STAT 552 Homework 2

Due date: In class on Thursday, September 15, 2005

Instructor: Dr. Rudolf Riedi

5. In a branching process we have

$$P(s) = P_{Z_{i,k}}(s) = as^2 + bs + c$$
(1)

with a > 0, b > 0, c > 0 and P(1) = 1.

- (a) Compute the extinction probability π .
- (b) Give a condition for sure extinction.
- (c) What is the underlying distribution of offsprings $Z_{j,k}$?
- 6. Let S_n be a simple random walk, i.e., $S_0 = 0$ and $S_n = S_{n-1} + X_n$, where X_n are i.i.d. Bernoulli random variables which assume the value 1 with probability p and -1 with probability q := 1 - p.

Recall the definition of the first hit of $S_n = 1$, i.e., $N^+ = \inf\{n \ge 1 : S_n = 1\}$. Similarly, define N^- to be the first hit of $S_n = -1$. Denote by $S_n^{\#}$ the simple random walk obtained by exchanging p and q and let $N^{\#}$ denote the first hit of $S_n^{\#} = 1$. Finally, let N_0 denote the first return to zero of S_n , i.e., $N_0 := \inf\{n \ge 1 : S_n = 0\}$.

- (a) Show that $N^{\#}$ and N^{-} have equal distributions.
- (b) Compute the pgf of N_0 . Hint: Consider the two cases $X_1 = \pm 1$ and express the distribution of N_0 in terms of those of N^+ and N^- . This will lead to a formula of P_{N_0} in terms of P_{N^+} and $P_{N^{\#}}$ which are known from class.
- (c) Compute $P[N_0 < \infty]$.
- (d) Compute $\mathbb{E}[N_0]$. Hint: consider all cases p > q, p = q, p < q carefully.
- 7. Consider a simple branching process with P(s) = q + ps. Let T denote the time of extinction, i.e., $T = \inf\{n \ge 1 : Z_n = 0\}$.
 - (a) Express the event $\{T = n\}$ in terms of the events $\{Z_k = 0\}$.
 - (b) Express P[T = n] in terms of P(s).
 - (c) Derive an explicit formula for P[T = n] in terms of p and q. Hint: recursion.