Figure 1: Ratios of mean squared errors for two Gumbel distributions with $\theta_1 = 1$ and $\theta_2 = 0.5$: (Left)-one sample problem, (Right)-Mirror image problem.
Figure 2: Ratios of mean squared error of two pareto distributions with $a_1 = 10$ and $a_2 = 5$: (Left)-one sample problem, (Right)-Mirror image problem.
Figure 3: Ratios of mean squared errors for two Morgenstern distributions with $\alpha_1 = 0.5$ and $\alpha_2 = 0.6$: (Left)-one sample problem, (Right)-Mirror image problem.
Figure 4: Ratios of two mean squared errors of Sarmanov distribution with $\alpha_1 = 0.5$ and $\alpha_2 = 0.6$: (Left)-one sample problem, (Right)-Mirror image problem.
Figure 5: Two sample problem: Ratios of mean squared errors of two Gumbel distributions with $\theta_1 = 1$ and $\theta_2 = 0.5$; (Left)-Minimum estimator, (Right)-Maximum estimator.
Figure 6: Two Sample Problem: Ratios of mean squared errors of two pareto distributions with $\theta_1 = 1$ and $\theta_2 = 0.5$; (Left)-Minimum estimator, (Right)-Maximum estimator.
Figure 7: Two Sample Problem: Ratios of mean squared error of two Morgenstern distributions with $a_1 = 10$ and $a_2 = 5$; (Left)-Minimum estimator, (Right)-Maximum estimator.
Figure 8: Two Sample Problem: Ratios of mean squared error of two Sarmanov distributions with $a_1 = 10$ and $a_2 = 5$; (Left)-Minimum estimator, (Right)-Maximum estimator.