STAT 552 Homework 3

Due date: In class on Tuesday, September 27 (!), 2005

Instructor: Dr. Rudolf Riedi

- 8. A Markov chain has state space $S = \{1, 2, ..., 8\}$. Starting from $X_0 = 1$, the chain moves in each step from its current state j to any of the larger states $\{k : k > j\}$ with equal probability. State 8 is absorbing.
 - (a) Compute the transition matrix.
 - (b) Decompose the state space into recurrent and transient classes.
 - (c) Find the expected number of steps to reach state 8.
- 9. Let X_n be a Markov Chain.
 - (a) Assume that f is a given 1-1 function of the state space, i.e., f is invertible. Show that the sequence of random variables $f(X_n)$ form a Markov Chain as well.
 - (b) Show that this is not necessarily true if f is not invertible. Hint: Consider $f(x) = x^2$ or f(x) = |x| and an MC with only few states.
- 10. Let $P = [p_{ij}]_{(ij)}$ denote the transition matrix of an MC. Define $q_{ij} = 1$ if $p_{ij} \neq 0$ and $q_{ij} = 0$ else. The matrix $Q = [q_{ij}]_{(ij)}$ indicates whether it is possible to reach j from i in 1 step.
 - (a) Show that the matrix Q^2 indicates in how many ways it is possible to reach j from i in 2 steps.
 - (b) Assume that S has m states. Explain how the matrix $\mathbf{Q} + \mathbf{Q}^2 + \ldots + \mathbf{Q}^m$ can be used to decide whether j is reachable from i or not.
- 11. (a) Assume that there exists an integer n such that $p_{ij}^{(n)} \neq 0$ for all $i, j \in S$. Show that the MC is then irreducible.
 - (b) *Bonus question* The reverse is not true. Give a simple counter example.