4.12. Define the conditional density of X
given Y by

fX|Y (x|y) =
fXY (x, y)

fY (y)
. (1.69)

Note that for fixed y this is a density w.r.t. µ1 for a probability measure on Λ1,
where X is a random element taking values in Λ1. Then (1.68) may be rewritten
as

E[g(X, Y )|Y ] =
∫

Λ1

g(x, Y ) fX|Y (x|Y ) dµ1(x) ,

or in terms of the “other” conditional expectation,

E[g(X, Y )|Y = y] =
∫

Λ1

g(x, y) fX|Y (x|y) dµ1(x) . (1.70)

2

Proof. It follows from Fubini’s theorem that both of the functions

∫

Λ1

g(x, y) f(x, y) dµ1(x) and
∫

Λ1

f(x, y) dµ1(x)

are measurable functions of y, and the second is positive Law[Y ]-a.s. (the set of y
values where it is 0 has Law[Y ] measure 0). If we define h(y) to be the quotient
of the first over the second (i.e. h(Y ) is the function of Y on the r.h.s. of (1.68)),
then h(y) is defined Law[Y ]-a.s. and is measurable from Λ2 −→ IR. As the r.h.s.
of (1.68) equals h(Y ) = h ◦ Y , it follows that the r.h.s. is σ(Y )-measurable. This
is property (i) of Definition 1.5.1.

Now we check the second property of Definition 1.5.1. Let B ∈ Bn so Y −1(B)
is a generic element of σ(Y ). Then

∫

Y −1(B)
h(Y ) dP =

∫

B
h(y) dPY (y) =

∫

B
h(y)fY (y) dµ2(y)

=
∫

B

∫

g(x, y)f(x, y) dµ1(x)

fY (y)
fY (y) dµ2(y) =

∫

B

∫

g(x, y)f(x, y) dµ1(x)dµ2(y)

=
∫

Λ1×B
g(x, y)f(x, y) d(µ1 × µ2)(x, y) =

∫

Y −1(B)
g(X, Y ) dP .

This proves the theorem.

2
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1.5.4 Conditional Distributions.

It would seem that conditional expectation is difficult enough, and might hope
that further complexity could be avoided. However, we shall have much need for
something even more complicated.

Definition 1.5.2 Let X : (Ω,F , P ) −→ (Λ1,G1) and Y : (Ω,F , P ) −→ (Λ2,G2)
be random elements. A family of regular conditional (probability) distribution(s)
for X given Y = y, or more simply called the conditional distribution of X given
Y = y, is a function p : G1 × Λ −→ [0, 1] satisfying

(i) for all B ∈ G1, p(B, y) = P [X ∈ B|Y = y] for PY -almost all y ∈ Λ, i.e.
p(B, ·) is a version of P [X ∈ B|Y = ·] for fixed B ∈ G1.

(ii) p(·, y) is a p.m. on (Λ1,G1) for all y ∈ Λ2.

When such a p(B, y) exists, we shall write it as PX|Y (B|Y = y), or we will denote
the p.m. PX|Y (·|Y = y) by Law[X|Y = y].

2

Proposition 1.5.5 Suppose that the assumptions of Proposition 1.5.4 hold. Then
we have

(i) the family of regular conditional distributions Law[X|Y = y] exists;

(i) Law[X|Y = y] � µ1 for Law[Y ]–almost all values of y;

(iii) the Radon-Nikodym derivatives are given by

dLaw[X|Y = y]

dµ1
(x) = fX|Y (x|y), µ1 × µ2 − a.e.,

where fX|Y (x|y) is the conditional density given in Proposition 1.5.4.

Proof. From the proof of Proposition 1.5.4, for all B ∈ G1,

P [X ∈ B|Y = y] =
∫

IB(x)fX|Y (x|y) dµ1(x) .

This verifies (i) of Definition 1.5.2. Condition (ii) of the definition follows since
fX|Y (x|y) is a probability density w.r.t. dµ1(x) for each fixed y ∈ Λ2, i.e.
fX|Y (x|y) ≥ 0 for all x and y, and for all y,

∫

fX|Y (x|y) dµ1(x) = 1.

2
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Remarks 1.5.6 The reader may find the definition and previous result very puz-
zling. After all, is it not obvious that conditional probability distributions exist?
The answer is, “No,” but it is also not obvious why they should not automatically
exist. To explain, suppose (Ω,F , P ) is a probability space and G is a sub–σ–field
of F . Then for each event A ∈ F , the conditional probability P [A|G] = E[IA|G] is
an almost surely uniquely defined r.v. Fix ω ∈ Ω. Does it follow that P [A|G](ω)
is a probability measure when considered as a function of the event A? Given
that P [A|G](·) may be modified arbitrarily on P -null sets (as long as it is done in
a G-measurable way), clearly we may not use any version of the family of r.v.’s
{P [A|G](·) : A ∈ F} and obtain a family of probability measures {P [·|G](ω) :
ω ∈ Ω}. In general, such versions of P [A|G](·) may not exist. Like a number of
issues in measure theory, (e.g. the existence of subsets of IR which are not Borel
measurable) the nonexistence of conditional probability distributions is a tech-
nical detail which is of little importance in statistics. The next theorem shows
that conditional distributions exist for the settings we shall encounter in this
book. For further discussion of the difficulties involved with obtaining a family
of conditional probability distributions (including counterexamples wherein they
don’t exist), see Ash or Brieman. Exercise 33.13, p. 464 of Billingsley provides a
specific example.

2

Theorem 1.5.6 Suppose Y : (Ω,F , P ) −→ (Λ,G) is a random element and X
is a random n–vector on (Ω,F , P ). Then there exists a family 〈PX|Y (B|Y = y) :
y ∈ Λ, B ∈ Bn〉 such that

(i) for all B ∈ Bn, PX|Y (B|Y = y) = P [X ∈ B|Y = y] for PY -almost all y ∈ Λ,
i.e. PX|Y (B|Y = y) is a version of P [X ∈ B|Y = y].

(ii) PX|Y (·|Y = y) is a Borel p.m. on IRn for all y ∈ Λ.

Furthermore, if E[|h(X, Y )|] < ∞, then

E[h(X, Y )|Y = y] =
∫

IRn
h(x, y) dPX|Y (x|Y = y) . (1.71)

2

The proof of this theorem may be found in Breiman. It also follows from
Theorems 33.3, p. 460, and Theorem 34.5, p. 471 of Billingsley. Comparison of
Proposition 1.5.5 and Theorem 1.5.6 demonstrates the usual situation in statis-
tics: in spite of the difficulty of proving a general result like Theorem 1.5.6, with a
few more “concrete” assumptions as in Proposition 1.5.5, one can “barehandedly”
construct the conditional distribution.
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Remarks 1.5.7 (a) Now we outline the usual procedure for rigorously “deriv-
ing” a conditional distribution. One typically has a “candidate” for the condi-
tional distribution PX|Y , and it is necessary to verify that it satisfies the defining
properties. The “candidate” comes from previous experience with elementary
conditional probabilities or conditional densities, or from intuition. A candidate
for PX|Y must be a function of the form p(B, y) where B varies over measurable
sets in the range of X and y varies over elements in the range of Y . Then there
are basically three conditions that must be verified:

(1) ∀y ∈ Λ, p(·, y) is a p.m. on (Λ1,G1);

(2) ∀B ∈ G1, p(B, ·) is measurable (Λ2,G2) −→ (IR,B);

(3) ∀A ∈ G2 and ∀B ∈ G1,

P [Y ∈ A&X ∈ B ] =
∫

A
p(B, y) dLaw[Y ](y) .

Now condition (1) here is simply a restatement of condition (ii) in Definition
1.5.2, and conditions (2) and (3) together amount to condition (i) in Definition
1.5.2. Note that (2) means that p(A, Y ) is a σ(Y ) measurable r.v. as required
in item (i) of the definition of conditional expectation (Definition 1.5.1). We will
show that (3) here is simply a restatement of the integral condition in item (ii) of
Definition 1.5.1. Now according to that condition in Definition 1.5.1, we should
have

∀A ∈ G2,
∫

[Y ∈A]
p(B, Y (ω)) dP (ω) =

∫

[Y ∈A]
I[X∈B](ω) dP (ω).

To explain, [Y ∈ A], which is another way of denoting {ω ∈ Ω : Y (ω) ∈ A} =
Y −1(A) is a generic element of σ(Y ). Also, recall that P [C|G] = E[IC |G], so we
use an indicator for “X” in Definition 1.5.1. Now

∫

[Y ∈A]
I[X∈B] dP =

∫

I[Y ∈A]I[X∈B] dP

=
∫

I[Y ∈A]∩[X∈B] dP

= P [Y ∈ A&X ∈ B ] .

Also, by the Law of the Unconscious Statistician,

∫

[Y ∈A]
p(B, Y (ω)) dP (ω) =

∫

A
p(B, y) dLaw[Y ](y) .

This completes the verification that (3) here is the same as condition (ii) in
Definition 1.5.1.
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Condition (1) here is usually easy to check. We generally regard condition (2)
as automatic – any function p(B, y) that you can “write down” (e.g. as a formula
in y) is measurable. So, any difficulties usually come in verification of condition
(3).

(b) Note that x is the only variable of integration in (1.71), and both sides are
functions of y. This should be clear because “x” occupies the site in the function
where the measurable set would go when evaluating its measure. The notation
is not entirely desirable, and it is perhaps preferable to write

E[h(X, Y )|Y = y] =
∫

Λ1

h(x, y)PX|Y (dx|Y = y) . (1.72)

This makes clearer the variable of integration, and it is more consistent per-
haps that a “differential set” dx should occupy the set argument than a regular
variable. See equation (1.26) and the remarks there. However, putting the “d”
in front of the measure is much more convenient for the mnemonics of Radon-
Nikodym derivatives, which is why we chose this convention. We shall use the
convention as in (1.72) for clarity on occasion.

2

1.5.5 Results on Conditional Expectation.

Theorem 1.5.7 (Basic Properties of Conditional Expectation.) Let X, X1,
and X2 be integrable r.v.’s on (Ω,F , P ), and let G be a fixed sub–σ–field of F .

(a) If X = k a.s., k a constant, then E[X|G] = k a.s.
(b) If X1 ≤ X2 a.s., then E[X1|G] ≤ E[X2|G] a.s.
(c) If a1, a2 ∈ IR, then

E[a1X1 + a2X2|G] = a1E[X1|G] + a2E[X2|G] , a.s.

(d) (The Law of Total Expectation.) E[E[X|G]] = E[X].
(e) E[X|{∅,Ω}] = E[X].
(f) If σ(X) ⊂ G, then E[X|G] = X a.s.
(g) (Law of Successive Conditioning.) If G∞ is a sub–σ–field of G, then

E[E[X|G]|G∞] = E[E[X|G∞]|G] = E[X|G∞] a.s. .

(h) If σ(X1) ⊂ G and E|X1X2| < ∞, then E[X1X2|G] = X1E[X2|G] a.s.

Partial Proofs and Remarks. Part (a) follows from (f). For (b), it suffices
to show that X ≥ 0 a.s. implies E[X|G] ≥ 0 a.s. by taking X = X2 − X1, but
this was shown in the proof of Theorem 1.5.2. In (c), we show that E[aX|G] =
aE[X|G] a.s. The proof of additivity (that E[X1 +X2|G] = E[X1|G] + E[X2|G])
is left as Exercise 1.5.6. Clearly aE[X|G] is G-measurable, and for A ∈ G,

∫

A
aE[X|G] dP = a

∫

A
E[X|G] dP = a

∫

A
X dP =

∫

A
(aX) dP
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which proves the result. Part (d) follows by taking A = Ω ∈ G in the part (ii) of
Definition 1.5.1. Parts (e), (f), and (g) are likewise elementary.

Note that (h) says that if X1 is G-measurable, then we may treat it the same
as a constant when computing E[X1X2|G]. Clearly X1E[X2|G] is G-measurable.
We will verify property (ii) of the definition only when X1 is an G-measurable
simple function, say X1 =

∑

aiIAi
for Ai ∈ G. In this case, for A ∈ G,

∫

A
X1E[X2|G] dP =

∑

ai

∫

A∩Ai

E[X2|G] dP =
∑

ai

∫

A∩Ai

X2 dP =
∫

A
X1X2 dP .

The second equality follows since A ∩ Ai ∈ G.

2

Theorem 1.5.8 (Convergence Theorems for Conditional Expectation.)
Let X, X1, X2, ... be integrable r.v.’s on (Ω,F , P ) and let G be a sub-σ–field of
F .

(a) (Monotone Convergence Theorem.) If 0 ≤ Xi ↑ X a.s. then

E[Xi|G] ↑ E[X|G] a.s.

(b) (Dominated Convergence Theorem.) Suppose there is an integrable r.v. Y
such that Xi ≤ Y a.s. for all i, and suppose that Xi → X a.s. Then

E[Xi|G] → E[X|G] a.s.

Partial Proof. (a) Clearly limE[Xi|G] is a G-measurable r.v. by Proposition
1.2.1 (c). If A ∈ G then IAE[Xi|G] is a nonnegative increasing sequence of
functions so by two applications of the ordinary Monotone Convergence Theorem,
∫

A
lim E[Xi|G] dP = lim

∫

A
E[Xi|G] dP = lim

∫

A
Xi dP =

∫

A
X dP .

The result follows from the essential uniqueness of conditional expectations.

2

The foregoing results may be found in Billinsgley, pp. 468-470.

Theorem 1.5.9 (Conditional Expectation and Independence.) SupposeX
is an integrable r.v. and Y1 and Y2 are random vectors with (X, Y1) independent
of Y2. Then

E[X|Y1, Y2] = E[X|Y1] a.s.

In particular,
E[X|Y2] = E[X] a.s.
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2

The proof is given in the standard measure theoretic probability texts.

Remarks 1.5.8 From an intuitive point of view, Y2 provides no information
about X if they are independent, so it is reasonable that the conditional expec-
tation of X given Y2 not depend on Y2.

2

Proposition 1.5.5 and Theorem 1.5.6 were concerned with the construction of
conditional distributions from joint distributions. We will frequently be interested
in the “reverse” construction, i.e. we will be given the conditional distribution
PX|Y and the marginal PY , and we will want to construct the joint distribution.
The following is proved in Theorem 2.6.2 of Ash. It appears as problem 18.25 on
p. 247 of Billingsley.

Theorem 1.5.10 (Two Stage Experiment Theorem.) Let (Λ,G) be a mea-
surable space and suppose p : Bn × Λ −→ IR satisfies the following:

(i) p(B, ·) is Borel measurable for each fixed B ∈ Bn;

(ii) p(·, y) is a Borel p.m. for each fixed y ∈ Λ.

Let ν be any p.m. on (Λ,G). Then there is a unique p.m. P on (IRn×Λ,Bn×G)
such that

P (B × C) =
∫

C
p(B, y) dν(y) , for all B ∈ Bn and C ∈ G. (1.73)

Furthermore, if X(x, y) = x and Y (x, y) = y define the random coordinate ele-
ments on IRn × Λ, then Law[Y ] = ν and Law[X|Y = y] = p(·, y).

2

Remarks 1.5.9 The reason for the name of the theorem is as follows. If Y is
selected in stage 1 according to ν, and given Y = y, we then select X at stage
2 according to the distribution p(·, y), then the combined two stage experiment
results in a random element (X, Y ) with the joint distribution indicated. However
“obvious” the result appears when stated this way, the proof is nontrivial. In fact,
it is a nontrivial extension of the product measure theorem.

2

As in the case of the existence of conditional distributions, the two stage
experiment theorem is “easy” when one has densities.
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Proposition 1.5.11 Let (Ω,F , µ) and (Λ,G, ν) be σ-finite measure spaces. Let
g : (Λ,G) −→ (IR,B) be a probability density function w.r.t. ν. Suppose h :
Ω × Λ −→ IR is Borel measurable (under the product σ-field on Ω × Λ) and for
each fixed y ∈ Λ, h(·, y) is a probability density function on Ω w.r.t. µ. Then
there is a unique p.m. P on (Ω × Λ,F × G) such that

P (B×C) =
∫

C

∫

B
h(x, y)g(y) dµ(x)dν(y) , for all B ∈ F and C ∈ G. (1.74)

Furthermore, letting X(x, y) = x and Y (x, y) = y define the random coordinate
elements on Ω × Λ, then the following hold:

(i) Law[Y ] << ν and dLaw[Y ]/dν = g, ν-a.e.

(ii) Law[X|Y = y] has conditional density

dLaw[X|Y = y]

dµ
(x) = fX|Y (x|y) = h(x, y). (1.75)

(iii) Law[X, Y ] � µ× ν and the joint density is

dLaw[X, Y ]

d(µ× ν)
(x, y) = h(x, y)g(y).

Proof. We give a sketch of the proof. It is easy to verify that h(x, y)g(y) is a
probability density function w.r.t. µ × ν, and hence that there is a unique P
such that (1.74) holds. The derivation of the conditional density then follows as
in the proof of Proposition 1.5.4 (see also Remark 1.5.5). The formulae for the
other densities (i.e. the purported marginal density for Y and the puported joint
density) follow from the observation that they satisfy the defining property of
being the appropriate density.

2

Finally, we close this chapter with a result which has far reaching and contro-
versial applications in Statistics.

Theorem 1.5.12 (Bayes Formula) Suppose Θ : (Ω,F , P ) −→ (Λ2,G2) is a
random element and let λ be a σ-finite measure on (Λ2,G2) such that Law[Θ] � λ.
Denote the corresponding density by

π(θ) =
dLaw[Θ]

dλ
(θ).

Let µ be a σ–finite measure on (Λ1,G1). Suppose that for each θ ∈ Λ1 there
is given a probability density function w.r.t. µ denoted f(·|θ). Denote by X a
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random element taking values in Λ1 with dLaw[X|Θ = θ]/dµ = f(·|θ). Then
there is a version of Law[Θ|X = x] given by

π(θ|x) =
dLaw[Θ|X = x]

dλ
(θ) =

f(x|θ)π(θ)
∫

Λ2
f(x|ϑ)π(ϑ) dλ(ϑ)

.

Proof. By Proposition 1.5.11 with h(x, θ) = f(x|θ), there is a joint distribution
for (X,Θ) for which π(θ) is the marginal density of θ w.r.t. λ, f(x|θ)π(θ) is the
joint density for (X,Θ), and f(x|θ) is the conditional density for X given Θ = θ.
There only remains to verify the formula for the conditional density of Θ given
X = x. But the marginal density for X is the joint density with θ integrated
out, i.e.

∫

Λ2
f(x|θ)π(θ) dλ(θ). Thus, one recognizes the r.h.s. of the formula as

the joint density divided by the marginal for X, i.e. the conditional density for
Θ given X = x.

2
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Exercises for Section 1.5.

1.5.1 Let Ω = [0, 1], F = the Borel subsets of [0, 1], and P be the uniform
distribution on [0, 1]. Define a r.v. Y on this probability space by

Y (ω) =











1/2 if ω ≤ 1/2,

ω if ω > 1/2.

Let X be the r.v. given by

X = I[0,1/4) − I[1/4,1/2) + I[1/2,3/4) − I[3/4,1] .

Find both E[X|Y ] and E[X|Y = y]. Justify your answers.

1.5.2 Verify Remarks 1.5.4 and equation 1.70.

1.5.3 Let X and Y be random variables with the joint distributions as given
below. In each case, determine E[X|Y = y].

(a) Law[X, Y ] has density w.r.t. m2 given by

f(x, y) =
1

π
ID(x, y)

where D = {(x, y) : x2 + y2 ≤ 1 }.
(b)

Law[X, Y ] =
1

4
δ(0,0) +

1

4
δ(0,1) +

1

4
δ(1,1) +

1

16
δ(1,2) +

1

16
δ(2,2) +

1

8
δ(3,2) .

1.5.4 Can you give E[X|Y ] in Exercise 1.5.3?

1.5.5 Suppose (1.59) holds. Show that (1.58) holds for all W : (Ω, σ(Y )) −→
(IR,B) with finite second moment.

1.5.6 In the setting of Theorem 1.5.7, show that E[X1 + X2|G] = E[X1|G] +
E[X2|G]. Also, give the proofs of parts (e), (f), and (g) of Theorem 1.5.7, and
complete the proof of part (h).

1.5.7 Assuming E[X2] < ∞, the conditional variance is given by

Var[X|G] = E[(X − E[X|G])2|G] .

(a) Show Var[X|G] = E[X2|G] − E[X|G]2.
(b) Show E[Var[X|G]] = Var[X] − Var[E[X|G]]. Conclude that E[Var[X|G]]

≤ Var[X].
(c) Find a simple necessary and sufficient condition for Var[X|G] = 0 a.s.
(d) Suppose E[Y 2] < ∞ and E[X2|G] = Y 2 a.s., E[X|G] = Y a.s. Show

X = Y a.s.
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1.5.8 Prove Theorem 1.5.8 (b).

1.5.9 State and prove analogues of Theorems 1.5.7 and 1.5.8 for the conditional
expectations of the type E[X|Y = y].

1.5.10 Suppose E[X2] < ∞. Let Z = {Z : Z = h(Y ) for some measurable
h and E[Z2] < ∞}. Show that E[X|Y ] is the essentially unique element of Z
which minimizes MSPE(Z) as defined in (1.57). Hint: You don’t know at this
point that such a minimizer exists. Start out with any Z ∈ Z and show that
MSPE(Z)−MSPE(E[X|Y ]) ≥ 0 by using properties of conditional expectation.

1.5.11 Let X be a random variable. Show that Law[X|X = x] = δx. Explain
why this is intuitively correct.

1.5.12 Let X = (X1, X2) be a random 2-vector. What is Law[X|X1 = x1]?

1.5.13 Assume X is a r.v. which is either discrete, i.e. supp[X] = {x1, x2,
...} is either a finite or infinite sequence and f(xi) = P [X = xi] is the density
function w.r.t. # on supp[X], or X has a Lebesgue density f(x). Let Y = X2.
Show that for y ≥ 0, Law[X|Y = y] has a discrete distribution on {√y, −√

y}
and determine the distribution.

1.5.14 Assume X is a r.v. which is either discrete or has a Lebesgue density
f(x) as in Exercise 1.5.13, and let Y = sin(X). What is Law[X|Y = y]? (Note:
The answer to this one is real messy.)
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Chapter 2

Probability Measures on
Euclidean Spaces

In this chapter, we consider the detailed properties of probability models on
Euclidean spaces. These are widely used as models in statistics.

2.1 Moments and Moment Inequalities.

In general, a moment refers to an expectation of a random variable or a function
of that r.v. The mean or first moment is E[X], often denoted µX or just µ. It
will always be clear from context whether we mean µ to denote the mean of a
r.v. or a measure. The k’th moment is E[Xk], sometime denoted µk, and the k’th
central moment is E[(X−µ)k]. The second central moment is called the variance
and is also denoted Var[X], σ2

X , or just σ2. Of course, one can show Var[X] =
E[X2] − (E[X])2 = µ2 − µ2

1. Similar formulae can be obtained for other central
moments in terms of noncentral moments.

Let X be a random n-vector, say X = (X1, X2, ... Xn). We say E[X] exists iff
each E[Xi] exists, 1 ≤ i ≤ n, and then we define E[X] = (E[X1], E[X2], ... E[Xn]).
Similarly, X is integrable iff each component r.v. is integrable. Integrability of X
is equivalent to E‖X‖ < ∞ (Exercise 2.1.1). If X is integrable then µ = E[X]
∈ IRn.

Now assume further that X has finite second moments, i.e. each component
of X has finite second moment, which is the same as E[‖X‖2] < ∞. Finiteness
of the second moment implies X has finite first moments, i.e. E[‖X‖] <∞. This
follows from the following calculation.

E[‖X‖] =
∫

IRn
‖x‖ dPX(x)

=
∫

{x:‖x‖<1}
‖x‖ dPX(x) +

∫

{x:‖x‖≥1}
‖x‖ dPX(x)

≤
∫

‖x‖<1
1 dPX(x) +

∫

‖x‖≥1
‖x‖2 dPX(x)

87
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≤ P [‖X‖ < 1] + E‖X‖2 < ∞ . (2.1)

In general, we say X has finite p’th moment, 0 < p < ∞, if E[‖X‖p] < ∞. If X
has finite p’th moment, then all smaller moments are also finite (Exercise 2.1.5).

2.1.1 Elementary Moment Bounds.

We now recall a couple of inequalities (attributed to Russian probabilists) which
allow us to estimate probabilities using moments.

Proposition 2.1.1 (Markov’s Inequality.) Suppose X ≥ 0 a.s., then for all
ε > 0,

P [X > ε ] ≤ E[X]

ε
.

Note: P [X > ε ] is a shorthand way to write P ({ω ∈ Ω : X(ω) > ε }), which
is equal to (P ◦X−1)((ε,∞)).. There are many other inequalities that are trivial
corollaries of this one, e.g. P [ |X| > ε ] ≤ E[X2]/ε2. We will give the proof in
some detail, although it is really quite elementary. The student should be able
to reproduce the proof and completely justify each detail.

Proof.

E[X] =
∫ ∞

0
x dPX(x)

by the Law of the Unconscious Statistician (Theorem 1.2.10),

=
∫

[0,ε)
x dPX(x) +

∫

[ε,∞]
x dPX(x)

by additivity of the integral (Proposition 1.2.2 (b)) as applied to x = I[0,ε)(x)x +
I[ε,∞](x)x,

≥
∫

[ε,∞]
x dPX(x)

since I[0,ε)(x)x ≥ 0 and so also is its integral (Proposition 1.2.5 (c)),

≥
∫

[ε,∞]
ε dPX(x)

by Proposition 1.2.5 (c) because I[ε,∞](x)x ≥ I[ε,∞](x)ε,

= εP [X > ε ]

by Proposition 1.2.5 (a) and the fact that
∫

IA dP = P (A).

2
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Proposition 2.1.2 (Chebyshev’s Inequality.) SupposeX is a r.v. with E[X2] <
∞. Let µ = E[X] and σ2 = Var[X]. Then for any k > 0,

P [ |X − µ| ≥ kσ ] ≤ 1

k2
.

Proof. Apply Markov’s inequality to the r.v. (X − µ)2 with ε = (kσ)2.

2

2.1.2 Convexity and Jensen’s Inequality.

Now we turn to a much more subtle inequality, after some definitions. A set
K ⊂ IRn is called convex iff for any finite subset

{ x1, x2, ..., xm} ⊂ K

and any real numbers p1, p2, ... pm with

pi ≥ 0 ∀i ,
m
∑

i=1

pi = 1 , (2.2)

we have
m
∑

i=1

pixi ∈ K . (2.3)

A linear combination such as the l.h.s. of (2.3) with the coefficients satisfying
(2.2) is called a convex combination. Thus, a set K is convex iff it is closed under
taking convex combinations. It can be shown that it suffices to take m = 2 in
(2.3), i.e. if one shows that (2.3) holds with m = 2 then it holds for all m.
Assuming m = 2, one can see geometrically that as p1 and p2 vary over values
satisfying (2.2), the set of vectors p1x1 + p2x2 so obtained is the line segment
between x1 and x2. Thus, a set K is convex iff for every two points in K, the
line segment between the two points is contained in K. See Rudin’s Principles
for more discussion of convex sets and related notions.

Let f : K −→ IR where K is a convex subset of IRn. Then f is called a convex
function iff

{ x1, x2, ..., xm} ⊂ K

and

pi ≥ 0 ∀i ,
m
∑

i=1

pi = 1 , (2.4)

implies

f

(

m
∑

i=1

pixi

)

≤
m
∑

i=1

pif(xi) . (2.5)
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Taking m = 2, one can see that (2.5) implies that the line segment in IRn+1

between (x1, f(x1)) and (x2, f(x2)) lies on or above the graph of f(x). The
function f is called strictly convex iff

pi > 0 ∀i ,
m
∑

i=1

pi = 1 , (2.6)

implies

f

(

m
∑

i=1

pixi

)

<
m
∑

i=1

pif(xi) . (2.7)

We wish to give an easily checked sufficient condition for convexity of a func-
tion, but some definitions are needed first. Suppose f : IRn −→ IR has continuous
second order partial derivatives. The Hessian matrix D2f(x) = H(x) is given by

Hij =
∂2f

∂xi∂xj
. (2.8)

Note that H is actually a mapping of n-vectors to n × n matrices. If B is an
n×m matrix with (i, j) entry Bij, the the transpose of B, denotes Bt, is an m×n
matrix obtained by interchanging rows and columns, i.e. the (i, j) entry of Bt is
Bji. A n×n matrix A is symmetric iff At = A, which is the same as Aij = Aji for
all i and j. Observe that our assumption of continuity of the second order partial
derivatives of f implies equality of mixed partials (i.e. ∂2f/∂xi∂xj = ∂2f/∂xj∂xi;
Reference???), and hence that the Hessian is symmetric. A symmetric matrix A
is called nonnegative definite iff ytAy ≥ 0 for all n-vectors y. Note that yt is an
1 × n matrix, and

ytAy =
n
∑

i=1

n
∑

j=1

yiAijyj .

A symmetric matrix A is called strictly positive definite iff ytAy > 0 for all nonzero
n-vectors y. (Note: our terminology is nonambiguous, but “positive definite” is
used by some authors to mean “nonnegative definite” and by other authors to
mean “strictly positive definite.” Some authors also use “positive semidefinite”
to mean “nonnegative definite.”)

Theorem 2.1.3 Suppose f : K −→ IR where K ⊂ IRn is a convex, open set and
f has continuous second order partial derivatives on K.

(a) If the Hessian matrix H(x) is nonnegative definite for all x ∈ K, then f
is convex.

(b) If H(x) is strictly positive definite for all x ∈ K, then f is strictly convex.

Partial Proof. Fix arbitrary x0 and x1 in K, and consider

g(p) = (1 − p)f(x0) + pf(x1), (2.9)
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for p ∈ (0, 1). It suffices to check that g is convex or strictly convex, which is a
one dimensional problem. This illustrates a common theme in convex analysis:
general problems involving convex functions can often be reduced to problems
involving functions of a single real variable.

2

Simple examples of convex functions are

f(x) = ‖x‖p , x ∈ IRn , where p ≥ 1 ; (2.10)

f(x) = x−p , x ∈ (0,∞) , where p ≥ 0 ; (2.11)

f(x) = eax , x ∈ IR ; (2.12)

f(x) = xtQx , x ∈ IRn , (2.13)

where Q is nonnegative definite.

If p > 1 in (2.10), p > 0 in (2.11), a 6= 0 in (2.12), and Q strictly positive definite
in (2.13), then f is strictly convex in all of these examples.

A real valued function f defined on a convex set K is called concave if −f is
convex, and similarly f is strictly concave if −f is strictly convex. Some examples:

f(x) = ‖x‖p , x ∈ [0,∞) , where 0 ≤ p ≤ 1 ; (2.14)

f(x) = log x , x ∈ (0,∞) . (2.15)

The power functions in (2.14) are strictly concave if 0 < p < 1, and the log
function is strictly concave. Most functions of a single real variable one encounters
are altenately convex and concave with the intervals of convexity and concavity
separated by points of inflection. In two or more dimensions, a function may be
neither convex nor concave in a nontrivial region, e.g. f(x, y) = x2−y2 is neither
convex nor concave anywhere in IR2.

Equations (2.4) and (2.5) may interpreted probabilistically. Let X be a dis-
crete random n-vector with distribution given by

P [X = xi] = pi , (2.16)

i.e. Law[X] =
∑m
i=1 piδxi

. Note that by (2.4), this latter summation is a p.m.
Then the r.h.s. of (2.5) is E[f(X)], and the l.h.s. is f(E[X]). With somewhat
more effort, one can show

Theorem 2.1.4 (Jensen’s Inequality.) Let f be a convex function on a con-
vex set K ⊂ IRn and suppose X is a random n-vector with E‖X‖ < ∞ and
X ∈ K a.s. Then E[X] ∈ K and

f(E[X]) ≤ E[f(X)] .

Furthermore, if f is strictly convex and Law[X] is nondegenerate (i.e. X is not
a.s. equal to a constant, or equivalently Law[X] is not a unit point mass), then
strict inequality holds in the above.
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2

A proof may be found in Billingsley on p. 283.

2.1.3 The Covariance Matrix.

Now we look more closely at some “quadratic” moments.

Theorem 2.1.5 (Cauchy-Schwarz Inequality.) For any r.v.’s X and Y ,

(E|XY |)2 ≤ E[X2]E[Y 2] .

Assume the l.h.s. is finite. Then equality holds iff either X = 0 a.s. or Y = cX
a.s. for some constant c.

2

A proof may be found in Billingsley on p. 283.
Let X = (X1, X2, ... Xn) be a random n-vector with finite second moments.

We have by Cauchy-Schwarz that

E[|(Xi − µi)(Xj − µj)|] ≤
{

E[(Xi − µi)
2]E[(Xj − µj)

2]
}1/2

and
E[(Xi − µi)

2] = Var[Xi] = E[X2
i ] − µ2

i ∈ [0,∞) ,

so (Xi − µi)(Xj − µj) is integrable.
Assuming E[‖X‖2] < ∞, we define the covariance matrix V = Cov[X] by

Vij = E[(Xi − µi)(Xj − µj)] , 1 ≤ i, j ≤ n ,

or, in a more compact matrix notation,

V = E[(X − µ)(X − µ)t] .

Note that V is an n×n matrix with real (i.e. finite) entries. In fact, by the above

|Vij | ≤
√

Var[Xi]Var[Xj ] . (2.17)

Also, one can further check that Cov[X] is symmetric and nonnegative definite
(Exercise 2.1.6). If A is any m× n matrix and b ∈ IRm, then (Exercise 2.1.8)

Cov[AX + b] = ACov[X]At . (2.18)

If X is a random n-vector and Y is a random m-vector, then the covariance
between X and Y is

Cov[X, Y ] = E[(X −E[X])(Y −E[Y ])t] ,
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which is an n×m matrix. Note that

Cov[X] = Cov[X,X] , Cov[Y ,X] = Cov[X, Y ]t . (2.19)

If Z is the random n+m–vector (X, Y ), then

Cov[Z] =







Cov[X] Cov[X, Y ]

Cov[Y ,X] Cov[Y ]





 . (2.20)

If Cov[X, Y ] = 0 (where the latter is a matrix of zeroes), then we say X and Y
are uncorrelated. One can show that if X and Y are independent then they are
uncorrelated, provided both have finite second moments, but the converse is false
(Exercise 2.1.10).

Now we introduce some matrix theory which is extremely useful in many
areas of statistics. Recall that a square matrix U is called orthogonal iff U−1

= U t. Assuming U is n × n, then U is an orthogonal matrix if and only if the
columns of U form an orthonormal basis for IRn. A square matrix D is diagonal
if the off diagonal entries are zero, i.e. Dij = 0 if i 6= j. It will be convenient to
write D = diag[d], where d is the vector of diagonal entries, i.e.

D =





















d1 0 · · · 0
0 d2 ·
· · ·
· · ·
· · 0
0 · · · 0 dn





















.

Theorem 2.1.6 (Spectral Decomposition of a Symmetric Matrix.) Let A
be a symmetric matrix. Then there is an orthogonal matrix U and a diagonal ma-
trix Λ such that A = UΛU t.

2

For a proof, see pp. 39-40 of Rao, Linear Statistical Inference and Its Applica-
tions. This decomposition is sometimes called the orthogonal-diagonal-orthogonal
or eigenvector-eigenvalue, decomposition. In fact, the diagonal entries of Λ are
the eigenvalues of A, and the columns of U are the corresponding eigenvectors
(Exercise 2.1.11).

Proposition 2.1.7 Suppose X is a random n-vector with finite second moments.
Then there is an orthogonal matrix U such that Cov[U tX] is a diagonal matrix.

Proof. Since V = Cov[X] is symmetric there is an orthogonal matrix U and
a diagonal matrix Λ such that V = UΛU t. Then multiplying on the left by U t

and on the right by U and using the defining property of an orthogonal matrix,
Λ = U tV U . The result now follows from (2.18) with A = U t.
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2

Assume X is a random n-vector with finite second moments and put µ =
E[X], V = Cov[X]. Write V = UΛU t, where U is orthogonal and Λ is diagonal,
as in the proof of the last result. Since V is nonnegative definite, the eigenvalues
(which are the diagonal entries of Λ) are nonnegative (Exercise 2.1.12). Assume
that the number of positive eigenvalues is r, so there are n− r zero eigenvalues.
We may reorder the diagonal entries of Λ (as long as we correspondingly reorder
the columns of U), and it is convenient to assume

Λ = diag(λ1, λ2, ..., λr, 0, 0, ..., 0) ,

where
λ1 ≥ λ2 ≥ ... ≥ λr > 0 .

Now write uj = (u1j , u2j, . . . , unj) for the jth column of U . The null space of V
(which is defined to be the set of vectors x such that V x = 0) is given by

N(V ) = span[ur+1, ur+2, ..., un] , (2.21)

and the column space or range (which is defined to be {V x : x ∈ IRn}) is given
by

R(V ) = span[u1, u2, ..., ur] (2.22)

= {
r
∑

i=1

aiui : ai ∈ IR for all i } .

Here, the span of a collection of vectors is the set of all linear combinations of
the given collection, i.e. the smallest linear subspace which includes the given
collection. Also, r = rank(V ), the dimension of the range of V , is known as the
rank of the linear transformation V . Equations (2.21) and (2.22) follow since any
x ∈ IRn may be expanded as

x =
n
∑

i=1

(xtui) ui , (2.23)

because {ui : 1 ≤ i ≤ n} form an orthornormal basis for IRn. Thus,

V x =
n
∑

i=1

(xtui)V ui =
n
∑

i=1

λi(x
tui) ui =

r
∑

i=1

λi(x
tui) ui . (2.24)

Thus, V x = 0 iff xtui = 0 for 1 ≤ i ≤ r, which is true if and only if x ∈ span[ur+1,
ur+2, ..., un]. Also, y = V x for some x ∈ IRn iff y has the form of the last expression
given in (2.24), which is true if and only if y ∈ span[u1, u2, ..., ur]. Note that in
this latter case we may take y = V x where

x =
r
∑

i=1

λ−1
i (ytui) ui = V −y . (2.25)
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Here, the last equation defines the linear transformation V −, which is known
as the Moore-Penrose generalized inverse of V . Note that V −y is just one of
infinitely many x’s satisfying V x = y when rank(V ) < n. If rank(V ) = n, i.e. V
is nonsingular, then V − = V −1.

Proposition 2.1.8 If X is a random n–vector with E[‖X‖2] < ∞, µ = E[X],
and V = Cov[X], then

P [X ∈ R(V ) + µ] = 1 .

where R(V ) + µ = {y + µ : y ∈ R(V )}.

Proof. Let Y = X − µ, so Y ∈ R(V ) iff X ∈ R(V ) + µ. Write

Y =
n
∑

i=1

Yiui , Yi = Y tui ,

where the ui are the same as in (2.21) and (2.22). Then Cov[X] = Cov[Y ] and

E[Y 2
i ] = utiV ui = λi . (2.26)

See Exercise 2.1.13. Hence, E[Y 2
i ] = 0 iff i > r by Exercise 2.1.2, which is

equivalent to Yi = 0 a.s. iff i > r, hence

Y =
r
∑

i=1

Yiui , a.s.

which implies Y ∈ R(V ).

2

Proposition 2.1.9 Let X be as in Proposition 2.1.8. If Law[X] << mn then
rank[Cov[X]] = n.

Proof. If rank[V ] = r < n, then R(V ) is a proper linear subspace of IRn, and
R(V )+µ is a proper linear manifold, i.e. a translate of a proper linear subspace.
Such a set is closed, hence a Borel set, and we claim its Lebesgue measure is 0.

We have that

R(V ) + µ ⊂ {x ∈ IRn : (x− µ)tun = 0} := B. (2.27)

See Exercise 2.1.22. Applying Fubini’s Theorem (Theorem 1.3.2) and the fact
that mn = mn−1 ×m by definition, we have

mn(B) =
∫

IRn
IB(x) dx

=
∫

IRn−1

∫

IR
IB(y, xn) dxndy (2.28)
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where y = (x1, ..., xn−1). Now IB(y, xn) = 1 iff

(xn − µn)unn = −
n−1
∑

i=1

(yj − µj)unj

where un = (u1n, u2n, ..., unn). Assuming unn 6= 0, then for fixed y ∈ IRn−1,
IB(y, xn) 6= 0 iff

xn = µn − u−1
nn

n−1
∑

i=1

(yi − µi)uin

which is only a single point. Hence, the inner integral in (2.28) is 0. If unn = 0,
then some component of un is nonzero (since un is an element of an orthornormal
basis for IRn), say unj 6= 0, and then replace x in (2.28) with unj and y with the
remaining components of x.

2
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Exercises for Section 2.1.

2.1.1 Show that the random n-vector X is integrable iff E‖X‖ < ∞. (Hint:
Show that for any vector x,

max {|xi| : 1 ≤ i ≤ n } ≤ ‖x‖ ≤
n
∑

i=1

|xi| .)

2.1.2 Suppose X is a random variable with finite second moment. Show Var[X]
= 0 if and only if X is degenerate (i.e. there is a constant a such that P [X = a]
= 1, which is the same as Law[X] = δa). Show that necessarily a = E[X].

2.1.3 Verify convexity of each of the functions given in (2.10) through (2.13).
Also verify the strict convexity claims under the stricter conditions mentioned
below (2.13). Similarly, verify the concavity and strict concavity claims for the
functions in (2.14) and (2.15).

2.1.4 Verify E[X]2 ≤ E[X2] using both Jensen’s inequality and the Cauchy-
Schwarz inequality. Use the equality conditions in both inequalities to develop
necessary and sufficient conditions for E[X]2 = E[X2].

2.1.5 Let 0 ≤ p < q < ∞ and let X be any random vector. Show that E[‖X‖p]
≤ P [‖X‖ ≤ 1] + E[‖X‖q]. In particular, if X has moment of order q (i.e.
E[‖X‖q] < ∞), then it also has moment of any smaller order.

2.1.6 Show that for any random n-vector X with finite second moment, Cov[X]
is symmetric and nonnegative definite.

2.1.7 Assuming X and Y have finite second moments, show

Cov[X, Y ] = E[XY t] − E[X]E[Y ]t .

2.1.8 Assuming X is a random n-vector with finite second moment, A is any
m × n matrix, and b ∈ IRm, show that AX + b has finite second moment and
verify that (2.18) holds.

2.1.9 Let X be a random n-vector with finite second moment and Y be a
random m-vector with finite second moment. Let A be a k× n matrix and B be
a j ×m matrix. Find Cov[AX,BY ].

2.1.10 Let X and Y be random vectors with finite second moments. Show that
independence of X and Y implies they are uncorrelated, but that the converse is
false.
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2.1.11 Let A = UΛU t be the spectral decomposition of the symmetric matrix
A as given in Theorem 2.1.6. Let λi = Λii be the i’th diagonal entry of Λ, and let
uj be the j’th column of U . Show that Auj = λjuj, i.e. that λj is an eigenvalue
of A and uj is the corresponding eigenvector.

2.1.12 Let A be as in Exercise 2.1.11. Show that A is nonnegative definite if
and only if λi ≥ 0 for all i, and A is strictly positive definite if and only if λi >
0 for all i.

2.1.13 Verify (2.26).

2.1.14 Let X be a random n-vector with distribution

Law[X] =
1

3

{

δ(0,0,0) + δ(0,1,1) + δ(1,0,0)
}

.

(a) Find a 3 × 3 matrix A and a 3-vector b such that (i) E[AX + b] = 0 and
(ii) Cov[AX + b] = diag(1, 1, 0).

(b) Let A be any 3 × 3 matrix and b any 3-vector such that (i) and (ii) of
part (a) hold. Put Y = AX + b. Show that Y1 and Y2 are uncorrelated but not
independent.

2.1.15 Let X be as in Proposition 2.1.8.
(a) Show that supp[Law[X]] ⊂ R(V ) + µ.
(b) Let M be any linear manifold. Show that P [X ∈M ] = 1 implies R(V )+µ

⊂ M .
(c) Show that dim(M) < rank(V ) implies P [X ∈ M ] < 1 for any linear

manifold M .

2.1.16 Prove the Cauchy-Schwarz inequality (Theorem 2.1.5). Remember that
any one of the expectations may be infinite.

2.1.17 Suppose 1 ≤ p ≤ q < ∞, and that E[|X|q] < ∞. Show (E[|X|p])1/p

≤ (E[|X|q])1/q. This is known as Lyapunov’s Inequality. Give necessary and
sufficient conditions for equality.

2.1.18 Let X be a random n-vector with finite second moments and put V =
Cov[X]. Let V = UΛU t be the spectral decomposition of V . Assume V has full
rank. Put

A = Udiag[λ
−1/2
1 , λ

−1/2
2 , ..., λ−1/2

n ]U t .

(a) Show that A is symmetric, positive definite, and A2 = V −1. We will write

A = V −1/2 . (2.29)

(b) Show that Cov[AX] = I.
(c) Suppose B is an n× n matrix such that Cov[BX] = I. Show that BBt =

V −1. Show that if B is symmetric, then B = V −1/2. Show that in general, B =
WV −1/2 where W is orthogonal.
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2.1.19 (Cholesky decomposition) Let X and V be as in the previous exercise.
Let

Y1 = (X1 − µ1)/
√

Var[X1] . (2.30)

Assuming Y1, Y2, ..., Ym−1 have been defined, define

Ym =

{

(Xm − µm) −∑m−1
i=1 E[XmYi]Yi

}

√

{

(Xm − µm) −∑m−1
i=1 E[XmYi]Yi

}

. (2.31)

Let Y = (Y1, Y2, ..., Yn). Show the following results.
(a) E[Y ] = 0 and Cov[Y ] = I.
(b) Y = BX where B is a lower triangular matrix (i.e. Bij = 0 if j > i) with

positive diagonal entries.
(c) B is the only lower triangular matrix with positive diagonal entries such

that BBt = V −1.

Remarks 2.1.1 Bt given above is called the Cholesky factor of V −1. For com-
putational purposes, B is perhaps the most useful matrix satisfying the property
in (c). In particular, note that B is easy to compute from the recursive formula
given in (2.30) and (2.31) and B−1 is also lower triangular and easy to compute
from B. In solving this problem, you may find it useful to compare the recursive
definition of Y with the Gram-Schmidt orthonormalization procedure of linear
algebra.

2.1.20 Suppose P and Q are p.m.’s on a measurable space (Ω,F) with Q� P .
Define the Kullback-Leibler Information between Q and P by

K(Q,P ) =
∫

Ω
log

(

dQ

dP

)

dQ .

Show the following.
(a) K is well defined, i.e. the integral defining K exists. (Hint: First show

log t ≤ t− 1 for 0 ≤ t <∞. Equality holds only if t = 1.)
(b) 0 ≤ K(Q,P ) ≤ ∞.
(c) K(Q,P ) = 0 iff P = Q.

2.1.21 Prove Theorem 2.1.3.

2.1.22 Verify (2.27).
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2.2 Characteristic and Moment Generating Func-

tions.

In this section we consider some other useful special expectations w.r.t. a p.m.
on a Euclidean space.

2.2.1 General Results.

Definition 2.2.1 The characterstic function (abbreviated ch.f.) of a random n-
vector X is the complex valued function φX : IRn −→ CC given by

φX(u) = E[exp(iutX)]

= E[cos(utX)] + iE[sin(utX)] .

(Here, i =
√
−1 is the imaginary unit.) The moment generating function (ab-

breviated m.g.f.) is given by

ψX(u) = E[exp(utX)] , u ∈ IRn .

We say the m.g.f. exists in a neighborhood of 0 iff there is an ε > 0 such that
ψX(u) < ∞ for all u ∈ IRn such that ‖u‖ < ε.

2

The ch.f. is defined and finite for all u ∈ IRn, since it is the expectation of a
bounded continuous function (or more simply, its real and imaginary components
are bounded and continuous). In fact, |φX(u)| ≤ 1 for all u ∈ IRn since | exp(it)|
≤ 1 for all t ∈ IR (Exercise 2.2.1). The m.g.f. is defined for all u but may be ∞
everywhere except u = 0. Many of the results for ch.f.’s given in Chung or Ash
for r.v.’s carry over to random vectors as well, and also to the m.g.f. Some of the
results of most interest to us are in the next proposition. Further discussion and
proofs may be found in Billinsgley, pp. 352-356.

Theorem 2.2.1 Let X be a random n–vector with ch.f. φ and m.g.f. ψ.
(a) (Continuity) φ is uniformly continuous on IRn, and ψ is continuous at

every point u such that ψ(v) < ∞ for all v in a neighborhood of u.
(b) (Relation to moments) If X is integrable, then the gradient

∇φ =

(

∂φ

∂u1

,
∂φ

∂u2

, ...,
∂φ

∂un

)

,

is defined at u = 0 and equals iE[X]. Also, X has finite second moments iff the
Hessian D2φ(u) = H(u) of φ exists at u = 0 and then H(0) = −E[XXt].

If ψ is finite in a neighborhood of 0, then E[‖X‖p] <∞ for all p ≥ 1. Further,
∇ψ(0) = E[X], and D2ψ(0) = E[XXt].
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(c) (Linear Transformation Formulae.) Let Y = AX + b for some m×n
matrix A and some m–vector b. Then for all v ∈ IRm,

φY (v) = exp(ivtb)φX(Atv)

ψY (v) = exp(vtb)ψX(Atv) .

(d) (Uniqueness.) If Y is a random n-vector and if φX(u) = φY (u) for all
u ∈ IRn, then Law[X] = Law[Y ]. If both ψX and ψY are defined and equal in a
neighborhood of 0, then Law[X] = Law[Y ].

(e) Ch.f. for Sums of Independent R.V.’s Suppose X and Y are inde-
pendent random p-vectors and let Z = X + Y . Then

φZ(u) = φX(u)φY (u).

Partial Proof. (b) For the second part of (b), assume the m.g.f. is defined
in a neighborhood of 0, say

ψ(u) < ∞ for ‖u‖ < ε . (2.32)

It suffices to prove the result for p ≥ 2 (see Exercise 2.1.5). For E[‖X‖p] < ∞
when p ≥ 2, it suffices for E[|Xi|p] < ∞, 1 ≤ i ≤ n, since by convexity

‖X‖p = np/2
(

1

n

n
∑

i=1

X2
i

)p/2

(2.33)

≤ np/2
1

n

n
∑

i=1

(X2
i )
p/2

= np/2−1
n
∑

i=1

|Xi|p .

Now ψXi
(±ε/2) = E[exp(±εXi/2)] < ∞ by taking u = (±ε/2, 0, 0, ..., 0) in

(2.32). Since exponential functions “grow faster” than power functions, there is
some M > 0 such that |x|p ≤ exp(ε|x|/2) for all |x| > M . Hence,

E[|Xi|p] =
∫ ∞

−∞
|x|p dPXi

(x)

≤
∫ −M

−∞
exp[−ε|x|/2] dPXi

(x) +
∫ +M

−M
|x|p dPXi

(x) +
∫ ∞

+M
exp[ε|x|/2] dPXi

(x)

≤ ψXi
(−ε/2) + Mp + ψXi

(ε/2) < ∞ .

We show that ∂ψ/∂u1 exists and can be computed by differentiation under
the integral sign. (An extension of this argument will show that ψ has partial
derivatives of all orders on the interior of {u : ψ(u) <∞}, and can be computed
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by differentiation under the integral sign.) For simplicity, assume n = 2. Fix u2

and let
δ =

√

ε2 − u2
2 .

Then for |u1| < δ, ‖u‖2 = u2
1 + u2

2 < ε2. Now take any δ0 < δ and δ1 ∈ (δ0, δ).
Put

g(x, u1) = exp[u1x1 + u2x2] .

Then
∂

∂u1

g(x, u1) = x1e
u1x1+u2x2 .

Since the exponential exp[(δ1 − δ0)|x1|] “grows faster” than |x1| as |x1| → ∞,
there is a constant M > 0 such that

|x1| ≤ Me(δ1−δ0)|x1|

for all x1. Also, if |u1| < δ0, then

0 < eu1x1 < eδ0|x1| .

Combining these last two estimates we have

| ∂

∂u1

g(x, u1) | = |x1e
u1x1+u2x2|

≤ (Me(δ1−δ0)|x1|)eδ0|x1|eu2x2

≤ G(x)

where
G(x) = M(eδ1x1+u2x2 + e−δ1x1+u2x2) .

We have used the fact that ea|t| ≤ eat+e−at for all a > 0 and all t ∈ IR in choosing
a dominating function G. Since δ0 < ε and δ2

1 + u2
2 < ε2, we have

∫

IR2
G(x) dPX(x) = M [ψ(δ1, u2) + ψ(−δ1, u2)]

< ∞ .

Theorem 1.2.11 applies with θ = u1 and the open interval (a, b) = (−δ0, δ0). Also,
dµ(ω) = dPX(x). (Note that u2 is fixed throughout this argument. Also, we have
chosen a convenient dominating function G(x) whose integral is easy to bound
using the m.g.f.) We obtain then from Theorem 1.2.11,

∂

∂u1
ψ(u) =

∂

∂u1

∫

g(x, u1)dPX(x)

=
∫

∂

∂u1

g(x, u1)dPX(x)

=
∫

x1e
x1u1+x2u2dPX(x) .
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Hence,
∂ψ

∂u1
|
u=0

=
∫

x1dPX(x) = E[X1] .

This shows one component of the equation ∇ψ(0) = E[X], and the others follow
similarly. A similar argument shows

∂2ψ

∂ui∂uj
=
∫

xixj exp[utx]dPX(x)

so the Hessian at u = 0 is E[XX t].

2

A slight extension of the argument above can be used to prove the following
theorem, which has many applications in statistics. See Theorem 9, pp. 52-54 of
Lehmann’s Testing book for the complete proof. If z = x+iy is a complex number
with x ∈ IR and y ∈ IR, then x = Real[z] and y = Imag[z] are called the real and
imaginary parts, respectively. If z ∈ CCn, i.e. z is an n–tuple of complex numbers
(or an n–vector with complex components), say z = (z1, ..., zn), then Real[z]
= (Real[z1], ..., Real[zn]) is the vector of real parts, and similarly for Imag[z].
Recall that for D ⊂ IRn, the interior of D is int[D] = {x ∈ D : B(x, ε) ⊂ D
for some ε > 0}, i.e. the points x in D for which an entire neighborhood B(x, ε)

of x (otherwise known as an ε ball centered at x) is contained in D. One can
easily show that int[D] is the largest open subset of D.

Now we briefly review some complex analysis. A complex valued function g of
a complex variable (i.e. g : CC −→ CC) is analytic at z ∈ CC iff it is differentiable
in a neighborhhood of z. One remarkable result from complex analysis is that a
function which is analytic in an open set of CC is in fact infinitely differentiable
in that open set. (See e.g. Ahlfors, Complex Analysis, pp. 120-122.) (Here, an
open subset of CC is the same as an open subset of IR2 when we identify CC with
IR2 via x + iy ↔ (x, y). We will mainly consider a “strip” of the form {x+ iy :
−ε < x < ε, −∞ < y <∞} = {z ∈ CC : |Real(z)| < ε}.)

Theorem 2.2.2 Suppose f : Ω −→ CC is any bounded Borel function on a mea-
sure space (Ω,F , µ). Let T : (Ω,F) −→ (IRn,Bn) and let θ ∈ CCn. Let

B(θ) =
∫

Ω
f(ω) exp[θtT (ω)] dµ(ω) .

For 1 ≤ j ≤ n and (ξ1, ..., ξj−1, ξj+1, ..., ξn) ∈ IRj × IRn−j−1, define the set

Wj(ξ1, ..., ξj−1, ξj+1, ..., ξn) =

{ξj ∈ IR :
∫

Ω
|f(ω)| exp[ξtT (ω)] dµ(ω) < ∞} ,
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where ξ = (ξ1, ..., ξj−1, ξj , ξj+1, ..., ξn) ∈ IRn in the above. If θk ∈ W are fixed
for k 6= j, then B is an analytic function in {θj : Real[θj ] ∈ int[Wj]}, where Wj is
as given above with ξk = Real[θk] for k 6= j. Further, any order partial derivative
of B can be computed by differentiation under the integral sign.

2

Remarks 2.2.1 (a) The fact that Real[θj ] ∈ int[Wj ] allows us to use a dominat-
ing function as in the proof of Theorem 2.2.1 (b) above.

(b) Another remarkable fact from complex analysis is the following: Suppose
f and g are both analytic functions in the open strip {z ∈ CC : |Real(z)| < ε},
and that {zn : n ∈ IN} is an infinite sequence of distinct values which converges
to a limit in the strip, say zn → z with |Real(z)| < ε. Then if g(zn) = f(zn) for
all n, we have f = g everywhere on the strip.

Now suppose X is a r.v. with ψX(u) < ∞ for all |u| < ε. Then ψX can be
extended to an analytic function in the strip {z : |Real[z]| < ε}, which contains the
imaginary axis. (This is an example of analytic continuation, which is discussed
at length in Ahlfors, p. 285 ff.) Hence, φX(u) = ψX(iu) by the previous theorem.
Note that under these conditions, it is possible to obtain a stronger uniqueness
condition than in Theorem 2.2.1 (d), namely if both ψX(u) < ∞ and ψY (u) <
∞ for all |u| < ε, and ψX(zn) = ψY (zn) for any distinct sequence of complex
numbers in the strip {z : |Real[z]| < ε} with a limit in that strip, then Law[X]
= Law[Y ].

(c) Another useful fact about analytic functions is that they can be expanded
in power series, i.e. suppose g is a complex function of a complex variable and
ρ > 0 is such that g is analytic in the disk (or “ball”) {z ∈ CC : |z − z0| < ρ}.
Then

g(z) =
∞
∑

j=0

1

j!
g(j)(z0)(z − z0)

j , for |z − z0| < ρ .

Further, derivatives of g may be computed by differentiating under the summation
sign, for |z − z0| < ρ. Using this fact along with Theorem 2.2.2, one can show
that if X is a r.v. with ψX(u) < ∞ for all |u| < ε, then

ψX(u) =
∞
∑

r=0

drψX
dur

(0)
1

r!
ur (2.34)

=
∞
∑

r=0

1

r!
E[Xr] ur .

Thus, we can read off the moments of X from the power series expansion of the
m.g.f.

Now we consider the multivariate case with a random n-vector X. First, we
will introduce some notations that will make it easier to present the material.
An n–vector r with nonnegative integer components is called a multi–index i.e.
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r = (r1, r2, . . . , rn) with each ri ∈ IN . We can use a “vector” exponential notation
for a monomial as in

xr =
n
∏

j=1

x
rj
j ,

where x ∈ IRn. Thus, by analogy with the univariate case, we may call

µr = E[Xr] = E[
n
∏

j=1

X
rj
j ]

the r’th moment of the random n–vector X. The “multi-index” factorial is defined
by

r! =
n
∏

j=1

rj! .

The order of the multi-index r is

|r| =
n
∑

j=1

rj .

We can also define an r’th order derivative by

Dr =
∂|r|

∏n
j=1 ∂u

rj
j

.

Note that this is a partial differential operator of order |r|. With these notations,
one can show that the power series expansion about 0 for a complex function g
of n complex variables which is analytic in each variable is given by

g(z) =
∑

r

1

r!
Drg(0) zr .

Thus, if X is a random n-vector with ψX(u) < ∞ for all ‖u‖ < ε, then

ψX(u) =
∑

r

1

r!
DrψX(0) ur (2.35)

=
∑

r

1

r!
E[Xr] ur ,

where the series converges in a neighborhood of u = 0.
(d) LetX and ψX be as in part (b). Consider the cumulant generating function

given by
K(u) = log ψX(u) . (2.36)

Then the r’th cumulant of X is

κr =
∂|r|K

∏n
j=1 ∂u

rj
j

(0) = DrK(0) . (2.37)
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One can show by comparison of the terms of the power series that if n = 1
(Exercise 2.2.3), then

κ0 = 0 , κ1 = E[X] , κ2 = Var[X] . (2.38)

For higher dimensional random vectors, we still have κ0 = 0, and

E[Xi] = κr , with ri = 1 and rj = 0 if j 6= i . (2.39)

Also, if V = Cov[X], then

Vij = κr , with ri = rj = 1 and rk = 0 if k 6= i or k 6= j . (2.40)

See Exercise 2.2.4.

2
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Exercises for Section 2.2.

2.2.1 Let f : (Ω,F , µ) −→ (IR2,B2) and define a complex valued function

g : Ω −→ CC by g(ω) = f1(ω) + if2(ω). The modulus of g is |g| =
√

f 2
1 + f 2

2 .
Also,

∫

gdµ =
∫

f1dµ + i
∫

f2dµ. Show that | ∫ gdµ| ≤ ∫ |g|dµ. Conclude that the
ch.f. is bounded by 1 in modulus.

2.2.2 Prove Theorem 2.2.1 (c).

2.2.3 Verify equation (2.38).

2.2.4 Verify equations (2.39) and (2.40).

2.2.5 Let X be a r.v. with values in IN and define the probability generating
function (abbreviated p.g.f.)

γ(z) =
∑

n∈IN

P [X = n] zn .

(a) Show that the series defining γ converges absolutely for complex numbers
z with |z| ≤ 1.

(b) Give formulae relating the ch.f. and m.g.f. to the p.g.f.
(c) Show that the m.g.f. for X is finite in a neighborhood of the origin if and

only if there is some real x > 1 where the γ <∞.
(d) Under what circumstances and by what formulae can one recover the

moments of X from γ?
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2.3 Common Distributions Used in Statistics.

In this section, we introduce some of the commonly used families of distributions.
We assume throughout this section that we will observe a random element X
(called the observable) taking values in a measurable observation space (Ξ,G). In
fact, X will almost always be a random n–vector.

Definition 2.3.1 Let P be a family of probability measures on (Ξ,G). We say
P is a parametric family with parameter θ and parameter space Θ if for each θ
there is a unique Pθ ∈ P associated with θ. The mapping θ 7→ Pθ is called the
parameterization.

2

In some sense, the parameterization is just a way of labelling a probability
distribution. Notice that the parameter space Θ is not assumed to have any
“structure” (e.g. like being a measurable space). One can always “parameterize”
a family of probability measures: given a family of probability measures P let
θ = P for P ∈ P. Most often, Θ will be a nice subset of IRp for some p and the
parameterization will be natural or convenient.

Definition 2.3.2 A family {Pθ : θ ∈ Θ} is called identifiable iff θ1 6= θ2 implies
Pθ1 6= Pθ2.

2

Note that Pθ1 6= Pθ2 means for some measurable set A, Pθ1(A) 6= Pθ2(A). In
general, we want to use only identifiable parameterizations. If the parameter
is not identifiable there will be differences in parameter values which are not
statistically meaningful since we cannot determine them from the distribution of
the observable. In general, if we have a nonidentifiable parameterization, we will
reparameterize to obtain identifiability.

Definition 2.3.3 Suppose µ is a σ–finite measure on (Ξ,G) and P is a family
of probability measures on (Ξ,G). Then we say P is dominated by µ and write
P � µ iff every P ∈ P satisfies P � µ. Assuming P = {Pθ : θ ∈ Θ}, we will
write

fθ(x) =
dPθ
dµ

(x)

for the Radon-Nikodym derivative of Pθ w.r.t. µ.

2

Typically we will deal with families dominated by either Lebesgue measure
on IRn (the so called “continuous distributions” from more elementary courses)
or by counting measure on some INn (the so called “discrete distributions”).
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2.3.1 Exponential Families.

Next we introduce the perhaps the most important general class of statistical
models.

Definition 2.3.4 A dominated family P = {Pθ : θ ∈ Θ} � µ on (Ξ,G) with µ
σ–finite is called an exponential family iff the densities w.r.t. µ can be written
in the form

fθ(x) = exp[η(θ)tT (x) −B(θ)]h(x) (2.41)

where T : (Ξ,G) −→ (IRp,Bp), η : Θ −→ IRp, h : (Ξ,G) −→ (IR,B), and
B : Θ −→ IR is the “normalizing constant” in logarithmic form

B(θ) = log
∫

Ξ
exp[η(θ)tT (x)]h(x) dµ(x) .

It is specifically required that B(θ) be finite.

2

Example 2.3.1 Let P be the normal family on IR, {N(µ, σ2) : µ ∈ IR and
σ2 > 0}. Then µ = m, Lebesgue measure, may be taken as the dominating
measure and this is σ–finite. The density may be written in the form

fµ,σ2(x) =
1√

2πσ2
exp

[−1

2σ2
(x− µ)2

]

= exp

[

−1

2σ2
x2 +

µ

σ2
x −

(

µ2

2σ2
+ log σ

)] (

1√
2π

)

which is an exponential family with p = 2 and

η1(µ, σ
2) =

−1

2σ2
, η2(µ, σ

2) =
µ

σ2

T1(x) = x2 , T2(x) = x

B(µ, σ2) =
µ2

2σ2
+ log σ , h(x) =

1√
2π

Notice that determining if a given family is an exponential family is simply a
matter of algebraically putting the density in the right form. Also, the various
components of the exponential family form are not unique except for h(x) and
B(θ), but even h(x) can change if we change the dominating measure µ (see
Remark 2.3.1 (a) below). For instance we can multiply η1 by 2 and divide T1 by
2 and the density remains unchanged.

2
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We wish to define the multivariate generalization of the normal distribution.
We will use moment generating function.

Definition 2.3.5 Given µ ∈ IRn and V an n × n nonnegative definite matrix,
let N(µ, V ) denote the Borel p.m. on IRn with m.g.f.

ψ(u) = exp[µtu+
1

2
utV u] . (2.42)

This p.m. is called the (Multivariate) Normal Distribution with mean µ and
covariance V .

2

Of course, there is the question of whether or not a p.m. exists with the given
m.g.f. An m.g.f. is a very special kind of function (it satisfies more properties
than just being analytic), so one cannot in general write down any old function
and say it is the m.g.f. of a probability distribution. Assuming the student is
familiar with the normal distribution in one dimension, it is not hard to show
that there is a p.m. with m.g.f. as given above, and it is unique. Further, the
mean and the covariance are µ and V , respectively. It is convenient to introduce
the normal distribution this way rather than through a Lebesgue density since if
V is not positive definite then a Lebesgue density does not exist. If V is strictly
positive definite then the Lebesgue density is given by

f(x) =
1

(2π)n/2 det(V )1/2
exp[−1

2
(x− µ)tV −1(x− µ)] . (2.43)

When the covariance matrix is nonsingular (so the Lebesgue density exists) then
we say the corresponding multivariate normal distribution is nonsingular, and
otherwise we say the multivariate normal distribution is singular (as it is singular
w.r.t. Lebesgue measure). In Exercises 2.3.3 and 2.4.4 the student is asked
to verify these claims, and to show that the nonsingular multivariate normal
distributions for a given dimension form an exponential family.

Example 2.3.2 For α > 0 and β > 0, the Gamma(α, β) density is given by

fαβ(x) =
1

Γ(α)βα
xα−1e−x/β , x > 0

w.r.t. Lebesgue measure. Here,

Γ(α) =
∫ ∞

0
xα−1e−x dx

is a well known special function. One can put the density in the form

fαβ(x) = exp

{

α log(x) +
−1

β
x − [α log β + log Γ(α) ]

}

[

x−1I(0,∞)(x)
]
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which shows that the family Gamma = {Gamma(α, β) : α > 0 and β > 0 } is
an exponential family with p = 2 and

η1(α, β) = α , η2(α, β) =
−1

β

T1(x) = log(x) , T2(x) = x

B(α, β) = α log β + log Γ(α) , h(x) = x−1I(0,∞)(x)

A subfamily of Gamma which is also an exponential family is {Exp(β) : β > 0}
= {Gamma(1, β) : β > 0} where the Exp(β) distribution has Lebesgue density

fβ(x) = β−1e−x/β , x > 0.

The family of distributions {Exp(β) : β > 0} is an exponential subfamily of the
Gamma family. We will call this subfamily the family of exponential distributions.

2

Remarks 2.3.1 Here we develop some of the elementary properties of exponen-
tial families.

(a) Suppose P is an exponential family dominated by µ σ–finite with densities
as given in (2.41). Let X1, X2, ..., Xn be i.i.d. with common distribution from
P. Then X = (X1, X2, ..., Xn) has a distribution from an exponential family
dominated by µn and with densities

fθ(x) = exp
[

η(θ)tT̃ (x) − B̃(θ)
]

h̃(x)

where

T̃ (x) =
n
∑

i=1

T (xi)

B̃(θ) = nB(θ)

h̃(x) =
n
∏

i=1

h(xi)

which is easily verified from the product formula for the joint density.
(b) By changing dominating measures, we can take h(x) ≡ 1, i.e. eliminate

the factor h(x) in (2.41). Define a new dominating measure ν by

dν

dµ
= h . (2.44)

We claim the ν is σ-finite. Fix θ ∈ Θ. Define

Bm = {x : exp[η(θ)tT (x) − B(θ)] ≥ 1/m},



112 CHAPTER 2. PROBABILITY MEASURES ON EUCLIDEAN SPACES

for m = 1, 2, . . .. As the exponential function is always positive, we have
⋃

mBm

= Ξ, so

ν(Bm) =
∫

Bm

h(x) dµ(x)

≤ m ·
∫

Bm

exp[η(θ)tT (x) −B(θ)]h(x) dµ(x)

≤ mPθ(B)

≤ m.

Now, for all θ and A, measurable,

Pθ(A) =
∫

A
exp[η(θ)tT (x) − B(θ)]h(x) dµ(x)

=
∫

A
exp[η(θ)tT (x) −B(θ)] dν(x)

by Proposition 1.4.2 (a), so Pθ � ν we have

dPθ
dν

(x) = exp[η(θ)tT (x) −B(θ)], (2.45)

which is an exponential family with h ≡ 1. For convenience, we will often delete
the factor h(x) when writing the density in an exponential family, although the
student should recall that it may be present when initially writing a density in
exponential family form. The student may wish to determine the new dominating
measure ν in the previous examples which causes h to disappear.

(c) Note that the density in (2.45) is strictly positive, so we conclude that in
general, the region where the density is positive is not dependent on the parameter
θ. A family we consider below which is related to the Exp(β) family is the
Exp[a, b] family. An Exp[a, b] distribution has Lebesgue density given by

fab(x) = a−1e−(x−b)/a , x ≥ b.

Here the parameter a is required to be positive and b is an arbitrary real number.
Since the density is positive exactly on the set [b,∞), it follows that this family
is not an exponential family.

(d) Remark (b) indicates one simplification of formula (2.41), and we now
investigate a more subtle simplification via reparameterization. Let Λ = η(Θ),
then Λ ⊂ IRp and η ∈ Λ may be used as parameter rather than θ since the actual
probability measure only depends on ηtT (x). Thus, we may write

fη(x) = exp
[

ηtT (x) − A(η)
]

. (2.46)

Keep in mind that A(η) is just a normalizing constant so it can be computed as

A(η) = log
( ∫

Ξ
exp[ηtT (x)] dµ(x)

)

. (2.47)
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We have implicitly assumed that h ≡ 1 as in remark (b) above. The form of the
exponential family given in (2.46) is called the canonical form. The new para-
meter η is called the natural parameter. If the natural parameterization is used,
then we call the family a natural parameter exponential family or a canonical form
exponential family. It is of course required that A(η) be finite for (2.46) to define
a probability density, but it is obviously also sufficient. The natural parameter
space Λ0 is the largest possible parameter space for the natural parameter, viz.

Λ0 = { η ∈ IRp : 0 <
∫

Ξ
exp[ηtT (x)]h(x) dµ(x) < ∞} (2.48)

= { η : −∞ < A(η) < ∞}
An exponential family in canonical form with the natural parameter space is
called a natural exponential family.

(e) The canonical form representation is not unique. Indeed, let D be any
nonsingular p× p matrix and put

η̃ = (D−1)tη , T̃ (x) = DT (x) ,

then
ηtT = ηtD−1DT = [(D−1)tη]t(DT ) = η̃tT̃

and we may use the new parameter η̃ in place of η provided we switch from T to

T̃ (x).
(f) If the parameter space Λ ⊂ M where M is a linear manifold in IRp with

dim(M) = q < p, then the natural parameter satisfies p − q independent linear
constraints. (To wit, Ctη = Ctζ where C is a p × (p − q) matrix with columns
orthogonal toM−ζ and ζ is any element ofM . Note thatM−ζ is a q-dimensional
linear subspace since it contains 0, and is the unique such subspace parallel to
M .) Then there is a p × q matrix B such that for any ζ ∈ M , there is for each

η ∈ Λ a unique η̃ ∈ IRq such that η = Bη̃ + ζ , and we will denote by Λ̃ the set
of all such η̃. (Here, B may be taken as any matrix whose columns span M − ζ ,
and then the entries in η̃ are just the coefficients in the expansion of η − ζ using
the basis consisting of the columns of M .) Then ηtT = η̃t(BtT ) + ζtT , so

fη(x) = exp[ηtT (x) − A(η)]

= exp[η̃tT̃ (x) − Ã(η̃)] h̃(x)

where T̃ (x) = BtT (x) ∈ IRq, Ã(η̃) = A(Bη̃ + ζ), and h̃(x) = exp[ζtT (x)]. Note

that η̃ does not appear in h̃(x). Thus, we may reparameterize and reduce the
dimension of η and T so that Λ does not belong to any proper linear manifold.

Similarly, suppose T satisfies some linear constraints, i.e. if there is a linear
manifold M of dimension q < p,

Pη{x : T (x) ∈M} = 1



114 CHAPTER 2. PROBABILITY MEASURES ON EUCLIDEAN SPACES

or, what is the same, there is a p× (p− q) matrix C and a ζ ∈ IRp such that

Pη{x : CtT (x) = Ctζ} = 1 .

Note that if this happens for one η then it happens for all η since the set where
fη > 0 doesn’t depend on η. Now let B be a p× q matrix with columns spanning
M and τ ∈M , then T =BT̃ + τ for a unique T̃ ∈ IRq, and we may reparameterize
with η̃ = Btη and reduce dimensionality again and T̃ will not satisfy any linear
constraints (i.e. not be confined to a proper linear manifold in IRq). Note that
even though η was not constrained here, we have lost nothing since if (η1 − η2)
is orthogonal to M − τ , we have ηt1T = ηt2T µ–a.e. where µ is the dominating
measure, i.e. the original parameterization was not identifiable.

In conclusion, we can always reduce an exponential family in canonical form
so that neither the parameter η nor the T satisfies any linear constraints. When a
canonical form exponential family is such that neither η nor T satisfies any linear
constraints, we say the family is minimal. If the parameter space of a minimal
exponential family (in canonical form) has nonempty interior (i.e. the parameter
space contains a nonempty open set, such as an open rectangle (a1, b1) × (a2, b2)
×...× (ap, bp) where ai < bi for 1 ≤ i ≤ p), then the family is said to be of full
rank.

2

The following definition and result will be useful several times in the course
of our study.

Definition 2.3.6 Let A be an n × m matrix with entries Aij, 1 ≤ i ≤ n, 1 ≤
j ≤ m. The Frobenius norm of A is

‖A‖ =





n
∑

i=1

m
∑

j=1

A2
ij





1/2

.

Proposition 2.3.1 For any matrices A and B, ‖AB‖ ≤ ‖A‖‖B‖, provided AB
is defined. In particular, if x is a vector of appropriate dimension, ‖Ax‖ ≤
‖A‖‖x‖.

Proof: Exercise 2.3.2.

Proposition 2.3.2 Suppose {fη : η ∈ Λ0} is a natural exponential family which
is minimal.

(a) The natural parameter space Λ0 is a convex subset of IRp and the family
is full rank.

(b) If η0 is an interior point of Λ0 (i.e. there is some open ball B(η0, ε) ⊂
Λ0, where the radius ε > 0), then the m.g.f. ψη0 of Lawη0 [T (X)] is finite in a
neighborhood of 0 and is given by

ψη0(u) = exp [A(η0 + u) − A(η0) ] (2.49)
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and the cumulant generating function (defined in (2.36)) is

κη0(u) = A(η0 + u) − A(η0)

In particular
Eη0 [T (X)] = ∇A(η0) (2.50)

Covη0 [T (X)] = D2A(η0) (2.51)

Furthermore, A(η) is a strictly convex function on the interior of Λ0.
(c) Under the same hypotheses as (b), if φ : Ξ −→ IR is such that Eη0 |φ(X)|

< ∞, then the function
h(η) = Eη[φ(X)]

is finite in a neighborhood of η0. Furthermore, h is infinitely differentiable and
the derivatives may be computed by interchange of differentiation and integration.

Proof. For (a), assume η1, η2 ∈ Λ0 and put η = αη1 + (1 − α)η2 for some
α ∈ [0, 1]. The exponential function is convex, so

exp[αηt1T + (1 − α)ηt2T ] ≤ α exp[ηt1T ] + (1 − α) exp[ηt2T ] .

Taking integrals w.r.t. the dominating measure (and noting that the integrands
are positive, so the integrals exist) gives

∫

Ξ
exp[ηtT (x)] dµ(x) ≤ α

∫

Ξ
exp[ηt1T ] dµ(x) + (1 − α)

∫

Ξ
exp[ηt2T ] dµ(x)

Thus, finiteness of the two integrals on the r.h.s. implies finiteness of the integral
on the l.h.s., i.e. that η is in Λ0 and hence that Λ0 is convex.

To show that the family is full rank, it is only necessary to show that the
natural parameter space has nonempty interior (since we know by minimality
that T does not satisfy any linear constraint). Since the canonical parameter η
does not satisfy any linear constraints, we know that Λ0 does not lie in a lower
dimensional linear manifold. Thus, we can find p+ 1 vectors η

0
, η

1
, . . ., η

p
such

that {η
1
−η

0
, η

2
−η

0
, . . ., η

p
−η

0
} forms a linear independent set of p-dimensional

vectors. We will assume without loss of generality that η
0

= 0 (by subtracting
η

0
from every other η). Put

K =







p
∑

j=0

ajηj : aj ≥ 0, 0 ≤ j ≤ p, &
p
∑

j=0

aj = 1







η̄ = (p+ 1)
p
∑

j=0

ajηj .

Of course, η̄ ∈ K, and our goal is to show that

for some ε > 0, ‖η − η̄‖ < ε implies η ∈ K,
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i.e. that η̄ has a neighborhood contained in K, so K has nonempty interior. Now
any η ∈ IRp can be written as

η = η̄ +
p
∑

j=1

bjηj ,

where the b = (b1, . . . , bp) can be found by solving

Ab = η − η̄,

where A is the p × p matrix with j’th column equal to η
j
. We know that A is

invertible, so by Proposition 2.3.1 ,

‖b‖ ≤ ‖A−1‖‖η − η̄‖.

Now in order to guarantee that η is in K we need that

aj = (p+ 1)−1 + bj , 1 ≤ j ≤ p,

a0 = (p+ 1)−1 −
p
∑

j=1

bj ,

are nonnegative since they already sum to 1. For this it suffices that

max
1≤j≤p

|bj | ≤ (p+ 1)−1

p
∑

j=1

|bj | ≤ (p+ 1)−1.

Now max1≤j≤p |bj | ≤ ‖b‖ and using Cauchy-Schwartz, it is easy to see that

p
∑

j=1

|bj | ≤ p1/2‖b‖.

Hence, as long as we make

‖b‖ < min{p−1/2(p+ 1)−1, (p+ 1)−1} = p−1/2(p+ 1)−1,

then we will satisfy our requirements on b so that η ∈ K. Thus, it suffices to take

ε = ‖A−1‖−1p−1/2(p+ 1)−1.

(b) For the m.g.f. calculation, we have

ψη0(u) = Eη0 [exp(utT (X))]

=
∫

Ξ
exp[utT (x) + ηt0T (x) − A(η0)] dµ(x)

=
∫

Ξ
exp[(u+ η0)

tT (x) − A(u+ η0) dµ(x) exp[A(u+ η0) − A(η0)]

= exp[A(u+ η0) − A(η0)]
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where this is valid provided η0 + u is in Λ0. Since there is a neighborhood of
η0 contained in Λ0, it follows that there is a neighborhood of 0 such that if u is
in this neighborhood of 0, then η0 + u is in the neighborhood of η0 contained in
Λ0, and everything in the last displayed calculation is finite, i.e. ψη0 is finite in a
neighborhood of 0.

The formula for κ is immediate and the formulae for the first two moments
of T under η0 follows by an elementary calculation. Since the family is minimal,
T is not almost surely confined to some proper linear manifold of IRp, so by
Proposition 2.1.7, the covariance in (2.51) is full rank, i.e. positive definite. This
shows that A(η) is strictly convex by the second derivative test.

(c) We apply Theorem 2.2.2. For the bounded function f(x) take

f(x) = I[0,∞)(φ(x)) − I(−∞,0)(φ(x))

and for the measure µ̃ in Theorem 2.2.2, use

dµ̃(x) = |φ(x)|dµ(x) .

Note that f(x)|φ(x)| = φ(x). Then apply that theorem to

B(η) =
∫

Ξ
f(x) exp[ηtT (x)] dµ̃(x) .

Infinite differentiability of B at an interior point of Λ0 implies the same for h,
and the interchangeability of the differentiation and integration operators follows
as well.

2

Example 2.3.3 (Multinomial Family) Suppose Ω is partitioned into k events,
say A1, A2, ..., Ak where the Ai are mutually exclusive and their union is Ω. Let
pi be the probability of the Ai, so p = (p1, p2, ..., pk) is a probability vector, i.e.
has nonnegative entries which sum to 1. Let X be the random k-vector which
indicates which event in the partition of Ω occurs, i.e. X = (IA1 , IA2, ..., IAk

).
Then the i’th entry of X is 1 if the outcome is in Ai, and the other entries of X
are 0. Now let X1, X2, ..., Xn be i.i.d. with the same distribution as X, and
let Y =

∑

Xi. Thus, Yi is the number of times Ai occurs in the n trials. Then
Y has a multinomial distribution with parameters (n, p), written Mult(n, p). As
the parameter n is always known (since

∑

Yi = n), we only show p in the proba-
bilities, etc. One can check (Exercise 2.3.15) that the distribution of Y is given
by

Pp[Y = y] =

(

n
y

)

py (2.52)

where y is a k-multi-index (a k-vector with nonnegative integer entries) satisfying

k
∑

i=1

yi = n . (2.53)
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Also,
(

n
y

)

=
n!

y!
=

n!
∏k
i=1 yi!

(2.54)

is a multinomial coefficient, and

py =
k
∏

i=1

pyi

i (2.55)

is the monomial defined in Remark 2.2.1 (b). It is convenient to define the
multinomial coefficient to be 0 if (2.53) fails. Now if we take as dominating
measure the discrete measure

µ =
∑

y

(

n
y

)

δy

then the density of Mult(n, p) is

fp(y) = py (2.56)

= exp

[

k
∑

i=1

yi log(pi)

]

,

provided it is known pi 6= 0 for all i. This is an exponential family with natural
parameters ηi = log(pi) and T = y, but T satisfies the linear constraint in (2.53)
and the ηi satisfy the nonlinear constraint

∑

exp[ηi] = 1. There are many ways
of eliminating this indeterminacy, but the most common is to use T = (y1, y2,
..., yk−1) (i.e. leave off the last component which is determinable from the other
components and (2.54)), and form the multinomial logit

ηi = log

(

pi

1 −∑k−1
j=1 pj

)

, 1 ≤ i ≤ (k − 1) (2.57)

Note that given any probability vector p one can obtain a (k − 1) vector η from

(2.57), and conversely given any η ∈ IR(k−1), one can obtain the corresponding
probability vector through

pk =
1

1 +
∑k−1
j=1 exp[ηj]

, (2.58)

pi = pk exp[ηi] , 1 ≤ i ≤ k − 1 . (2.59)

Note that the multinomial logit η is an unconstrained vector in IR(k−1) whereas the
probability vector p is a k vector which satisfies the constraints of nonnegativity
and

∑

pi = 1. The density in (2.56) can be written as

fp(y) = exp





k−1
∑

i=1

yi log(pi) + (n−
k−1
∑

i=1

yi) log(1 −
k−1
∑

j=1

pj)



 (2.60)
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= exp





k−1
∑

i=1

yi(log(pi) − log(1 −
k−1
∑

j=1

pj)) + n log(1 −
k−1
∑

j=1

pj)





= exp





k−1
∑

i=1

yiηi − n log(1 +
k−1
∑

j=1

exp[ηj])





which is an exponential family in canonical form with

A(η) = n log



 1 +
k−1
∑

j=1

exp[ηj]



 . (2.61)

From this in conjunction with Proposition 2.3.2 (b), we have for 1 ≤ i < k,

Ep[Yi] =
n exp[ηi]

1 +
∑k−1
j=1 exp[ηj ]

(2.62)

= npi

and since Yk = n−∑k−1
j=1 Yj,

Ep[Yk] = n −
k−1
∑

j=1

Ep[Yj ]

= n −
k−1
∑

j=1

npj = n



1 −
k−1
∑

j=1

pj



 = npk .

Also, if 1 ≤ i < j ≤ k, then

Covp[Yi, Yj] =
∂2

∂ηi∂ηj
A(η) (2.63)

=
−n exp[ηi] exp[ηj ]

[

1 +
∑k−1
m=1 exp[ηm]

]2

= npipj

and for 1 ≤ i < k

Varp[Yi] =
∂2

∂2ηi
A(η) (2.64)

=
n
[

exp[ηi]
(

1 +
∑k−1
j=1 exp[ηj ]

)

− exp[2ηi]
]

[

1 +
∑k−1
m=1 exp[ηm]

]2

= n
[

pi − p2
i

]

= npi(1 − pi) .

One can check as before that (2.63) and (2.64) hold if one of the indices is equal
to k. Also, (2.62) and (2.64) are easy to see directly since Yi is B(n, pi). One can
verify (2.63) by computing the covariance of Xi and Xj where X is Mult(1, p).
See Exercise 2.3.16.

2
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2.3.2 Location–Scale Families.

We now build ourselves up by special cases to Definition 2.3.8 below.

Definition 2.3.7 Let P be a Borel p.m. on IR.
(a) The location family generated by P is {Pb : b ∈ IR} where Pb(A) = P (A−b)

and A− b = {x− b : x ∈ A}. Note that if τb : IR −→ IR is translation by b, i.e.
τb(x) = x+ b, then Pb = P ◦ τ−1

b , i.e. if Z ∼ P then τb(Z) = Z + b ∼ Pb.
(b) The scale family generated by P is {Pa : a > 0} where Pa(A) = P (a−1A)

and a−1A = {a−1x : x ∈ A}. (Note that if ςa : IR −→ IR is multiplication by a,
i.e. ςa(x) = ax, then Pa = P ◦ ς−1

a , i.e. if Z ∼ P then ςa(Z) = aZ ∼ Pa.)
(c) The location–scale family generated by P is {Pab : a > 0 and b ∈ IR}

where Pab(A) = P (a−1(A − b)). (Note that if Z ∼ P then τb(ςa(Z)) ∼ Pab, i.e.
Pab ∼ P ◦ ς−1

a ◦ τ−1
b .)

2

Remarks 2.3.2 (a) Suppose P has Lebesgue density f(x) and Pb = P ◦ τ−1
b .

Then the Lebesgue density of Pb is f(x−b). This follows from a simple argument
with c.d.f.’s. If Z has c.d.f. F0, then the c.d.f. of Pb = Law[Z + b] is

Fb(x) = P [Z + b ≤ x] = P [Z ≤ x− b] = F0(x− b).

Of course f = dF/dz and

d

dx
Fb(x) =

d

dx
F0(x− b) = f(x− b),

which proves the claim.
(b) In a similar fashion, we can derive the c.d.f. for a scale family: if a > 0,

then

P ◦ ς−1
a ((−∞, x]) = P [ς−1

a (−∞, x]]

= P ({y : ay ≤ x})
= P ({y : y ≤ x/a})
= P ((−∞, x/a])

and if F1 denotes the c.d.f. for P and Fa the c.d.f. for Pa = P ◦ ς−1
a , we have

Fa(x) = F1(x/a).

So if P has Lebesgue density f1(z) then the Lebesgue density of Pa is

fa(x) =
d

dx
Fa(x) =

d

dx
F1(x/a) =

1

a
f(x/a).

(c) For a location-scale family, if P has Lebesgue density f(x), the Lebesgue
density of Pab = P ◦ ς−1

a ◦ τ−1
b is a−1f(a−1(x− b)).
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Example 2.3.4 Let P = U [0, 1] be the uniform distribution on [0, 1]. Then the
location–scale family generated by P is denote Unif and contains all p.m.’s of
the form Pab = U [b, a + b], i.e. if U ∼ U [0, 1] then aU + b ∼ U [b, a + b]. It is
more convenient to parameterize the uniform density as U [α, β] where α < β, i.e.
to give the endpoints. In general, one can reparameterize a family of probability
measures to whatever is convenient since the parameter in some sense is only a
label for the distribution.

2

The above example is also an example of what is known as a truncation family.
To define such a family, let g : IR −→ [0,∞) be a Borel function satisfying

0 <
∫ b

a
g(x) dx < ∞

for all −∞ < a < b < ∞. Then we put

fab(x) =
g(x)I[a,b](x)
∫ b
a g(y) dy

for a < b. Clearly the uniform family is a truncation family with constant g.
Such truncation families have little if any application in practice, although they
seem to play an important role in mathematical statistics textbooks.

Example 2.3.5 Let P = Exp(1), the exponential distribution with Lebesgue
density

f(x) = e−x , x > 0 .

The location–scale family generated by P is called the shifted exponentials and
will be denoted ShExp, and a member thereof will be denoted Exp[a, b] and has
Lebesgue density

fab(x) = a−1 exp[−(x− b)/a]I[b,∞)(x) .

Note that the support [b,∞) depends on the parameter. The scale family Exp of
distributions Exp[a, 0], a > 0 (called the family of exponential distributions and
not the exponential family) is perhaps more fundamental and is frequently used
as a model for observations which must be positive, such as lifetimes or masses.
Note that the shifted exponential family {Exp[β, b] : β > 0 and b ∈ IR } is not a
subfamily of Gamma, and it is also not an exponential family since the support
depends on the parameter b. See Remark 2.3.1 (c) above.

The shifted exponential family arises in a natural way from the ordinary
family of exponential distributions as follows. Suppose the observable is the
mass of tumors in a mouse liver. If a tumor is too small (say less than b where
b > 0) then it is not observed at all. One can see then that the observed tumor
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masses are conditional on being larger than b. If the exponential distribution
Exp[a, 0] applies for all tumor masses (observed and unobserved) then because of
elementary properties of the exponential distribution the observed tumor masses
will be Exp[a, b]. See Exercise 2.3.7. Note however that we will not obtain a true
location–scale family since we will require that b > 0.

The location family of distributions Exp[1, b] where b is an arbitrary real
number has little application in practice. It is however an example of a left
truncation family, which we leave as an exercise to define.

2

The next example illustrates how Definition 2.3.7 can be extended to scale
families generated by more than one probability measure. In a similar fashion, on
can generate location families or location-scale families beginning with a family
of probability measures.

Example 2.3.6 Let P0 = {Gamma(α, 1) : α > 0} and denote the elements of
P0 by Pα,1 with corresponding Lebesgue densities fα,1. For each β > 0 and each
fα,1 we obtain a “rescaled density” as

fα,β(x) =
1

β
fα,1

(

x

β

)

,

and of course {fα,β : α > 0 and β > 0 } gives the entire Gamma family. We say
that Gamma is the scale family generated by {Gamma(α, 1) : α > 0}, and for
this reason β is often called the scale parameter.

2

2.3.3 Group Families.

In this subsection we define a more general class of families of distribution which
includes the location, scale, and location–scale families of the previous subsection.

Definition 2.3.8 (a) A class of transformations T on (Ξ,G) is called a trans-
formation group iff the following hold:

(i) Every g ∈ T is measurable g : (Ξ,G) −→ (Ξ,G).

(ii) T is closed under composition, i.e. if g1 and g2 are in T the so is g1 ◦ g2.

(iii) T is closed under taking inverses, i.e. if g ∈ T then g−1 ∈ T.

If g1 ◦ g2 = g2 ◦ g1 for all g1 and g2 in T, then T is called commutative.
(b) If T is a transformation group and P0 is a family of probability measures

on (Ξ,G), then the group family generated by P0 under T is

P0 ◦T−1 = {P ◦ g−1 : P ∈ P0 and g ∈ T} .
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2

Note that if Z ∼ P , then g(Z) ∼ P ◦ g−1.

Example 2.3.7 Consider the observation space (IRn,Bn). For an n× n nonsin-
gular matrix A and b ∈ IRn, define the transformation gA,b(x) = Ax + b. The
family of transformations T = {gA,b : A is an n × n nonsingular matrix and
b ∈ IRn} is called the affine group. We verify that T is indeed a transformation
group by checking the three defining properties.

(i) gA,b : IRn −→ IRn is Borel measurable since it is continuous.
(ii) Given gA1,b1

and gA2,b2
, we have by some simple algebra

(gA1,b1
◦ gA2,b2

)(x) = (A1A2)x + (A1b2 + b1) ,

i.e. gA1,b1
◦ gA2,b2

= gA,b where A = A1A2 and b = A1b2 + b1. This shows T is
closed under composition.

(iii) Given gA,b and x ∈ IRn, consider solving for y in gA,b(y) = x, which gives
y = A−1x + (−A−1b), i.e. (g−1

A,b is an affine transformation with matrix A−1 and

shift −A−1b. This shows T is closed under taking inverses.
We note that T is not commutative, even when n = 1. There are two interest-

ing transformation subgroups, i.e. subsets of the affine group which are also closed
under composition and taking inverses. One is the general linear group {gA,0 : A
is n × n and nonsingular }, which is simply the group of all nonsingular linear
transformations on IRn. It is sometimes denoted GL(n). The other subgroup of
interest is the translation subgroup {gI,b : b ∈ IRn}, where I is an n× n identity
matrix.

We now generate a group family under the affine group. Let P0 consist of the
single p.m. N(0, I), i.e. the standard normal distribution on IRn. If Z ∼ N(0, I),
then AZ + b ∼ N(b, AAt) (Exercise 2.3.3, (a)). Further, any nonsingular normal
distribution on IRn can be so generated. We do have the following problem if
we use the parameterization (b, A): two different A’s can give rise to the same
normal distribution (i.e. if AAt = A1A

t
1). Thus, the parameter does not uniquely

define the distribution, i.e. the parameter is not identifiable in the terminology
of Definition 2.3.2. To avoid this problem, we will use instead the parameters
(b, V ) where V = AAt is the covariance.

2

Definition 2.3.9 Let T be a transformation group and let P be a family of prob-
ability measures on (Ξ,G). We say that P is T–invariant iff P ◦ T−1 = P.

2

Proposition 2.3.3 If P is a group family (generated by some P0) under T, then
P is T-invariant.
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2

Example 2.3.8 Let P be the multivariate location family generated by the
N(0, I) on IRn, i.e. P = {N(µ, I) : µIRn }. Then of course P is translation
invariant by the last Proposition. It turns out that the family is also spherically
invariant, whereby we mean that it is invariant under the group of orthogonal
transformations O(n) := {U : U is an n × n orthogonal matrix }. To see this,
note that if X ∼ N(µ, I) and U is orthogonal then UX ∼ N(Uµ, UIU t) and
UIU t = UU t = I, so UX ∼ N(Uµ, I).

2



2.3. COMMON DISTRIBUTIONS USED IN STATISTICS. 125

Exercises for Section 2.3.

2.3.1 (a) Put the normal family of Example 2.3.1 in canonical form, determine
the natural parameter space, and determine whether or not the family is of full
rank.

(b) Same as (a) but for Example 2.3.2.

2.3.2 Prove Proposition 2.3.1.

2.3.3 Let Z be a random n-vector with independent N(0, 1) components, i.e.
Z1, Z2, ..., Zn are mutually independent r.v.’s with the same distribution which
has Lebesgue density

f(z) =
1√
2π
e−z

2/2 , −∞ < z <∞ . (2.65)

Let V be a given nonnegative definite matrix and µ a given n-vector.
(a) Suppose A is any n × n matrix with AAt = V . Show that X = AZ + µ

has a N(µ, V ) distribution, i.e. Law[X] has the m.g.f. given in Definition 2.3.5.
(Note that such matrices A exist. Exercises 2.1.18 and x2.1.18 give two such
examples.) Hint: Derive ψZ and use that to derive ψX .

(b) Assume that if V is nonsingular then the N(µ, V ) distribution is dom-
inated by mn and the Lebesgue density is given by (2.43). (This is shown
in Exercise 2.4.4.) Show that the family of multivariate normal distributions
{N(µ, V ) : µ ∈ IRn and V is n × n strictly positive definite } is an exponential
family.

(c) Following up on part (b), put the family in canonical form, determine the
natural parameter space, and determine whether or not the family is of full rank.

2.3.4 Verify the form of the Lebesgue density for a location-scale family claimed
in Remark 2.3.2 (c).

2.3.5 For 0 ≤ α and 0 ≤ φ < 2π, the Fisher-von Mises density with parameters
α and φ is given by

fα,φ(x) =
1

2πI0(α)
exp[α cos(x+ φ)] , 0 ≤ x < 2π ,

where

I0(α) =
1

2π

∫ 2π

0
eα cos(x) dx

is a so-called modified Bessel function. We will denote the corresponding distri-
bution by FM(α, φ).

(a) Show that fα,φ is a Lebesgue density.
(b) Is the parameterization identifiable? What if we restrict to α > 0?
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(c) For θ ∈ [0, 2π), define modulo 2π translation by θ as the transformation
gθ : [0, 2π) → [0, 2π) given by

gθ(x) =

{

x+ θ if x+ θ < 2π,
x+ θ − 2π if x+ θ ≥ 2π.

Show that T = {gθ : θ ∈ [0, 2π)} is a transformation group. Is T commutative?
(d) Show that FM = {fα,φ : α > 0 and 0 ≤ φ < 2π} is the group family

generated by FM0 = {fα,0 : α > 0} under T.
(e) Show directly (without recourse to Proposition 2.3.3) that FM is invariant

under T.
(f) Show that FM is an exponential family.

2.3.6 (a) Write FM from Exercise 2.3.5 in canonical form. Determine the nat-
ural parameter space, and show that the natural exponential family is of full
rank.

(b) Consider the subfamily of FM given by {FM(α, φ0) : 0 ≤ α <∞} where
φ0 is any fixed constant in [0, 2π). Is this an exponential subfamily? Express it in
canonical form, determine the natural parameter space, and determine whether
or not the family is of full rank.

(c) Consider the subfamily of FM given by {FM(1, φ) : 0 ≤ φ < 2π}. Is this
family of full rank?

2.3.7 Suppose X is a r.v. with Exp(a) distribution for some a > 0. However,
you only get to observe the X if X > b where b > 0 is some constant threshhold.
Show that P [X > x|X > b] = exp[(x − b)/a] for x > b, and conclude that if we
observe X, then it has a Exp[a, b] distribution.

2.3.8 Let P be a Borel p.m. on IR. Show that the group family generated by P
under the affine group (Example 2.3.7) is a location-scale family if and only if P
is symmetric about some point b0, i.e. P (A− b0) = P (b0 − A) for all Borel sets
A.

2.3.9 Determine which of the following transformation groups is commutative.
(a) The translation group on IRn.
(b) The scale group on IR given by {ma : a > 0} as in Definition 2.3.7 (b).
(c) The translation-scale group on IR given by {tb ◦ma : b ∈ IR and a > 0} as

in Definition 2.3.7 (c).
(d) The general linear group on IRn given in Example 2.3.7.

2.3.10 For each of the following dominated families, show that they are expo-
nential families, put them in canonical form, determine the natural parameter
space, and determine whether or not the family is of full rank.
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(a) The Poisson family Poisson which has densities w.r.t. counting measure
on IN given by

fλ(x) =
e−λλx

x!

We denote the corresponding Poisson distribution by Poisson(λ), where λ > 0.
(b) The Binomial family Bin of B(n, p) distributions with parameter p, 0 <

p < 1.
(c) The Beta family Beta of Beta(α, β) distributions which have Lebesgue

densities

fα,β(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1 , 0 < x < 1 .

Here, 0 < α and 0 < β.
(d) The negative binomial family NBin of distributions NB(m, p) where m

is a positive integer and 0 < p < 1, which has density w.r.t. counting measure
on IN given by

fp(x) =

(

m+ x− 1
m− 1

)

pm(1 − p)x .

2.3.11 (a) Suppose X1, X2, . . ., Xn are independent random observables where
each Lawθ(Xi) is an exponential family of the form

fθ(xi) = exp[η
i
(θ)tT i(x) −Bi(θ)]hi(x),

w.r.t. the σ-finite dominating measure µi. Note that the parameter θ is common
to each of the densities. Let X = (X1, . . . , Xn). Show Lawθ(X) is from an
exponential family.

(b) Suppose we apply the result of part (a) to the i.i.d. setting of Remark
Rmk3.2.13(a). Explain what would be undesirable about the result and how it
could be put in a desirable form.

2.3.12 Suppose X is a random n-vector so that each Pθ is a Borel measure, and
assume {Pθ : θ ∈ Θ} is an exponential family. Show that A = supp(Pθ) doesn’t
depend on θ. See Remark Rmk3.2.13(c).

2.3.13 Verify equations (2.50) and (2.51).

2.3.14 For each of the examples in Exercise 2.3.10, compute the mean and
variance using Proposition 2.3.2 (b). You should be able to check your formulae
by computing the moments directly as well.

2.3.15 In Example 2.3.3, verify (2.52) is valid for n = 1. Compute the m.g.f.
for the distribution given by (2.52) and verify it is the m.g.f. for the distribution
of Y =

∑

Xi where the X i are i.i.d. Mult(1, p).



128 CHAPTER 2. PROBABILITY MEASURES ON EUCLIDEAN SPACES

2.3.16 In Example 2.3.3, verify (2.62) through (2.64) by direct calculation by
computing the mean and covariance of aMult(1, p) random vector and then using
the fact that a Mult(n, p) random vector is the sum of n i.i.d. Mult(1, p) random
vectors.

2.3.17 Suppose Y1, Y2, ..., Yn are independent r.v.’s with Yi ∼ Poisson(λti)
where t1, t2, ..., tn are known positive numbers, and λ > 0 is unknown.

(a) Show that the model for Y = (Y1, Y2, ..., Yn) is an exponential family.
(b) Put the family in minimal canonical form and identify the natural para-

meter space.
(c) Find the m.g.f. of

∑n
i=1 Yi using exponential family theory. What is the

distribution of this sum?

2.3.18 Let {Lawθ[X] : θ ∈ Θ} be an exponential family with σ-finite dominating
measure µ and densities as in (2.41). Let T (X) be the random p-vector where T
is as given in (2.41). Show that there is a σ-finite dominating measure on IRp for
Lawθ[T (X)] such that Lawθ[T (X)] has a density of the form

fθ(t) = exp[η(θ)tt− C(θ)]

2.3.19 Prove Proposition 2.3.3.
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2.4 Distributional Calculations.

Many problems in theoretical statistics require the calculation of distributions.
W. S. Gosset (writing under the pseudonym of Student) made history in 1908
with his derivation of the density for the t distribution. This is but one example
of the importance of this general issue. Unfortunately, there is no single, general
method one can apply, but rather a whole toolbox of techniques is necessary.
One then attempts to use various tools from the toolbox until one works. We
will use four general classes of methods: methods based on the c.d.f., methods
based on transformations, methods based on conditioning, and methods based
on moment generating functions. We have already seen the use of c.d.f.’s in
computing distributions in Remarks 2.3.2. Here, we will concentrate on the other
methods.

2.4.1 Lebesgue Densities and Transformations.

In conjunction with the change of variables theorem (Theorem 1.2.10), it was
mentioned that one often encounters a Jacobian in actually computing the in-
duced measure, which we now explain. First, some more review of advanced
calculus on IRn. Let U be an open subset of IRn and h : U −→ IRk have continu-
ous partial derivatives ∂hi/∂xj of all component functions, 1 ≤ i ≤ k, 1 ≤ j ≤ n.
The derivative Dh(x) is the k×n matrix with (i, j) entry [∂hi/∂xj ](x). Dh(x) is
sometimes called the Jacobian matrix. It is a matrix valued function of x. Also,
Dh(x) may be used for local linear approximation of h in the sense that

h(y) = h(x) + Dh(x)(y − x) + Rem(x, y) , (2.66)

where the remainder term satisfies

lim
y→x

‖Rem(x, y)‖
‖y − x‖ = 0 .

This last equation states that ‖Rem(x, y)‖ tends to be much smaller than ‖y−x‖
if y is close to x, and so the “linear” function h(x) +Dh(x)(y − x) as a function
of y tends to be a good approximation to h(y) for y close to x. If U ⊂ IRn and
h : U −→ IRn, then Dh(x) is a square n× n matrix, so its determinant

det Dh(x) = J(x) ,

is defined, and is sometimes called the Jacobian (determinant). The Inverse
Function Theorem (p. 221 of Rudin, Principles of Mathematical Analysis) states
that under these conditions, if J(a) 6= 0 at some a ∈ U , then h is invertible
in a neighborhood of a and h−1 has derivative [D(h−1)](y) = [(Dh)(h−1(y))]−1

= [((Dh) ◦ h−1)(y)]−1 at a point y in this neighborhood of h(a). Part of the
conclusion is that this inverse matrix exists in the neighborhood of h(a). Also, if
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J(x) 6= 0 for all x ∈ U , then h(V ) is an open set for any open set V ⊂ U . This
latter fact (V open implies h(V ) open) implies that h−1 is measurable, if it exists
on all of h(U) (Exercise 1.4.20).

Remarks 2.4.1 If h : IRn −→ IR, then the derivative Dh as defined above is an
n × 1 matrix, i.e. a “row vector,” whereas the gradient ∇h is a 1 × n “column
vector.” Note that Dh = (∇h)t. The difference is not really important, but
one should remember that formulae such as (2.66) will involve a transpose when
expressed in terms of the gradient, i.e.

h(y) = h(x) + (∇h(x))t(y − x) + Rem(x, y) ,

when h is real valued.

2

Theorem 2.4.1 Suppose Ω ⊂ IRn is open and h : Ω −→ IRn is a one to one
mapping with nonvanishing Jacobian (i.e. J(x) 6= 0 for all x ∈ Ω). Let Λ = h(Ω),
and let ν be Lebesgue measure restricted to Ω. Then ν ◦ h−1 is a Borel measure
on Λ, ν ◦ h−1 � m, and

d(ν ◦ h−1)

dm
(y) =











| det D(h−1)(y)| if y ∈ Λ,

0 otherwise.











m− a.e.

2

This result is Theorem 17.2, p. 229 of Billingsley. See also Theorem 10.9,
page 252 of Rudin. To check that det Dh(x) 6= 0 for all x, it suffices to show that
det D(h−1)(y) 6= 0 for all y by the Inverse Function Theorem applied to h−1. A
relation between the Jacobian of h−1 and h is given by

D(h−1)(y) =
[

Dh(h−1(y))
]−1

. (2.67)

This follows from the chain rule (see Exercise 2.4.2). Now we show the usefulness
of Theorem 2.4.1 in probability theory.

Proposition 2.4.2 Suppose P is a Borel p.m. on IRn which has Lebesgue density
f . Let h : Ω −→ Λ be as in Theorem 2.4.1 where Λ = h(Ω) and suppose
P (Ω) = 1. Then P ◦ h−1 has Lebesgue density g given by

g(y) = f(h−1(y))| det D(h−1)(y)| , for all y ∈ Λ .

Put otherwise, if Law[X] = P and Y = h(X), then Law[Y ] has Lebesgue density
given by g above.
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Proof. Let J(y) = det D(h−1)(y), and let B ⊂ Λ be a Borel set. Then

(P ◦ h−1)(B) = P (h−1(B)) =
∫

h−1(B)
f(x) dx

=
∫

Ω
Ih−1(B)(x)f(x) dx =

∫

Ω
IB(h(x))f(x) dx ,

where the last equality follows since x ∈ h−1(B) iff h(x) ∈ B. Now put

β(y) = IB(y)(f ◦ h−1)(y) ,

and since (f ◦ h−1)(h(x)) = f(x), we have

(P ◦ h−1)(B) =
∫

Ω
β((h(x)) dmn(x)

=
∫

Λ
β(y) d(mn ◦ h−1)(y) ,

where the last equation follows from the change of variables theorem (Theorem
1.1.2.10). By Proposition 1.4.2 (a) and the previous theorem,

(P ◦ h−1)(B) =
∫

Λ
β(y)|J(y)| dmn(y)

=
∫

Λ
IB(y)(f ◦ h−1)(y)|J(y)| dy

=
∫

B
(f ◦ h−1)(y)|J(y)| dy

=
∫

B
g(y) dy .

Since the above result holds for arbitrary Borel B ⊂ Λ, it follows that
d(P ◦h−1)/dmn exists and equals g, by the uniqueness part of the Radon-Nikodym
Theorem.

2

Example 2.4.1 (Log-Normal Distribution) SupposeX ∼ N(µ, σ2) and Y =
exp[X]. Then Y is said to have a log-normal distribution with parameters µ and
σ2. Perhaps we should say Y has an “exponential-normal distribution” as it is
the exponential of a normal r.v., but the terminology “log-normal” is standard. It
presumably arose from something like the statement, “The logarithm is normally
distributed.”

Now we derive the Lebesgue density using the previous theorem. Now Ω = IR
and Λ = (0,∞). Of course, h(x) = exp[x] and h−1(y) = log y, so D(h−1)(y) =
1/y. Hence, letting f be the N(µ, σ2) density we have

g(y) = f(log y)
1

y
, y > 0,

=
1

y
√

2πσ2
exp

[

− 1

2σ2
(log y − µ)2

]

, y > 0.
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Next we consider the problem of computing the mean and variance of Y . One
approach would be to compute

∫∞
0 ym dy for y = 1, 2. However, one should always

consider all options in computing expectations via the law of the unconscious
statistician. Now

E[Y m] = E[exp(mX)]

which is the m.g.f. of X evaluated at m. Recalling the m.g.f. of a univariate
normal distribution

ψN(µ,σ2)(t) = exp
[

µt+
1

2
σ2t2

]

we have

E[Y m] = exp
[

µm+
1

2
σ2m2

]

and so

E[Y ] = eµ+σ2

Var[Y ] = E[Y 2] − E[Y ]2

= e2µ+4σ2 − e2µ+2σ2

= e2µ+2σ2
[

e2σ
2 − 1

]

.

2

Example 2.4.2 (Student’s t-distribution) Suppose X and Y are indepen-
dent r.v.’s with the following distributions:

Law[X] = N(0, 1) , Law[Y ] = χ2
n ,

i.e. the Lebesgue densities are given by

fX(x) =
1√
2π
e−x

2/2 ,

fY (y) =
yn/2−1e−y/2

Γ(n/2)2n/2
I(0,∞)(y) .

Note that X has the standard normal distribution and Y has a chi-squared dis-
tribution with n degrees of freedom. Let

T =
X

√

Y/n
.

Then T is said to have Student’s t-distribution with n degrees of freedom. We will
derive the Lebesgue density for T . By Proposition 1.4.3, the joint density for X
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and Y is fXY (x, y) = fX(x)fY (y). Letting Ω = IR × [0,∞) = supp(Law[X, Y ])
(this last equality follows from Exercise 1.4.19) and

h(x, y) = ( x/
√

y/n , y ) , (x, y) ∈ Ω ,

then h(Ω) = Ω and h is one to one on Ω since

h(x, y) = (t, u) iff x = t
√

u/n and y = u ,

and this gives the inverse function

h−1(t, u) = ( t
√

u/n , u ) .

Now the Jacobian matrix for h−1 is

Dh−1(t, u) =

[
√

u/n t/(2
√
un)

0 1

]

, (2.68)

with Jacobian
det Dh−1(t, u) =

√

u/n , (2.69)

which is nonvanishing for all (t, u) ∈ Ω. Hence, the joint density of (T, U) is by
Theorem 2.4.1

fTU(t, u) = fXY (h−1(t, u))| det Dh−1(t, u)|

=

[

1√
2π
e−t

2u/(2n)

] [

un/2−1e−u/2

Γ(n/2)2n/2
I(0,∞)(u)

]

√

u/n

=
1

π1/2Γ(n/2)2(n+1)/2n1/2
u(n−1)/2e−(1+t2/n)u/2I(0,∞)(u) .

To get the marginal density for T , we apply Proposition 1.4.4 (or Exercise 1.4.12
(a)) to obtain

fT (t) =
∫

fTU(t, u) du

=
1

π1/2Γ(n/2)2(n+1)/2n1/2

∫ ∞

0
u(n−1)/2e−(1+t2/n)u/2 du

In the last integral make the change of variables

v = (1 + t2/n)u , so that du =
dv

1 + t2/n
.

This gives

fT (t) =
1

π1/2Γ(n/2)2(n+1)/2n1/2
(1 + t2/n)−(n+1)/2

∫ ∞

0
v(n+1)/2−1e−v/2 dv

=
1

π1/2Γ(n/2)2(n+1)/2n1/2
(1 + t2/n)−(n+1)/2 Γ((n+ 1)/2)2(n+1)/2
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where the last line follows since the integrand in the previous line is the χ2
(n+1)

density without the normalizing constant. In summary,

fT (t) =
Γ((n+ 1)/2)√
nπΓ(n/2)

(1 + t2/n)−(n+1)/2 . (2.70)

This is the (Lebesgue) density of Student’s t–distribution with n degrees of free-
dom.

2

The preceding example is typical of how the method gets used when one
wishes to obtain the Lebesgue density for a real valued random variable Y that
is a function of a random vector X: one must extend Y to a vector Y of the same
dimension as X to obtain a one to one trasformation with nonsingular Jacobian
and then apply mariginalization to get the desired density. Sometimes, it is not
possible to compute the marginal density in a neat closed form and one must be
satisified with an integral expression or something similar, as in Exercises 2.4.5
and 2.4.7.

2.4.2 Applications of Conditional Distributions.

Conditional distributions can be very useful for proving results about condi-
tional expectations. For instance, suppose X and Y are r.v.’s and let h(X)
and g(X) be two functions of X such that h(X) ≤ g(X) a.s. Then of course
E[h(X)|Y ] ≤ E[g(X)|Y ] by Theorem 1.5.7 (b), assuming that E[|h(X)|] < ∞
and E[|g(X)|] < ∞. But we can prove it with conditinal distributions using the
elementary properties of integrals, viz.

E[h(X)|Y = y] =
∫

h(x) dLaw[X|Y = y](x)

≤
∫

g(x) dLaw[X|Y = y](x)

= E[g(X)|Y = y]

where the inequality follows for each y since we are simply integrating w.r.t. the
measure Law[X|Y = y].

The following conditional moment inequality is extremely useful in statistics.

Theorem 2.4.3 (Jensen’s Inequality for Conditional Expectation.) Let Y :
(Ω,F , P ) −→ (Λ,G) be a random element and X a random n–vector defined on
the same probability space. Assume there is a convex Borel set K ⊂ IRn such that
P [X ∈ K] = 1. Let g : K×Λ −→ IR be a measurable function on (K×Λ,BK×G)
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where BK denotes the Borel subsets of K. Assume that g(·, y) is a convex function
on K for each fixed y ∈ Λ and that E|g(X, Y )| < ∞. Then

E[g(X, Y )|Y = y] ≥ g(E[X|Y = y]) , Law[Y ] − a.s. (2.71)

Furthermore, if for Law[Y ] almost all y ∈ Λ, Law[X|Y = y] is nondegenerate,
and if g(·, y) is strictly convex, then strict inequality holds in (2.71).

Proof. By equation (1.71),

E[g(X, Y )|Y = y] =
∫

K
g(x, y) dPX|Y (x|y) , Law[Y ] − a.s.

where the integral may be taken over K since IK(X) = 1 a.s. by assump-
tion. Applying the ordinary Jensen’s inequality (Theorem 2.1.4) to the p.m.
PX|Y (·|Y = y) and the convex function g(·, y) on the r.h.s. of the last displayed
equation we have

E[g(X, Y )|Y = y] ≥ g
( ∫

K
x dPX|Y (x|y)

)

, Law[Y ] − a.s.

which is the desired result. The claim involving strict inequality follows from the
analogous claim in Theorem 2.1.4.

2

An alternative (and more general) proof to the previous result may be found
in Billingsley, p. 470.

Examples of Conditional Distributions.

We will find many uses of the notions of this section in the remainder of the text.
Now we will introduce some applications for the purposes of illustration.

One of the most useful results for deriving conditional distributions is Propo-
sition 1.5.5, derived from Proposition 1.5.4 (see also Remark 1.5.5). Propositions
1.5.4 and 1.5.5 tell us how to obtain a density for a conditional distribution
when the joint distribution is dominated by a product measure. To summarize,
let (X, Y ) have a (joint) density f(X,Y )(x, y) w.r.t. µ1 × µ2. Letting fY (y) =
∫

f(X,Y )(x, y) dµ1(x) denote the marginal density of Y w.r.t. µ2, we can write the
conditional density of X given Y = y as

fX |Y (x|y) =
f(X,Y )(x, y)

fY (y)
.

Too often inexperienced students will laboriously compute fY (y) and divide it
into f(X,Y )(x, y) to obtain the conditional density. In fact, one can often recognize
fX|Y (x|y) by inspection of f(X,Y )(x, y), possibly after a little algebra. If we look
at f(X,Y )(x, y) as a function of x for fixed y, then it is already the conditional
density except for the “normalizing constant” 1/fY (y).
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Example 2.4.3 Let # be counting measure on IN = {0, 1, 2, . . .} and let m
be Lebesgue measure on IR. Suppose (X, Y ) is a random 2–vector having joint
density w.r.t. # ×m

f(x, y) =
e−2yyx

x!
I(0,∞)(y)

= C(y)
yx

x!
,

where C(y) doesn’t depend on x. Looking at the factor yx/x! in f(x, y) which does
depend on x, we see that it is the density (w.r.t. #) of a Poisson r.v. with mean
y. Hence, Law[X|Y = y] = Poisson(y). Note that we have not computed the
marginal density for Y , but since

∑∞
x=0(y

x/x!) = ey, we see fY (y) = e−yI(0,∞)(y) is
an exponential distribution with mean 1. Thus, we see immediately that E[X|Y ]
= 1 a.s. and Var[X|Y ] = 1 a.s.

Similarly, the functional dependence of f(x, y) on y can be concentrated in a
factor e−2yyxI(0,∞)(y), which is aGamma(x+1, 1/2) density except for a normaliz-
ing constant (namely 1/(Γ(x+1)(1/2)(x+1))), so Law[Y |X] = Gamma(x+1, 1/2).
Notice that we did not compute the marginal density of X w.r.t. # to obtain
this conditional distribution. (See Exercise 2.4.9.)

2

Example 2.4.4 Suppose Z = (X, Y ) has a (joint) multivariate normal distri-
bution which is nonsingular on IR(m+n) where X is m–dimensional and Y is
n–dimensional. We wish to obtain the conditional distribution of X given Y = y.
In order to appropriately split up the mean vector and covariance matrix, we will
write them in “partitioned” form as

µ
Z

= E

[

X
Y

]

=

[

µ
X

µ
Y

]

, (2.72)

where µ
X

= E[X] ∈ IRm and µ
Y

= E[Y ] ∈ IRn.

ΣZ = Cov

[

X
Y

]

=

[

ΣXX ΣXY

ΣY X ΣY Y

]

(2.73)

where

ΣXX = Cov[X] is m×m,

ΣXY = Cov[X, Y ] is m× n,

ΣY X = Σt
XY is n×m,

ΣY Y = Cov[Y ] is n× n.

The conditional density will involve the inverse of the covariance matrix.
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Lemma 2.4.4 (Inverse of a symmetric 2 × 2 partitioned matrix) Let M be
an (n +m) × (n+m) symmetric nonsingular matrix partitioned as

M =

[

A B
Bt C

]

(2.74)

where

A is n× n and symmetric

C is m×m and symmetric

B is n×m

Then A and C are nonsingular and

M−1 =

[

D E
Et F

]

(2.75)

where

D =
(

A− BC−1Bt
)−1

(2.76)

F =
(

C − BtA−1B
)−1

(2.77)

E = −A−1B
(

C − BtA−1B
)−1

(2.78)

= −C−1Bt
(

A−BC−1Bt
)−1

(2.79)

Proof. Invertibility of M implies invertibility of A and C. M−1 is symmetric, so
it has the form (2.75) for some D, E, and F . We obtain matrix equations these
must satisfy from

Im+n =

[

In 0
0 Im

]

= MM−1 =

[

A B
Bt C

] [

D E
Et F

]

=

[

AD +BEt AE +BF
BtD + CEt BtE + CF

]

where Ik denotes a k × k identity matrix. Note that in the last equality we
have multiplied the partitioned matrices together (almost) as if the entries were
scalars (but we have kept track of the order of the multiplications, as matrix
multiplication is not commutative). The reader should verify that this formula
is correct by checking individual matrix entries, if necessary. This leads to the
system of equations

AD + BEt = I

AE + BF = 0

BtD + CEt = 0

BtE + CF = I
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At this point, one can try various algebraic steps, but remember that only A
and C (not B) are invertible. Anyway, one thing that works is to solve the third
equation for Et and plug this into the first:

Et = −C−1BtD =⇒ AD − BC−1BtD = I =⇒
(A− BC−1Bt)D = I =⇒ D =

(

A−BC−1Bt
)−1

which is (2.76). Plugging the formula for D back into the first equation and
transposing gives (2.79). The other two formulae can be obtained in a similar
manner, or by an appeal to symmetry.

2

Applying this result to obtain the form of the joint Lebesgue density for
(X, Y ), we obtain

f(x, y) = (2π)−(n+m)/2 (det ΣZ)−1/2 exp



−1

2







[

x− µ
X

y − µ
Y

]t

Σ−1
Z

[

x− µ
X

y − µ
Y

]











(2.80)

= (2π)−(n+m)/2 (det ΣZ)−1/2 exp
[

−1

2

{

(x− µ
X

)tD(x− µ
X

)

+2(x− µ
X

)tE(y − µ
Y
) + (y − µ

Y
)tF (y − µ

Y
)
}

]

where

D =
(

ΣXX − ΣXY Σ−1
Y Y Σt

XY

)−1

F =
(

ΣY Y − Σt
XY Σ−1

XXΣXY

)−1

E = −Σ−1
XXΣXY

(

ΣY Y − Σt
XY Σ−1

XXΣXY

)−1

= −Σ−1
Y Y Σt

XY

(

ΣXX − ΣXY Σ−1
Y Y Σt

XY

)−1

To derive the conditional density, we really only care about the joint density as
a function of x, as the factor that depends on y or parameters only will cancel
out when we divide the joint density by the marginal fY . Letting “C” denote
a quantity which doesn’t depend on x, and is not necessarily the same in each
appearance, we have

f(x, y) = C exp
[

−1

2

{

(x− µ
X

)tD(x− µ
X

) + 2(x− µ
X

)tE(y − µ
Y
)
}

]

(2.81)
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Now we will show that this can be put in the form

C exp
[

−1

2

{

(x− µ
X|Y

)tΣ−1
X|Y (x− µ

X|Y
)
}

]

(2.82)

for some µ
X|Y

∈ IRn (which depends on y) and ΣX|Y which is n × n. When we

have done this, it will follow that the conditional distribution of X given Y is
N(µ

X|Y
,ΣX|Y ). Expanding out the form in the exponential in (2.81), we have

(x− µ
X

)tD(x− µ
X

) + 2(x− µ
X

)tE(y − µ
Y
)

= xtDx − 2xtDµ
X

+ 2xtE(y − µ
Y
) + C

= xtDx − 2xtD[µ
X
−D−1E(y − µ

Y
] + C

= {xt − [µ
X
−D−1E(y − µ

Y
]}tD{xt − [µ

X
−D−1E(y − µ

Y
]}t + C

So, it is clear that

ΣX|Y = D−1

= ΣXX − ΣXY Σ−1
Y Y Σt

XY (2.83)

µ
X|Y

= µ
X
−D−1E(y − µ

Y
)

= µ
X

+ ΣXY Σ−1
Y Y (y − µ

Y
) (2.84)

Now we have shown that the joint density considered as a function of x alone
can be put in the form (2.82) where C does not depend on x. When this is
normalized to be a Lebesgue probability density function in x, we will obtain

fX|Y (x|y) = (2π)−m/2
(

det ΣX|Y

)−1/2
exp

[

−1

2

{

(x− µ
X|Y

)tΣ−1
X|Y (x− µ

X|Y
)
}

]

.

This proves our claim about the conditional distribution. Note that only the con-
ditional mean and not the conditional variance depends on y, and the conditional
mean is a linear transformation of y.

2

Example 2.4.5 Next we will illustrate the use of the Two Stage Experiment
Theorem. Other authors refer to the technique as “heirarchical modelling.” Con-
sider the following data set of the numbers of moths caught in a trap on 24
consecutive nights at a site in North Buckinghamshire, England (taken from A
Handbook of Small Data Sets by Hand, et.al.)

47, 21, 16, 39, 24, 34, 21, 34, 49, 20, 37, 65, 67, 21, 37, 46, 29, 41, 47, 24, 22, 19, 54, 71

We might expect this data to follow a Poisson distribution as there are presumably
numerous moths in the area but a small probability of catching any individual
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moth. (Why does this motivate the use of a Poisson distribution for the model?).
However, the sample mean is 36.9 while the sample variance is 251.7, suggesting
the Poisson model is probably not valid since the mean and variance of a Poisson
random variable are equal. However, we need not abandon the Poisson model
entirely. It would only be valid if the number of moths and the probability of
catching any individual moth were the same each night, but in fact we expect
that these may vary from night to night in a random way. For instance, the
number of moths may vary considerably and their propensity for being trapped
may depend heavily on meteoroligical conditions which can change markedly from
night to night.

Let us suppose that on a given night, the number of moths caught in the trap
is a realization of a random variable X ∈ IN . Assume there is an unobservable
Y ∈ (0,∞) such that Law[X|Y = y] = Poisson(y). Then once a distribution
for Y is specified, we have a joint distribution by the Two Stage Experiment
Theorem, and hence also a marginal distribution for X. Note that E[X] =
E[E[X|Y ]] = E[Y ], and by Exercise 1.5.7(b),

V ar[X] = E[V ar[X|Y ]] + V ar[E[X|Y ]] = E[Y ] + Var[Y ].

Using our sample values, we would estimate E[Y ] as about 37 and Var[Y ] as
about 251.7 – 36.9

.
= 215, which gives a standard deviation of about 15. Thus,

we can retain our Poisson model for the data, but explain the “extra” variability
by variability in the underlying Poisson parameter.

2

2.4.3 Moment Generating Functions.

Moment generating functions and characteristic functions are primarily useful for
one type of distributional calculation: computing the distribution of the sum of
independent random variables. If X and Y are independent random variables
with m.g.f’s ψX and ψY , then the m.g.f. of their sum is

ψX+Y (u) = E [exp {u(X + Y )}]
= E [exp{uX} exp{uY }]
= E [exp{uX}]E [exp{uY }]
= ψX(u)ψY (u)

where independence was used at the third equality to write the expectation of
the product as the product of the expectations. The results extends to random
vectors, characteristic functions, and more than two independent summands.
Of course, for the m.g.f. to be useful, we must have the conditions wherein
uniqueness holds (Theorem 2.2.1(d)).
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Exercises for Section 2.4.

2.4.1 (a) Assume thatX is a r.v. with c.d.f. F and Lebesgue density f = dF/dx.
Assume there is an open interval (a, b) such that P [X ∈ (a, b)] = 1. Let h(x) be
a transformation which is differentiable and on (a, b) and satisfies h′(x) > 0 for
all x ∈ (a, b). Using an argument based on c.d.f.’s show that the r.v. Y = h(X)
has a Lebesgue density

g(y) = f(h−1(y))
1

h′(h−1(y))
.

(b) Same as part (a) but suppose h′(x) < 0.
(c) Derive the results in parts (a) and (b) using Proposition 2.4.2.

2.4.2 The chain rule for vector valued functions of several variables states that
if h : U −→ V and g : V −→ IRk with U ⊂ IRn and V ⊂ IRm both open sets and
h and g differentiable, then the composite function g ◦ h is differentiable and

D(g ◦ h)(x) = Dg(h(x))Dh(x) .

(a) Verify that the matrices on the right hand side of the equation above have
appropriate dimensions so the product is defined, and that the dimensions of the
product equal the dimensions of the matrix on the left hand side.

(b) Use the chain rule applied to the equation h◦ (h−1) = ι with ι the identity
to verify equation (2.67).

(c) With the notation and hypotheses of Proposition 2.4.2, show that

g(y) = f(h−1(y))| det Dh(h−1(y))|−1 , for all y ∈ Λ .

2.4.3 Verify equations (2.68) and (2.69).

2.4.4 As in Exercise 2.3.3, let Z be a random n-vector with independent N(0, 1)
components, V a given nonnegative definite matrix, and µ a given n-vector.

(a) Suppose A is an n × n matrix with AAt = V . Show that det(A) =
[det(V )]1/2. Assuming V is nonsingular, show that any such square matrix A
satisfying AAt = V must also be nonsingular.

(b) Show that if det(V ) 6= 0, then the N(µ, V ) distribution is dominated by
mn and the Lebesgue density is given by (2.43).

2.4.5 Let X and Y be independent r.v.’s with the χ2
n and χ2

m distributions,
respectively. Let W = (X/n)/(Y/m). Show that W has Lebesgue density given
by

fW (w) =
Γ((n+m)/2)(n/m)n/2

Γ(n/2)Γ(m/2)

wn/2−1

(1 + nw/m)(n+m)/2
, w > 0 .
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The probability measure with this Lebesgue density is known as the F–distribution
with n and m degrees of freedom (or n degrees of freedom for the numerator and
m degrees of freedom for the denominator. The “F” comes from the first letter
of the last name of Sir Ronald A. Fisher who is perhaps the greatest statistician
of all times and the first to recognize the importance of the F–distribution.

2.4.6 Suppose T has Student’s t-distribution with ν degrees of freedom. For
what values of m is the moment E[Tm] defined? Show that for such values,

E[Tm] = ν−m/2E[Zm]E[V −m/2]

where Z ∼ N(0, 1) and V ∼ χ2
ν are independent.

2.4.7 Here we derive some formulae for the Lebesgue density of the so-called
noncentral t-distribution. Let X and Y be independent random variables with

Law[X] = N(δ, 1) , Law[Y ] = χ2
n .

As in Example 2.4.2, define

T =
X

√

Y/n
.

Then we say T has the noncentral t-distribution with n degrees of freedom and
noncentrality parameter δ. Derive the following formulae for the Lebesgue density
of this distribution:

f(t|δ)
=

1√
πνΓ(ν/2)2(ν+1)/2

∫ ∞

0
s(ν−1)/2 exp

[

−(t
√

s/ν − δ)2/2 − s/2
]

ds

=
1√

πνΓ(ν/2)2(ν+1)/2
e−δ

2/2
∫ ∞

0
s(ν−1)/2 exp

[

−s(1 + t2/ν)/2 +
√
sδt/

√
ν
]

ds

=
1√

πνΓ(ν/2)2(ν+1)/2
e−δ

2/2
∫ ∞

0
s(ν−1)/2 exp

[

−s(1 + t2/ν)/2
]

∞
∑

k=0

1

k!
(
√
sδt/

√
ν)k ds

=
1√

πνΓ(ν/2)2(ν+1)/2
e−δ

2/2
∞
∑

k=0

1

k!

(

δt√
ν

)k
∫ ∞

0
s(k+ν−1)/2 exp

[

−s(1 + t2/ν)/2
]

ds

=
e−δ

2/2

Γ(1/2)Γ(ν/2)
√
ν

∞
∑

k=0

(2/ν)k/2(δt)k

k!

Γ([ν + k + 1]/2)

(1 + t2/ν)(ν+k+1)/2
,

2.4.8 Show that Theorem 2.4.1 follows from Theorem 10.9 of Rudin.

2.4.9 Show that the marginal distribution of X in Example 2.4.3 is NB(1, 1/2),
where the negative binomial family NB(m, p) is defined in Exercise 2.3.10 (d).
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2.5 Order Statistics.

In this section, we investigate some ideas which are very useful in statistics.
One of the unifying concepts of statistics is empirical distributions, which was
introduced in Chapter 1 (see equation 1.4). For definiteness, let X be a random
variable. It will usually be the case that X is the outcome of a measurement in an
experiment, and that the experiment is repeatable, so that we may obtain further
“replications” of X. For instance, consider the experiment of selecting a person
at random (so the underlying probability space is the set of all people), and then
measuring height, so that X is the height of the randomly selected person in some
units (e.g. inches). Of course, we may obtain more replications of X by selecting
more people. It may be reasonable to assume that the different replications or
trials of the experiment are independent and identically distributed. Thus, using
a subscript to denote the outcome of the i’th trial, we would obtain in n trials
X1, X2, ..., Xn which are independent and identically distributed (abbreviated
i.i.d.) where the common distribution is Law[X] = PX . Note that Law[X] is a
probability measure on (IR,B). As discussed back in Chapter 2, section 2, we
need not be too concerned with the rather “messy” underlying probability space
of people, but can focus on the real numbers (where are measurements lie) and
distributions thereon. Sometimes, X1, X2, ..., Xn are referred to as a random
sample from PX . Here, n is the sample size or the number of trials. We can
construct an “estimator” for PX given by

P̂n =
1

n

n
∑

i=1

δXi
.

Now for a fixed ω (which gives observed values X1(ω), ..., Xn(ω) which are fixed
real numbers), P̂n is a probability measure. Indeed, P̂n with the random Xi’s is
a random probability measure on IR. From (1.30), if h is a real valued function
on IR then

∫

h(x) dP̂n(x) =
1

n

n
∑

i=1

h(Xi) , (2.85)

i.e. integration w.r.t. P̂n amounts to averaging the function h over the sample.
This is also a random variable (with the Xi’s appearing as in (2.85)). Thus,

E
[ ∫

h(x) dP̂n(x)]
]

= E[h(X)] . (2.86)

This latter equation says that (1/n)
∑n
i=1 h(Xi) is an unbiased estimator of E[h(X)].

In Chapter 1, Section 1, we introduced the following simple rule: To estimate
a functional of an unknown probability distribution, simply replace the unknown
probability distribution by the empirical distribution. Here, a “functional” of a
distribution is a function which assigns a real number to each probability distri-
bution (in a certain class). Thus, if h is a given Borel function of a real variable,
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then the map H(PX) =
∫

h(x)dPX(x) is a functional defined on all Borel p.m.’s
PX for which the integral exists and is finite (e.g. h(x) = x gives the mean func-
tional). Another functional we may wish to estimate is the minimal α quantile
(0 ≤ α ≤ 1) F−(α) = inf{x : F (x) ≥ α}, where F is the c.d.f. of X. For fixed
α, F 7→ F−(α) is a functional on all distributions on IR. Replacing F in the
definition by the empirical distribution function F̂n gives the minimal α sample
quantile F̂−

n (α). In general, we don’t have the relation that E[F̂−(α)] = F−(α)
as in (2.86). That is, the sample quantile is generally a biased estimator of the
true quantile. See Example 2.5.1 below. But the estimate is still a very natural
one, and the bias is generally quite small. See Exercise 1.1.17 for more on sample
quantiles.

Above we spoke of P̂n as being a “random probability measure”. Such a
random object is not well defined at this point because we have not introduced
a σ–field on the set of probability measures on IR. Also, we don’t know what it
means for F̂n to be a “random distribution function” since we haven’t introduced
a σ–field on the set of cumulative distribution functions. However, P̂n has a very
special form since it is discrete, supp[P̂n] has at most n points (exactly n points if
all values in the sample are distinct), and the amount of probability mass at each
point is a positive integer times 1/n (exactly 1/n if the points are distinct). Thus,
we can think of the subset of such probability measures, which is “isomorphic”
with a Euclidean space. Put less technically, we only need a finite number of
numbers to determine P̂n, e.g. n numbers where n is the sample size, since if
we know all n observed values then we know P̂n. Similar remarks hold for F̂n.
However, the mapping from IRn to discrete probability measures given by

p(x1, x2, ..., xn) =
1

n

n
∑

i=1

δxi
, xi ∈ IR for 1 ≤ i ≤ n (2.87)

is not one to one since we can’t reconstruct the order of the observations from
P̂n. For instance, if π is a permutation of {1, 2, ..., n}, then

p(xπ(1), ..., xπ(n)) = p(x1, ..., xn) .

Recall that a permutation of {1, 2, ..., n} is a one to one correspondence (bijective
map) of the finite set with (into) itself. Thus, if π is a permutation of {1, 2, ...,
n}, then {π(1), π(2), ..., π(n)} is simpy a reordering of {1, 2, ..., n}. This
last displayed equation merely states the obvious fact that if we reorder the
observations, then we get the same empirical probability.

2.5.1 Basic Results.

What we have said above can easily be extended to observations which are random
vectors, but now we will use the order properties of real numbers. Let X = (X1,
X2, ..., Xn) denote the vector of all observations. Consider the subset of IRn given
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by

IP n = {x ∈ IRn : x1 ≤ x2 ≤ ... ≤ xn } .

On IP n, the mapping p above is a one to one correspondence, so we can identify
the set of possible empirical probability distributions (or empirical c.d.f.’s) with
IP n, since given an element of IP n, we can associate a unique empirical probability
distribution, and vice versa.

The mapping which “orders” our sample X = (X1, X2, ..., Xn) so that it
becomes a random vector taking values in IP n will be denoted Sort, i.e. Y =
Sort(X) means Y ∈ IP n and there is a permutation π of {1, 2, ..., n} such that
Yi = Xπ(i) for all i. That is, the components of Y are obtained by rearranging the
components of X in ascending order. Y is known as the vector of order statistics.
Two notations for the i’th component Yi of Y that are frequently used are X(i)

and Xi:n. Intuitively, if we believe the components of X are i.i.d., then Sort(X)
contains “as much information” about the unknown probability distribution as
the original vector of observations X. We will show below in fact that given
Sort(X), it is possible to “reconstruct” X in the sense that we can obtain a
random vector with the same distribution.

Let Perm(n) denote the set of all permutations of {1, 2, ..., n}, then #Perm(n)
= n!, of course. Note that Perm(n) has the following properties:

(i) If π1 and π2 are in Perm(n), then so is π1 ◦ π2.

(ii) There is an element ι ∈ Perm(n) such that ι ◦ π = π ◦ ι = π for every
π ∈ Perm(n).

(iii) For every π ∈ Perm(n), there is an element π−1 ∈ Perm(n) such that
π ◦ π−1 = π−1 ◦ π = ι.

These three properties make Perm(n) into a group under the (group) operation
of composition (i.e. ◦). Note that IR is a group under +, and both IR− {0} and
(0,∞) are groups under multiplication. Now define

ζ ◦Perm(n) = {ζ ◦ π : π ∈ Perm(n)}.

Using the properties just discussed, one can show that for all ζ ∈ Perm(n),

ζ ◦ Perm(n) = Perm(n) . (2.88)

See Exercise 2.5.1.
We will write Perm when n is clear from context. To each permutation

π ∈ Perm(n) there corresponds a unique linear transformation π̃ on IRn which
reorders the components of a vector, viz.

π̃(y1, y2, ...yn) = (yπ(1), yπ(2), ..., yπ(n)) .
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One can easily see that the n× n matrix corresponding to π̃ is A where Aij = 1
if π(j) = i and otherwise Aij = 0. Note that there is a single 1 in every row and
in every column of A, and the remaining entries are 0. Such a matrix is called a
permutation matrix. Also, one can show that A−1 = A′, i.e. A is an orthogonal
matrix (Exercise 2.5.2).

If π is any permutation, then clearly Sort(π̃x) = Sort(x), i.e. if we permute
the components of x and then rearrange permuted components into ascending
order, we obtain the same result as if we didn’t permute the components before
ordering them. Thus, we say Sort is invariant under coordinate permutations, or
simply permutation invariant. Now, we characterize some measurability proper-
ties of the mapping Sort : IRn −→ IP n.

Theorem 2.5.1 (a) A Borel set B is σ(Sort) measurable iff it satisfies the fol-
lowing symmetry property: x ∈ B imples π̃x ∈ B for all π ∈ Perm.

A function h : IRn −→ IR is σ(Sort) measurable iff it is invariant under
permutations of the variables, i.e. h ◦ π̃ = h for all π ∈ Perm.

(b) Suppose X is a random n-vector with i.i.d. components and continuous
one dimensional marginal c.d.f. Then

P [Sort(X) ∈ D] = n!P [X ∈ D] , for D ⊂ IP n . (2.89)

In particular, if X1 has a Lebesgue density f , then under the i.i.d. assumption,
Y = Sort(X) has a Lebesgue density (on IRn) given by

fY (y) =











n!
∏n
i=1 f(yi) if y ∈ IP n,

0 if y /∈ IP n .
(2.90)

(c) If X has i.i.d. components with continuous c.d.f., as in part (b), then

Law[X|Sort(X) = y] =
1

n!

∑

π∈Perm
δπ̃y . (2.91)

Hence,

E[h(X)|Sort(X)] =
1

n!

∑

π∈Perm
h(π̃X) . (2.92)

Remarks 2.5.1 Note that for each fixed y ∈ IP n, Law[X|Sort(X) = y] is a p.m.
on IRn. To paraphrase the result in (2.91), given the order statistics, each of the
n! possible permutations of the data is equally likely.

Proof. (a) We claim that for A ⊂ IP n,

Sort−1(A) =
⋃

π∈Perm
π̃−1(A) . (2.93)
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Let x ∈ IRn and let y = Sort(x). Then y is obtained by rearranging the com-
ponents of x into ascending order. So if Sort(x) ∈ A, then π̃x ∈ A for some
permutation π, and hence Sort−1(A) ⊂ ⋃

π {x : π̃x ∈ A}. On the other hand,
if π̃x ∈ A for some π, then π̃x = Sort(x) since A ⊂ IP n and Sort(x) is the
unique element of IP n that can be obtained by permuting the components of x,
so Sort(x) ∈ A, and we have shown that

⋃

π {x : π̃x ∈ A} ⊂ Sort−1(A). This
completes the proof of (2.93).

Suppose B ∈ σ(Sort) so by (2.93), B =
⋃

π π̃
−1A for some Borel set A ⊂ IP n.

If ζ ∈ Perm then
ζ̃−1B =

⋃

π∈Perm
ζ̃−1π̃−1A

=
⋃

π

(π̃ ◦ ζ̃)−1A =
⋃

π

π̃−1A . (2.94)

The last equality follows from (2.88). This shows that B is symmetric. Con-
versely, if B is symmetric, then it is easy to see that B =

⋃

π π̃
−1A with A =

B ∩ IP n, and hence B is σ(Sort) measurable.
By Theorem 1.5.1, h is σ(Sort) measurable iff there is a g : IP n −→ IR such

that h = g ◦ (Sort). It follows that if h is σ(Sort) measurable then h ◦ π̃ =
g ◦ (Sort) ◦ π̃ = g ◦ (Sort) = h since (Sort) ◦ π̃ = Sort for any π ∈ Perm.
Conversely, suppose h = h ◦ π̃ for all π ∈ Perm. Now for every x ∈ IRn, Sort(x)
is obtained by a permutation of the components of x, so h(x) = h(Sort(x)) so h
is σ(Sort) measurable by Proposition 1.2.3.

(b) From (2.93), if D ⊂ IP n then

P [Sort(X) ∈ D] = P
[

X ∈ Sort−1(D)
]

= P

[

X ∈
⋃

π

π̃−1(D)

]

,

where the union is over all π ∈ Perm. Now we claim that if π 6= ζ , then

P
[

X ∈ π̃−1(D) ∩ ζ̃−1(D)
]

= 0.

Assuming the claim is true, it follows that the sets in the union
⋃

π π̃
−1(D) are

“essentially disjoint” and hence

P

[

X ∈
⋃

π

π̃−1(D)

]

=
∑

π

P [X ∈ π̃−1D]. (2.95)

Here, by “essentially disjoint” we mean that the intersection has probability (mea-
sure) 0. This will complete the proof of this part of the theorem.

We hope that these claims are fairly obvious, but for the sake of mathematical
formalism, we will show that

I⋃
π
π̃−1D(x) =

∑

π∈Perm
Iπ̃−1D(x) , for Law[X] almost all x , (2.96)
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Taking expectations (i.e. integrating w.r.t. the distribution of X) of both sides
gives (2.95). Now for given x the sum on the l.h.s. of (2.96) is the number of sets
π̃−1D to which x belongs, and x belongs to two or more π̃−1D iff there is a pair
of distinct permutations π and ζ such that x ∈ (π̃−1D) ∩ (ζ̃−1D). However, this
means that x = π̃y = ζ̃y for some y ∈ D, where π and ζ are distinct permutations.
However, when π and ζ are distinct permutations it is true that

(π̃−1D) ∩ (ζ̃−1D) ⊂ {x : xi = xj for some i 6= j} . (2.97)

To see this, note that π and ζ being distinct permutations implies π(k) 6= ζ(k)
for some k ∈ {1, . . . , n}. Now suppose x ∈ (π̃−1D) ∩ (ζ̃−1D), where π and ζ
are distinct permutations. This means x = π̃y = ζ̃y for some y ∈ D. But
because π and ζ are distinct permutations, it follows that yπ(k) = yζ(k), and
taking i = π(k) and j = ζ(k), we have i 6= j but xi = yπ(k) = xj = yζ(k), and
hence x ∈ {x : xi = xj for some i 6= j}. This establishes (2.97). Now (2.97)
implies the inequality

PX [(π̃−1D) ∩ (ζ̃−1D)] ≤ PX({x : xi = xj for some i 6= j} = 0 . (2.98)

The equality in (2.98) follows by the assumption that the common c.d.f. of the
Xi is continuous. This implies that P [Xi = x] = 0 for every x ∈ IR. One can
then apply the argument of Exercise 1.3.18 with Lebesgue measure replaced by
PX , the common one dimensional marginal, to obtain PX{x : xi = xj for some
i 6= j} = 0.

(c) For B ∈ Bn and y ∈ IP n, let

p(B, y) =
1

n!

∑

π∈Perm
δπ̃y(B) .

For fixed y, p(·, y) is clearly a p.m. Thus, we need to show

P [X ∈ B|Sort(X) = y] =
1

n!

∑

π∈Perm
IB(π̃y) , (2.99)

for Law[Sort(X)] almost all y ,

i.e. that p(B, y) is a version of P [X ∈ B|Sort(X) = y]. Clearly the r.h.s. of
(2.99) is a Borel function of y. Thus, we need to check that if A ⊂ Ω which is
σ(Sort(X)) measurable, then

∫

A
IB(X) dP =

∫

A
p(B,Sort(X)) dP . (2.100)

Since A is in σ(Sort(X)) it follows that A = X−1(C) for some C ∈ σ(Sort),
and by (2.93), C =

⋃

π π̃
−1D for some Borel D ⊂ IP n. Hence, by the change of

variables ∫

A
p(B,Sort(X)) dP =

∫

C
p(B,Sort(x)) dPX(x)
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=
∫

⋃

π
π̃−1D

p(B,Sort(x)) dPX(x) . (2.101)

Now (2.96) allows us to break the integral in (2.101) up into a sum over each of
the π̃−1D and hence

∫

A
p(B,Sort(X)) dP =

∑

π∈Perm

∫

π̃−1D
p(B,Sort(x)) dPX(x)

=
∑

π∈Perm

∫

D
p(B,Sort(π̃−1w)) dPπ̃X(w) . (2.102)

In the latter equality, we made the change of variables within each integral that
w = π̃x. Note that if W = π̃X then Law[W ] = Law[π̃X]. However, Law[π̃X] =
Law[X] since

Pπ̃X =
n
∏

i=1

PXπ(i)
=

n
∏

i=1

PX1 (2.103)

because X1, ..., Xn all have the same marginal distribution. This shows that

Pπ̃X = PX .

Hence, plugging this back into (2.102) and using the fact that Sort is permutation
invariant gives

∫

A
p(B,Sort(X)) dP =

∑

π∈Perm

∫

D
p(B,Sort(w)) dPX(w)

= n!
∫

D
p(B,Sort(x)) dPX(x) . (2.104)

Now we substitute the form of p(B,Sort(x)) into this last expression to obtain

∫

A
p(B,Sort(X)) dP = n!

∫

D





1

n!

∑

π∈Perm
IB(π̃Sort(x))



 dPX(x)

(2.105)

=
∑

π∈Perm

∫

D
IB(π̃Sort(x)) dPX(x) =

∫

D





∑

π∈Perm
IB(π̃Sort(x))



 dPX(x) .

Note that for a given x, π̃Sort(x) ranges over the same collection of values as π̃x
when π ranges over all of Perm, so the last expression in (2.105)

=
∫

D





∑

π∈Perm
IB(π̃x)



 dPX(x) =
∑

π∈Perm

∫

D
IB(π̃x) dPX(x)

=
∑

π∈Perm

∫

π̃−1D
IB(w) dPπ̃X(w)
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where the latter follows as in (2.102), and by (2.103) this in turn

=
∑

π∈Perm

∫

π̃−1D
IB(w) dPX(w) =

∫

⋃

π
π̃−1D

IB(x) dPX(x)

by the same argument as in (2.96), which

=
∫

C
IB(x) dPX(x) =

∫

A
IB(X) dP .

which completes the proof.

2

Part (c) of the above theorem in combination with the Two Stage Experi-
ment Theorem tells us that if we are given the order statistics Sort(X), then
we may obtain a “probabilistic replica” of the original sample X by choosing
a permutation from Perm(n) at random (i.e. using the uniform distribution)
and applying that permutation to reorder the Sort(X) in a random fashion. Of
course, it would in general be silly to do this, but if someone insisted that the
data be made to look “realistic” it could be done. In general, one would think
that statistical methods for use on i.i.d. samples should not depend on the order
of the observations. We shall investigate this in a subsequent chapter.

As an example, we consider the following. The ages of 10 persons in a study
(this was a sample from a total of 200) are

61 63 50 83 50 60 60 54 53 54

These data are given above in their original order, but suppose they were sorted
before being given to the statistician who is working on the project. The following
Splus code converts the data in ascending order to a random order that “looks”
more realistic as a possible order in which the data were taken.

> ages_c(50,50,53,54,54,60,60,61,63,83)

> #these data are already sorted in ascending order!?

> #Rearrange in a random order:

> ages_sample(ages)

> ages

[1] 53 83 60 63 54 54 61 60 50 50

> #Now this looks "realistic".

> #Of course, we can always recover the order statistics:

> sort(ages)

[1] 50 50 53 54 54 60 60 61 63 83

Note that comments in the Splus code are on lines beginning with a #. The
functions “sample” and “sort” are supplied functions in Splus. The function
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“c” simply creates a vector from a list. The underline character “ ” denotes
assignment. If an object (in this case, a vector or 1 dimensional array of numbers)
is simply listed without any assignment, then it is printed out (as in the line where
ages appears, or the last line where sort(ages) appears).

2.5.2 Some Applications.

One can use (2.90) to derive the marginal distribution of individual order statis-
tics, but the following approach is easier. Assume X has i.i.d. components and
let X(i) denote the i’th order statistic (i.e. the i’th component of Sort(X)). Then
we can derive the c.d.f. of X(i) directly by

P [X(i) ≤ x] = P [ at least i components of X are ≤ x]

= P [
n
∑

j=1

I(−∞,x](Xj) ≥ i ] =
n
∑

j=i

(

n
j

)

F (x)j[1 − F (x)]n−j (2.106)

where the latter results from the fact that the I(−∞,x](Xj) are independent Bernoulli
r.v.’s with “success” probability F (x), so the summation in (2.106) is a binomial
r.v. with parameters n and p = F (x), written as B(n, F (x)). Assuming the
Xi’s have Lebesgue density f , then differentiating the c.d.f. in (2.106) gives the
Lebesgue density function of the i’th order statistic as

fX(i)
(x) = i

(

n
i

)

F (x)i−1[1 − F (x)]n−if(x) (2.107)

= n

(

n− 1
i− 1

)

F (x)i−1[1 − F (x)]n−if(x) . (2.108)

See Exercise 2.5.5.

Example 2.5.1 Let X1, X2, . . ., Xn be i.i.d. Unif(0, 1). Then the Lebesgue
density for the i’th order statistic is

fi(x) =
n!

(i− 1)!(n− i)!
xi−1(1 − x)n−i , 0 < x < 1

=
Γ(n+ 1)

Γ(i)Γ(n + 1 − i)
xi−1(1 − x)n−i , 0 < x < 1.

The latter form shows that this is a Beta(n+ 1, i) distribution. It is straightfor-
ward to show that

E[X(i)] =
Γ(i+ 1)Γ(n− i)

Γ(i)Γ(n + 1 − i)
=

i

n+ 1
. (2.109)

In particular, we know that X(i) = F̂−
n (α) for α ∈ ((i− 1)/n, i/n], so we see that

F̂−
n (α) is an unbiased estimator of α only for the particular value α = i/(n+ 1).
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2

Example 2.5.2 LetX1, X2, . . ., Xn be i.i.d. Expo(1) andX(1), X(2), . . ., X(n) the
corresponding order statistics. One can of course derive the joint and marginal
distributions of the order statistics, but in this setting one achieves a particularly
nice result for the joint distribution of the spacings defined by

Y1 = X(1),

Yi = X(i) − X(i−1), 1 < i ≤ n.

We will employ the transformation theory based on Jacobians. The inverse trans-
formation is

x(i) =
i
∑

j=1

yj,

so the matrix of partial derivatives is

dSort(x)

dy
=























1 0 0 · · · 0 0
1 1 0 · · · 0 0
1 1 1 · · · 0 0
...

...
...

...
...

1 1 1 · · · 1 0
1 1 1 · · · 1 1























.

Hence, the absolute determinant of the Jacobian is 1. Now by (2.90) the joint
Lebesgue density of X(1), X(2), . . ., X(n) is

f(x(1), . . . , x(n)) = n! exp

[

−
n
∑

i=1

x(i)

]

, x(1) < x(2) < · · · < x(n).

Note that
n
∑

i=1

x(i) =
n
∑

i=1

i
∑

j=1

yj

=
n
∑

j=1

n
∑

i=j

yj

=
n
∑

j=1

(n− j + 1)yj

so we get for the Lebesgue density of the Yi’s

f(y) = n! exp



−
n
∑

j=1

(n− j + 1)yj



 , yj > 0, 1 ≤ j ≤ n,

=
n
∏

j=1

(n− j + 1)e−(n−j+1)yj , yj > 0, 1 ≤ j ≤ n.



2.5. ORDER STATISTICS. 153

Note that this is the Lebesgue density of independent random variables Yi with
Law[Yi] = Expo[1/(n− i+ 1)].

2

Example 2.5.3 Let X1, X2, . . ., Xn be i.i.d. N(µ, σ2). Consider the sample
range, given by

Range(X) = max(X) − min(X) = X(n) − X(1).

In quality control, it is common to estimate the standard deviation σ by a multiple
of the sample range, i.e. to use the estimator

σ̂R = CnRange(X),

where Cn is chosen so that the estimator is unbiased, i.e.

E [σ̂R] = σ.

Such an estimator is used in this context because it is easy to calculate for a
person who has limited knowledge and computational resources. In fact, this is
not a very good estimator from the point of view of accuracy, an issue we will
take up in a later chapter. Values for Cn are tabulated in Table 3.1 of Thompson
and Koronacki. We will derive a formula for Cn and indicate how such tables can
be constructed.

Firstly, we will show that we can reduce the problem to one of i.i.d. N(0, 1)
observations. To this end, note that if Z1, Z2, . . ., Zn are i.i.d. N(0, 1), then Xi

= σZi + µ, 1 ≤ i ≤ n, are i.i.d. N(µ, σ2). Further, max(X) = σmax(Z) + µ and
similarly for min(X), so Range(X) = σRange(Z). Thus

E [CnRange(X)] = CnσE [Range(Z)] ,

so if we take
C−1
n = E[Range(Z)],

then
E [CnRange(X)] = σ.

Now, notice that Z and −Z have the same distribution, and of course max(−Z)
= −min(Z). Hence,

E [Range(Z)] = E [max(Z)] − E [min(Z)]

= E [max(Z)] + E [max(−Z)]

= E [max(Z)] + E [max(Z)]

= 2E [max(Z)] .

So, we need only compute the expectation of a single order statistic.
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Now the Lebesgue density for Z(n) is

f(z) = nΦ(z)n−1φ(z),

where φ denotes the N(0, 1) density and Φ the N(0, 1) c.d.f. Thus,

E [max(Z)] = n
∫ ∞

−∞
zφ(z)Φ(z)n−1 dz.

One can calculate the integral numerically for different values of n and then
produce tables as indicated above. We will investigate useful approximations
when n is large in a subsequent chapter.

2

To obtain higher order marginal densities it is probably just as easy to inte-
grate (2.90). Some effort can be saved by specializing to the i.i.d. Unif(0, 1) case
and then employing a trick. Let U be a random n-vector with i.i.d. components
which are uniformly distributed on [0, 1]. If F (x) is a given c.d.f., then Xi =
F−(Ui) gives a random vector X with i.i.d. components having marginal c.d.f. F
(Proposition 1.2.4). Furthermore, if V = Sort(U) is the vector of order statistics
for the uniform sample, then

Y = Sort(X) =
(

F−(V1), F
−(V2), . . . , F

−(Vn)
)

. (2.110)

Assuming further that Law[Xi] has a Lebesgue density f(x), one can show that

dvi
dyi

= f(yi). (2.111)

Hence, in particular, if i < j, then

fYi,Yj
(yi, yj) = fVi,Vj

(F (yi), F (yj))f(yi)f(yj). (2.112)

Now to compute a bivariate marginal Lebesgue density for Vi and Vj with i < j,
we will use the integration formulae

∫ vi

0
· · ·

∫ v3

0

∫ v2

0
dv1 dv2 · · · dvi−1 =

1

(i− 1)!
vi−1
i , (2.113)

∫ 1

vj

· · ·
∫ 1

vn−2

∫ 1

vn−1

dvn dvn−1 · · · dvj+1 =
1

(n− j)!
(1 − vj)

n−j, (2.114)

∫ vj

vi

· · ·
∫ vi+3

vi

∫ vi+2

vi

dvi+1 dvi+2 · · · dvj−1 =

1

(j − i+ 1)!
(vj − vi)

j−i+1. (2.115)

From these it follows that
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fVi,Vj
(vi, vj) =

n!

(i− 1)!(j − i+ 1)!(n− j)!
vi−1
i (vj − vi)

j−i+1(1 − vj)
n−j ,

0 < vi < vj < 1, (2.116)

and hence that

fYi,Yj
(yi, yj) =

n!

(i− 1)!(j − i+ 1)!(n− j)!
F (yi)

i−1[F (yj) − F (yi)]
j−i+1[1 − F (yj)]

n−jf(yi)f(yj),

yi < yj. (2.117)

2.5.3 Further Results.

We shall also need some results on the conditional distributions of order sta-
tistics. This turns out to be especially easy if the components have a uniform
distribution, and then we can extend the results to other distributions by the
trick employed above. So let Un be a random n-vector with i.i.d. components
which are uniformly distributed on [0, 1] and put V n = Sort(Un). It will be
convenient to include the sample size n in the notation here. For 1 ≤ i ≤ j ≤ n,
define V n[i : j] = (Vi,n, Vi+1,n, ..., Vj,n) to be the random j− i+1-vector obtained
by selecting the indicated block of components of V n. If i > j then V n[i : j] is
interpreted as being an “empty” vector with no components. Also, for complete-
ness we define V0,n = 0 and Vn+1,n = 1. We wish to determine Law[V n[i : j] |
V n[1 : (i − 1)], V n[(j + 1) : n] ]. To this end note that by (2.90) the Lebesgue
density of V n is given by

fV n
(v) = n! , 0 ≤ v1 ≤ v2 ≤ ... ≤ vn ≤ 1 . (2.118)

Assuming that v satisfies the inequalities in (2.118) (for otherwise we don’t care
how the conditional distribution is defined), then the conditional density of V n[i :
j] given V n[1 : (i− 1)] and V n[(j + 1) : n] is

fV n[i:j]|(V n[1:(i−1)],V n[(j+1):n])( v[i : j] | (v[1 : (i− 1)], v[(j + 1) : n]) ) (2.119)

=
fV n

(v)

f(V n[1:(i−1)],V n[(j+1):n])(v[1 : (i− 1)], v[(j + 1) : n])

Note that the numerator is constant in the region where density of V n is positive,
so as a function of v[i : j], the conditional density is constant, i.e. it is a uniform
density on the region of IRj−i+1 where it is positive. Thus, it is only necessary to
determine the region where it is positive, which clearly is

vi−1 ≤ vi ≤ vi+1 ≤ ... ≤ vj ≤ vj+1 . (2.120)
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Note however that this is the Lebesgue density of the order statistics of j − i+ 1
i.i.d. random variables with the uniform distribution on [vi−1, vj+1] (note that
the conventions v0 = 0 and vn+1 = 1 are in force). Thus,

Law[V n[i : j] | V n[1 : (i− 1)] = v[1 : (i− 1)] &V n[(j + 1) : n] = v[(j + 1) : n] ]
(2.121)

= Law[(vj+1 − vi−1)V j−i+1 + vi−1] .

The latter follows since if U is uniform on [0, 1] then aU+b is uniform on [b, b+a],
for a > 0.

Using (2.121) and the fact that nonuniform r.v.’s can be obtained by a trans-
form of uniform r.v.’s as in (2.110), (2.111), (2.112), and (2.117), one can show
that if X has i.i.d. components with Lebesgue density f , then denoting the order
statistics by X(1) ≤ X(2) ≤ ... ≤ X(n), we have for instance Law[X(2), ..., X(n−1) |
X(1) = x(1), X(n) = x(n) ] has a Lebesgue density on IRn−2 given by

f(x(2), ..., x(n−1)|x(1), x(n)) =
(n− 2)!

∏n−1
i=2 f(x(i))

[F (x(n)) − F (x(1))]n−2
(2.122)

for x(1) ≤ x(2) ≤ ... ≤ x(n−1) ≤ x(n) .

Here, F is the common c.d.f. of the components of X. See Exercise 2.5.10.
In the above discussion of order statistics we have already mentioned that for

x ∈ IRn there is a permutation π (which depends on x) such that π̃x = Sort(x),
i.e. π is the permutation of the compononts which rearranges them into ascending
order. Furthermore, if the components of x are distinct (so there are not “ties”
in Sort(x)), then π is unique. For this case, define Rank(x) = (π−1(1), π−1(2),
..., π−1(n)), i.e. the i’th component of Rank(x) is the index of the component of
Sort(x) which equals xi. For simplicity, we shall identify the vector of integers
Rank(x) with the permutation π−1. The student is asked to prove the following
in Exercise 2.5.12.

Proposition 2.5.2 Let X be as in Theorem 2.5.1 (b). Then Rank(X) has a
uniform distribution on Perm(n), i.e. P [Rank(X) = π] = 1/n! for all π ∈
Perm(n).

2
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Exercises for Section 2.5.

2.5.1 Verify (2.88).

2.5.2 Show that if A is a permutation matrix (i.e. there is a single 1 in each
row and column, and 0 elsewhere), then A−1 = A′.

2.5.3 Verify (2.90) from (2.89).

2.5.4 Suppose X is a random n-vector satisfying the following two conditions:

(i) Law[X] is exchangeable, i.e. Law[π̃X] = Law[X] for all π ∈ Perm;

(ii) P [Xi = Xj for any i 6= j] = 0.

Show that the conclusion of Theorem 2.5.1 (b) still holds, i.e. that the same
formula holds for Law[X|Sort(X) = y].

2.5.5 Verify (2.107) and (2.108).

2.5.6 For each of the following, obtain (i) the Lebesgue density for the i’th
order statistic X(i); (ii) E[X(i)]; and (iii) the expected value of the sample range
Range(X). You can save yourself some work if you use results from Examples
2.5.1 and 2.5.2 and methods from Example 2.5.3.

(a) X1, X2, . . ., Xn be i.i.d. Unif(a, b).
(b) X1, X2, . . ., Xn be i.i.d. Expo(µ).

2.5.7 For each of the settings in Exercise 2.5.6, determine a constant Cn so that

CnRange(X) is an unbiased estimator of the standard deviation σ =
√

Var[Xi].
Compare with the value of Cn in Example 2.5.3.

2.5.8 Verify (2.110) through (2.117).

2.5.9 Find the Lebesgue density of the sample range in the setting of Example
2.5.3.

2.5.10 Verify (2.122).

2.5.11 Suppose X has i.i.d. components with Lebesgue density f , and let X(1)

≤ ... ≤ X(n) denote the order statistics.
(a) What is the Lebesgue density of the conditional distribution of X(n) given

X(1), ..., X(n−1)?
(b) What is the Lebesgue density of the conditional distribution of X(i) given

X(1), ..., X(i−1), X(i+1), ... X(n)?
(c) Same as (b) but only given X(i−1) and X(i+1)?

2.5.12 Prove Proposition 2.5.2.

2.5.13 Assuming X1, X2, . . ., Xn are i.i.d. with Lebesgue density f(x), derive
a formula for the Lebesgue density of the sample median. You will need different
formulae depending on whether n is even or odd.


