STAT 552 Homework 8

Due: Tuesday, November 22, 2005

Instructor: Dr. Rudolf Riedi

25. (Age and excess life)

Let N_t be a pure renewal process. Let A(t) be the age of the current item, and B(t) its excess life time as usual. Also, set as usual

$$F_0(x) = \frac{1}{\mu} \int_0^x (1 - F(u)) du.$$
(1)

Recall the renewal equation of the tail probability P[B(t) > x] as well as Blackwell's key renewal theorem, saying that $U * z(t) \rightarrow \frac{1}{\mu} \int_0^\infty z(u) du$ under appropriate assumptions.

- (a) Using Blackwell's theorem show that $P[B(t) \leq x] \to F_0(x)$ as $t \to \infty$.
- (b) Similarly, show that $P[A(t) \le x] \to F_0(x)$.

Still with the same setting fix now two positive numbers x and y and define

$$Z(t) := P[A(t) > x, B(t) > y].$$
(2)

- (c) Write a renewal equation for Z(t).
- (d) Compute $\lim_{t\to\infty} Z(t)$.
- 26. (Markov versus Renewal process)

Let $\{S_n\}_{n\geq 0}$ denote a *stationary* renewal sequence with inter-arrival times $\{Y_n\}_{n\geq 1}$ uniformly distributed on [0, 1]. Let N_t be the renewal process associated with S_n .

- (a) Compute the initial distribution, i.e., compute $G(x) = P[Y_0 \le x]$.
- (b) Show that $P[N_{s+1/2} = k | N_s = k, N_{s-2/3} = k] = 0.$
- (c) Show that $P[N_{s+1/2} = k | N_s = k, N_{s-x} = k-1] \ge P[Y_{k+1} \ge x + 1/2].$
- (d) Conclude that N_t is not Markov.

Let N_t denote a homogeneous Poisson process (PRM(dt)). Let the r.v. Λ be independent of $\{N_t(\cdot)\}$ and take the values 1 and 2 with probabilities p and q = 1 - p, respectively. Let $M_t = N_{\Lambda \cdot t}$ be the associated mixed Poisson process.

- (e) Show that M_t is not a renewal process. Hint: The inter-arrival times are not independent. Compute the joint distributions of the first two interarrival times Y_1 and Y_2 by conditioning on Λ .
- (f) Recall that N_t is Markov. Show that M_t is also Markov. Hint: Condition on knowing Λ .