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Summary. Here we focus on discrimination problems where the number of predictors substantially exceeds
the sample size and we propose a Bayesian variable selection approach to multinomial probit models. Our
method makes use of mixture priors and Markov chain Monte Carlo techniques to select sets of variables
that differ among the classes. We apply our methodology to a problem in functional genomics using gene
expression profiling data. The aim of the analysis is to identify molecular signatures that characterize two
different stages of rheumatoid arthritis.
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1. Introduction
In this article, we describe a methodology for the general prob-
lem of variable selection in classification, where the response
variable is categorical, with two or more categories, and where
a large number of predictors, typically much larger than the
number of observations, is available. We focus on nominal
(i.e., unordered qualitative) responses. Our aim is the classi-
fication of samples as well as the identification of important
variables characterizing the different classes. We achieve both
goals simultaneously by combining multinomial probit models
for classification with Bayesian variable selection methods for
the identification of important predictors. Following Albert
and Chib (1993), we adopt a data augmentation approach
to inference, Tanner and Wong (1987), transforming the pro-
bit model into a normal linear regression. We build into the
model a variable selection mechanism by using mixture pri-
ors for the regression coefficients (see George and McCulloch,
1997). Conditional on the latent responses, our model is equiv-
alent to that of Brown, Vannucci, and Fearn (1998a,b) for re-
gression models with multivariate responses. Inference in our
model is complicated by the presence of the unknown latent
responses. We combine truncated sampling techniques with a
Metropolis algorithm to sample from the marginal distribu-

tion of single models. We also explore ways to predict class
allocations based on single models as well as model averaging.

We apply our methodology to a problem from functional ge-
nomics using microarrays. The recent development of genome-
wide technologies has created an unprecedented situation in
biology. A significant proportion of an organism’s genome can
be monitored in single experiments, leading to data char-
acterized by a large number of variables (gene expressions)
measured in a relatively small number of experimental con-
ditions. Classification problems, in particular, have received
considerable attention, starting from the work of Golub et al.
(1999). The goal of the analysis is to find sets of genes that
are, for example, related to different kinds of diseases, so
that future tissue samples can be correctly classified. Among
Bayesian contributions, Ibrahim, Chen, and Gray (2002) pro-
posed a Bayesian univariate selection method, for binary re-
sponses only, that primarily models gene expression of indi-
vidual genes given disease status. A Bayesian approach to
dimension reduction in discrimination with probit models for
disease status given expression was proposed by West et al.
(2000). There, rather than selecting actual genes, as does the
method we propose here, a singular-value decomposition is
applied to the design matrix to reduce the dimension.
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In this article, we study the classification of two groups of
rheumatoid arthritis patients at different stages of the disease
using gene expression profiling data.

1.1 Case Study: Rheumatoid Arthritis
Rheumatoid arthritis (RA) is an autoimmune disease char-
acterized by chronic synovial inflammation and destruction
of cartilage and bone in the joints. At the cellular level the
characteristic features of the disease are synovial tissue hy-
perplasia, and chronic infiltration of immune cells (T and
B lymphocytes, monocyte/macrophages, and granulocytes).
The hyperplasic layer is mainly composed of fibroblast-like
synoviocytes (FLS) and macrophage cells whereas the infil-
trating lymphocytes are found in the sublining tissue around
the blood vessels. FLS and T lymphocytes (primarily CD4+
memory cells) share the same microenvironment but seem
to be spatially separated, suggesting that their interactions
must be mediated by diffusible factors. The local produc-
tion of pro-inflammatory cytokines supports the formation
of a clearly defined microenvironment with distinct microar-
chitectural features, which support the ongoing persistent in-
flammatory response. Inflammation is also systemic in RA.
This means that cells in distant compartments of the body
(peripheral blood) will display characteristic features linked
to inflammation.

Combining functional genomics technologies with statis-
tical techniques allows us to perform genome-wide searches
for multigene predictors of physiological readouts. In Sha
et al. (2003), we identified markers for the classification of
two forms of arthritis, rheumatoid arthritis and osteoarthritis,
which have a similar clinical endpoint but different un-
derlying molecular mechanisms. Here we identify molecu-
lar signatures that are predictive of the stage of rheuma-
toid arthritis, with the goal of understanding how the im-
mune cells in the peripheral blood modify their molecu-
lar profiles with the progression of the disease. Our theory
allows multiple stages although our illustration is for two
stages.

The outline of the article is as follows. Section 2 describes
the multinomial probit model with latent variables. Section
3 presents the Bayesian variable selection approach, the pos-
terior analysis, and the prediction strategies. Guidelines for
choice of hyperparameters in the prior distributions are also
given. Section 4 describes the case study analyses and the
biological findings. Section 5 concludes the article.

2. Multinomial Probit with Latent Variables
Multinomial models are commonly used in the social and bi-
ological sciences for the analysis of categorical response vari-
ables; see Agresti (1990), Chapter 9, among others. Here we
introduce the model from the point of view of data augmenta-
tion, i.e., using latent variables, as in Albert and Chib (1993).
Let (Z, X) indicate the observed data, with Xn×p the predic-
tor matrix and Zn×1 a (categorical) response vector coded as
0, . . . , J − 1, for J classes. Each outcome zi is associated with
a vector (pi,0, . . . , pi,J−1), with pi,j the probability that the
ith respondent falls into the jth category.

Let us consider the first category as a “baseline” category.
A data augmentation approach to inference introduces latent

data Y into the problem. For the simple binary probit case,
we have

yi = α+ x′
iβ + εi, εi ∼ N(0, σ2), i = 1, . . . , n. (1)

The correspondence between yi and the binary outcome zi is

zi =

{
0 if yi ≤ 0

1 otherwise.
(2)

It is evident that multiplying α and β by a constant c and σ
by the same constant leaves the model unchanged. Thus the
constraint σ2 = 1 is often used to identify the model.

The latent variable approach can be extended to cope with
a multinomial response as follows. Let Yn×q with q = J − 1,
be a latent matrix for the Zn×1 observed categorical vector.
The element yi,j is the unobserved propensity of the ith sub-
ject to belong to the jth class. Let us assume a multivariate
normal distribution for Y with common covariance across the
different groups

Yi = α′ + X′
iB + εi, εi ∼ N(0,Σ), i = 1, . . . , n (3)

with Yi = (yi,1, . . . , yi,J−1) the row vector of Y correspond-
ing to the ith subject. The relationship between zi and the
unobserved Yi becomes

zi =




0 if max
1≤k≤J−1

{yi,k} ≤ 0

j if max
1≤k≤J−1

{yi,k} > 0 and yi,j = max
1≤k≤J−1

{yi,k}.
(4)

Obviously, in the special case J = 2 we obtain the univariate
latent model (1) and (2) for binary responses. Also by the
same argument as in that case, there is a scalar indeterminacy
in the model for each response. Possible ways to address the
problem are to prespecify a single parameter in the regression
for each response or to set the diagonal of Σ as the identity
matrix, but at the expense of losing the general structure.

3. Bayesian Variable Selection
We are interested in situations with a large number of pre-
dictors, typically much greater than the sample size, p 	 n,
and where it is desirable to reduce dimensionality. The use of
latent variables has allowed us to write a multinomial model
in the form of a linear regression. In this framework we can
develop a Bayesian variable selection approach that uses mix-
ture priors for the regression coefficients, similar to the vari-
able selection methods in multivariate regression of Brown
et al. (1998a,b).

Without loss of generality, we assume in the sequel that X
has been centered, so that the columns of X have entries that
sum to zero. Thus rank (X ) ≤ min{n − 1, p}.
3.1 Prior Distributions
Using the notation of Dawid (1981), conditionally on α, B,
and Σ, the standard multivariate normal regression model (3)
can be written as

Y − 1α′ − XB ∼ N (In,Σ) (5)

with Y an n × q random matrix, 1 an n × 1 vector of 1’s, X
the n × p design matrix, regarded as fixed, and B the p × q
matrix of regression coefficients. In the notation N (·, ·) both
arguments are proportional to covariance matrices, by rows
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and by columns, respectively. This avoids the need to string
out matrices as vectors and the use of Kronecker products for
covariance.

Conjugate priors for the parameters α, B, and Σ are dis-
cussed in Brown et al. (1998a). Variable selection is achieved
through the introduction of a binary p-vector γ with jth el-
ement γj either 1 or 0 according to whether the jth variable
is included or not in the model. For this selection prior each
column of B has a singular p-variate distribution and, given
γ, selecting the variables with γj = 1 gives

Bγ − B0γ ∼ N (Hγ ,Σ), (6)

where Bγ and Hγ are just B and H with the rows and, in the
case of H, columns for which γj = 0 deleted. We also have
α′ − α′

0 ∼ N (h,Σ) and Σ ∼ IW(δ;Q), with α and B inde-
pendent of each other. The notation IW(δ;Q), with shape
parameter δ = n − q + 1, indicates the inverse Wishart dis-
tribution with n degrees of freedom and q dimensions. The
simplest form of the prior distribution for γ is π(γ |w) =
wpγ (1 − w)p−pγ where pγ indicates the number of chosen vari-
ables, i.e., the number of ones in γ. A further Beta prior dis-
tribution can be imposed on w.

3.2 Posterior Inference
In our model the observed data are (Z, X), the parameters of
interest are θ = (α,B,Σ, γ), and Y is a matrix of unobserved
latent variables. Here, with variable selection being our main
focus, we implement a fast inference scheme by deriving the
posterior distribution of γ given (Y, X), essentially integrat-
ing out α, B, and Σ from the joint posterior. Conditional
on the latent responses, our model is equivalent to that of
Brown et al. (1998a) for regression models with multivariate
responses. Inference in our model, however, is complicated
by the presence of the unknown latent variables. We use the
following MCMC procedure:

� The latent matrix Y(n × q) is treated as missing and
imputed from its marginal distribution. First, condition-
ally on Σ and γ, we have Y − 1α′

0 − XγB0γ ∼ N (Pγ ,Σ)
with Pγ = In + h11′ + XγHγX′

γ . Averaging over Σ,
setting α0 = 0 and B0 = 0, and letting h large, under
constraint (4) we have the matrix Student distribution,
in the notation of Brown (1993),

Y | (γ,X,Z) ∼ T (δ;Pγ ,Q), (7)

or a truncated normal distribution under the con-
straint (2) for the binary case. Samples Y(n × q) from
these truncated distributions can be drawn using a sub-
chain Gibbs sampler on univariate full conditionals. See
Geweke (1991) for the optimized exponential rejection
sampling method.

� The vector γ can be drawn from the posterior distribu-
tion of γ given (Y, X, Z), as in equation (20) of Brown
et al. (1998a)

π(γ |Y,X,Z) ∝ g(γ)

= π(γ) | In + XγHγX′
γ |

−q/2|Qγ |−(δ+n+q−1)/2 (8)

with Qγ = Q + Y′(I − XγK−1
γ X′

γ)Y and Kγ =
X′

γXγ + H−1
γ and where X and Y are both centered.

The distribution (8) is not of a known form and γ can be
sampled using a Metropolis algorithm as in Brown et al.

(1998b). The method visits a sequence of models that
differ successively in one or two variables. At a generic it-
eration, given the previous visited vector, the algorithm
randomly chooses among a set of transition moves, by
adding or deleting a variable or swapping two variables.
A fast updating scheme that suitably augments the data
and uses QR decompositions, with QR-deletion or ad-
dition algorithms to remove or add single columns, is
developed in Brown, Vannucci, and Fearn (2002).

3.3 Classification of Future Cases
The missing value Y can be imputed using the mean of all
Y’s sampled during the MCMC. Let us indicate the estimate
of Y as Ŷ. The normalized conditional posterior probabilities
π(γ | Ŷ,X,Z) for all distinct γ’s visited by the MCMC can be
easily computed. Marginal probabilities of inclusion of single
variables π(γj = 1 | Ŷ,X,Z), j = 1, . . . , p, can be derived from
these posterior probabilities. Various prediction methods are
then possible.

Let us assume we have available nf further measurements
Xf (nf × p) for which we want to predict the corresponding
Y-vectors. We center Xf at the training means. For a given γ,
we can evaluate the joint distribution of Y and Yf and then
use properties of the matrix-T distribution to derive the con-
ditional distribution of Yf given Y. A single model prediction
is

Ŷf = 1α̃′ + Xf(γ)B̃γ , (9)

where γ can be chosen as the model with the highest posterior

probability among those visited, and where α̃ =
¯̂Y and B̃γ =

K−1
γ X′

γŶ. Alternatively, the Bayesian approach to variable
selection allows prediction via model averaging, by using a
set of a posteriori likely models, Madigan and Raftery (1994)
and Brown et al. (1998a), as

Ŷf =
∑
γ

(
1α̃′ + Xf(γ)B̃γ

)
π(γ | Ŷ,X,Z). (10)

Recent developments in Bayesian model averaging include
methods that incorporate variable selection for prediction,
Brown et al. (2002), and single model approximations,
Barbieri and Berger (2004).

Having obtained an estimate of Yf , the corresponding pre-
dicted categorical value for the ith future observation can be
computed via (4).

In practice, the predictive performance of the selected mod-
els is typically assessed by splitting the available data into a
training and a validation set, fitting the model on the training
data and using the validation set to compute mean-squared er-
rors of the prediction estimates obtained as described above.
In the case study presented here, however, we have a lim-
ited number of samples available, which is typical of exper-
iments involving expression level profiling. We therefore re-
sort to sampling-based methods for crossvalidation prediction
(Gelfand, 1996). In the binary case, let Z(i) be the vector Z
without the ith element. A crossvalidation predictive proba-
bility can be calculated as

P
(
Zi = 1 |X,Z(i)

)

=

∫
γ

∫
Y

P
(
Zi = 1

∣∣X,Z(i), γ,Y
)
p
(
γ,Y

∣∣X,Z(i)

)
dγ dY.
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By using p(γ, Y |X, Z) as importance sampling density for
p(γ, Y |X, Z(i)) we have

P̂
(
Zi = 1 |X,Z(i)

)
=

1

M

M∑
t=1

P
(
Yi > 0 |X,Z(i), γ

(t),Y(t)
)

=
1

M

M∑
t=1

Φ
(
α̃(t)′ + X′

i(γ(t))B̃
(t)
γ

)
(11)

with α̃(t) = Ȳ(t), B̃(t)
γ = K−1

γ(t)X
′
γ(t)Y(t),Xi(γ(t)) being the mea-

surements for the ith individual at the variables selected by
γ(t). Y(t) and γ(t) are the MCMC samples at the tth iteration
and Φ(·) is the normal CDF.

3.4 Hyperparameter Settings
Generally, we set proper prior distributions to cope with
the indeterminacy in the model and high correlations in the
columns of X. Our aim is to provide priors for a variety of sim-
ilar settings, and so we choose suitably vague parameter val-
ues whenever possible with impunity. We leave harder choices
of informative priors to a form of bracketing suggested by the
likely prior range.

A vague prior can be assigned to the intercept parameter
vector α by specifying the hyperparameter h as a large value
tending to ∞, so that the value ascribed to the prior mean α0

becomes irrelevant. We choose α0 = 0. We set B0 = 0. The
prior distribution for B given γ depends on the matrix Hγ .
Brown et al. (2002) discuss relative merits and drawbacks of
different specifications, such as H = cDiag((X′X)−), a diag-
onalized version of a full g-prior H = c(X′X)−, and a simpler
H = cI. The latter we would recommend in general by the
arguments of that paper and because it is easier to calibrate,
as seen below.

Some care in the choice of the parameter c is needed and
we offer some guidelines for the H = cI case. We can imagine
orthogonally transforming the prior and model so that there
are just r = rank(X) nonzero parameters. The r × r covari-
ance matrix for the data is proportional to the diagonal ma-
trix Diag[1/λ1, . . . ,1/λr]. The prior precision (inverse of vari-
ance) for the ith parameter is 1/c; the posterior precision is
1/c + λi. Thus the total relative precision of prior to posterior
is, using trace of the precision matrix as the total informa-
tion, (r/c)/(r/c+

∑r

i=1 λi) or (1/c)/(1/c+ λ̄). The range of
c is implied by the ratio of prior to posterior precision being
between say 0.1 and 0.005, that is

c∗(λ̄, 0.1) < c < c∗(λ̄, 0.005), (12)

where c∗(λ, p) = (1 − p)/(pλ). The parameter c in fact regu-
lates the amount of shrinkage in the model (as does the prior
on the number of nonzero regression coefficients). Indeed 1/c
is like the ridge parameter in ridge regression (see Hoerl and
Kennard, 1970). This guideline range we contend avoids too
much regularization, as well as large values, that could induce
nonlinear shrinkage as a result of Lindley’s paradox (Lindley,
1957). At least this will be the case provided the nonzero
eigenvalues are not very different. In cases where the condi-
tion number (largest to smallest nonzero eigenvalue) is say
more than 100 we would recommend focusing more on ill-
estimated parameters and increasing the upper bound on c
with 1/c∗ set to say the lower decile of the n − 1 nonzero

eigenvalues (the point such that 10% of eigenvalues are less
than it). Thus (12) becomes more generally

c∗(λ̄, 0.1) < c < max{c∗(λ̄, 0.005), c∗(λ0.1, 0.5)}. (13)

4. Case Study
4.1 Experimental Protocols
We have data available from 20 rheumatoid arthritis patients,
recruited from the rheumatology clinic at the Addembrooks
Hospital in Cambridge, U.K. The patients were representa-
tive of an early (11 patients with disease duration less than
2 years) and late stage of the disease (9 patients with over
15 years of disease duration). The erythrocytes sedimenta-
tion rate (ESR) of each patient was measured as a general
indicator of infection.

The experimental study was performed using custom-
made nylon high-density arrays with 999 cDNA clones rep-
resentative of the major functional categories (i.e., cell
cycle, adhesion molecules, apoptosis, cytoskeleton, extra-
cellular matrix, homeostasis, cytokines, growth factors, home-
obox, inflammation, lipids, shear stress, signal transduction,
and transcription factors). Each clone was replicated four
times on the array. The mRNA was extracted from peripheral
blood using the mRNA Isolation Kit for Blood/Bone Marrow
(Boehringer) and subsequently amplified using the SMART
cDNA amplification system (Clontech), following the manu-
facturers’ instructions. The resulting cDNA was labeled using
RediprimeII random prime labeling system (Amersham) in
the presence of radioactive 32PdCTP. Hybridization on high-
density arrays was performed in Techne bottles with 10 ml
DIG Easy Hybsolution (Boehringer) for 3 days at 45◦C. The
membranes were then washed 3 × 15 minutes in 0.1x SSC,
0.1% SDS at 65◦C, mounted in a cassette (sandwiched be-
tween two layers of thin plastic/clingfilm), and exposed for
2 weeks at the photoscreen. Image data were captured using
a Storm Scanner (Molecular Dynamics). For each clone the
expression estimates were obtained by averaging over the in-
tensities of the replicates. The data were then log-transformed
and normalized using the quantile-normalization procedure to
make the distribution of probe intensities across arrays similar
(Bolstad et al., 2003).

4.2 Identification of Predictive Biological Markers
For our Bayesian analysis, we set h = 107 and H = cI with
c = 5 and chose the binomial prior to have an expectation of
5, since we expected models with very few genes to perform
well. The choice of c did not appear to be so critical as long as
the parameter is chosen in a guideline range calculated from
(12), the condition number for this data being around 104.
Six MCMC chains with 200,000 iterations each were run. We
allowed ample burn-in time by discarding the first 100,000
iterations. Starting γ vectors were taken with (i) 1, (ii) 10,
(iii) 50, (iv) 100, (v) 500, and (vi) 999 randomly selected genes
included.

For each chain, we ordered the list of the distinct visited
subsets of genes according to their normalized conditional
posterior probabilities π(γ | Ŷ,X,Z) with Ŷ computed as the
mean of the sampled Y′s. We also looked at the marginal
probabilities of inclusion of single variables. These allow us
to locate sets of genes that can be of interest for further
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Table 1
Genes included in the 10 best models of each chain and in the 10 best models of the union of the six chains. The last column

reports the crossvalidated misclassification error rates and the labels of the misclassified samples.

Chain Genes included in the 10 best models Error rate (obs-label)

1 Filamin, Calcineurin A1, MT3-MMP, Adenosine A2B, receptor, Connexin 40, Jun-B
(clone 1), Jun-B (clone 2), Paxillin, Notch 4

0.05 (20-late)

2 Profilin, Calcineurin A1, Complement Component 7, MT3-MMP, Adenosine A2B
receptor, Jun-B (clone 1), Cbl-b, Jun-B (clone 2), Lymphocyte interferon alpha,
Calmodulin-I

0.05 (20-late)

3 Profilin, Calcineurin A1, MT3-MMP, Adenosine A2B, receptor, Connexin 40, Rasf-A
Pla2, Jun-B (clone 1), Jun-B (clone 2), Paxillin

0.05 (20-late)

4 Filamin, Calcineurin A1, MT3-MMP, Adenosine A2B receptor, Connexin 40, Jun-B
(clone 1), Jun-B (clone 2), Paxillin, Notch 4

0.05 (20-late)

5 Filamin, MT3-MMP, Adenosine A2B receptor, Connexin 40, Rasf-A Pla2, Jun-B (clone
1), Jun-B (clone 2), Paxillin, Notch 4

0.1 (2-early, 20-late)

6 Filamin, Profilin, Calcineurin A1, MT3-MMP, Rasf-A Pla2, Jun-B, Jun-B, Paxillin,
Notch 4

0.1 (2-early, 20-late)

Overall Filamin, Profilin, Calcineurin A1, MT3-MMP, Adenosine A2B, receptor, Connexin 40,
Jun-B (clone 1), Jun-B (clone 2), Paxillin

0.05 (20-late)

investigation, simply by considering the genes with marginal
posterior probability greater than a certain value. Interesting
sets can also be found by exploring the visited models that
have the highest values of the posterior probability. In general,
we found the selection based on marginal probabilities to give
very similar sets to those obtained by inspecting the “best”

Figure 1. Heat maps of selected genes for early–late disease stage discrimination. From top to bottom: genes included in
the 10 best models of single chains and in the 10 best of the union of all chains.

visited models. Table 1 reports the genes that appeared in the
10 best models of each chain. We also considered the pooled
set of visited models obtained by taking the union of the sets
visited by the six chains. Genes that appeared in the 10 best
models of this pooled set are also reported in Table 1. Heat
maps of all selected sets in Table 1 are shown in Figure 1.
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There is sufficient partial overlap among gene sets to allow an
unambiguous interpretation (see biological findings). As for
prediction, our analysis produced very low crossvalidated er-
rors (5% for chains 1, 2, 3, and 4 and 10% for chains 5 and 6).
Misclassification errors and labels of the misclassified samples
are reported in Table 1.

4.3 Biological Findings
From a purely biological perspective, two main and related
cellular functions are represented in our models. Figure 2 pro-
vides a graphical representation of the biological system un-
der study and related functions of the genes selected by our
method.

The first aspect of cell physiology that clearly emerges from
our models is represented by a number of actin-associated
proteins that are involved in cell motility and cytoskeleton
re-arrangement. Four genes involved in cytoskeleton remodel-
ing and motility are included in our models. These are: pro-
filin, paxillin, filamin, and calmodulin. Profilin can promote
polymerization of actin filaments by transporting monomers
to the fast-growing barbed ends of filaments (Dos Remedios
et al., 2003). Paxillin is a focal adhesion protein that serves as
an adapter molecule, providing docking sites for both struc-
tural and regulatory proteins (Dos Remedios et al., 2003).
In lymphocytes paxillin has been proven to be directly as-
sociated with the cytoplasmic tail of α4 integrin (Herreros
et al., 2003), establishing a direct link between cytoskeleton
remodeling and migration of leukocytes in the site of inflam-
mation. Filamin is also regulating the cytoskeleton rearrange-
ment by acting on integrins, transmembrane receptor com-
plexes, and second messengers (Stossel et al., 2001). Calmod-
ulin is only present in one of the sets but it is interesting
to notice its link with motility and in particular its essen-

Figure 2. Functional pathways related to early–late disease progression.

tial role in regulating human T-cell aggregation (Fagerholma
et al., 2001).

The second aspect of cell physiology that emerges from our
findings is represented by a set of genes known to influence
the ability of human lymphocytes to respond to activation and
in particular to express the pro-inflammatory cytokine inter-
leukin 2 (IL-2). These are notch 4 receptor, the gap junction
protein connexin 40, and the adenosine receptor. Notch is a
developmental gene that has been recently implicated in the
development of human lymphocytes (McKenzie et al., 2003).
Interestingly, there is a demonstrated link between the notch
receptor and at least two actin-binding proteins (Zhang et al.,
1998). It has also been shown that immunoglobulin and cy-
tokine expression in mixed lymphocyte cultures is reduced by
disruption of gap junctions of which connexin 40 is a struc-
tural component (Oviedo-Orta, Gasque, and Evans, 2001).
Similarly, the expression of adenosine A2B receptor is regu-
lated in T-cell activation suggesting that the role of adenosine
in lymphocyte deactivation is mediated by A2BRs (Mirabet
et al., 1999). It is of interest to notice that the expression of
notch and adenosine receptor is higher in late RA than in early
RA whereas the expression of connexin is lower in early RA.
This clearly shows that the overall effect of gene regulation
in late-stage RA blood cells may result in T-cell unrespon-
siveness to stimulation, a feature of RA lymphocytes that has
been previously described.

Collectively, the components of our models are tightly as-
sociated, structurally (profilin, filamin, paxillin, and notch
4) and/or via a functional association. Our results clearly
define two main characteristics of late RA blood cells. The
first seems to be associated to a potential increase in the
ability to polymerize actin filaments and the second is a
reduced ability to respond to activation by expressing the
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pro-inflammatory cytokine IL-2. The ability to migrate is cru-
cial to many cells in the immune system. The hypothesis we
generate from this model is that blood cells in late-stage RA
may have a higher capacity to rearrange their cytoplasm (for
example in response to activation) and to migrate. These have
profound repercussions on the disease progression. Increased
mobility may result in a larger amount of cells concentrated in
the primary focus of inflammation. On the other hand notch
4, connexin 40, and the adenosine receptor point in the direc-
tion of an “anergic” phenotype, a well-known feature of RA
lymphocytes.

A further aspect of our findings is that the transcription fac-
tor Jun B plays a central role in all selected sets. Transgenic
mice ubiquitously expressing Jun B develop a disease that re-
sembles a natural form of the human chronic myeloid leukemia
(CML; Weitzman, 2001). The in vitro analysis of transgenic
cells revealed that the constitutive expression of Jun B is asso-
ciated with increased proliferation upon treatment with GM-
CSF and with a reduced number of apoptotic granulocytes.
Although these effects may be indirect, these data suggest
that the higher level of Jun B and its relevance in discrimi-
nating between early- and late-stage arthritis could be related
to an increased ability of immune cells to proliferate and es-
cape apoptosis.

5. Discussion
We have developed an approach to discrimination with multi-
nomial probit models that uses latent variables and Bayesian
mixture priors for variable selection. Information on the size
of models for prediction can easily be included in our Bayesian
search. Our method, at the same time, has the flexibility of
allowing the identification of larger sets of genes, via the in-
spection of the best visited models or the marginal proba-
bilities of single genes, as we have shown. We have applied
our methodology to the problem of identifying molecular sig-
natures of disease stage for the classification of rheumatoid
arthritis patients. While it is certainly true that some gene
substitution may be possible with our MCMC search, we have
identified a subset of very predictive models which make sense
biologically. It should be stressed that our methodology aims
to get models that predict well, not models that happen by
chance to discriminate perfectly internally to the actual data.
Our crossvalidatory procedure demonstrates that this is so.
The predictive sets we have identified are based on molecular
signatures of blood cells and suggest hypotheses on the phys-
iology of these cells. Further experimental work is needed to
validate our selections. Moreover, our models are based on
blood expression profiling. The contribution of individual cell
types remains to be determined. This is currently the focus of
our laboratory work. A possible extension of our methodology
may be in trying to tease out interaction effects among the
genes by elaborating the prior on γ. This will require histor-
ical data or expert opinion to specify the hyperparameters.
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Résumé

Nous nous intéressons ici à des problèmes de discrimination
lorsque le nombre de prédicteurs dépasse largement la taille
de l’échantillon, et nous proposons une approche bayésienne
de sélection de variables à des modèles probit multinomi-
aux. Notre méthode utilise des mélanges d’a-priori et des
méthodes MCMC pour sélectionner les ensembles de vari-
ables qui diffèrent selon les classes. Nous appliquons notre
méthodologie à un problème de génomique fonctionnelle util-
isant des données profilant l’expression des gènes. Le but de
l’analyse est d’identifier les signatures moléculaires qui car-
actérisent deux états différents de la polyarthrite rhumatöıde.
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