STAT 552 Homework 4

Due date: In class on Tuesday, October 10, 2006

Instructor: Dr. Rudolf Riedi

General hint: the following fact is intuitively clear and can be used for the solutions without proof. If $i \to j$ then there exists a sequence i_0, \ldots, i_m such that

 $i_0 = i, i_m = j, all i_k$ are different and $p_{i_k i_{k+1}} \neq 0$ for all $k = 0, \dots m - 1$.

13. Set T to be the set of transient states of a MC X_n and set m := |T| $(m = \infty$ if T is not finite).

- (a) Let *i* be an arbitrary state in *S*, and let $A := \{j \in S : i \to j\}$ be the set of all states that can be reached from *i*. Show that *A* is closed.
- (b) Assume that T is finite. Argue that T can not be closed. Hint: Don't look for the answer in (13a).
- (c) [Way to leave finite T] Assume that T is finite. Show that for any $i \in T$ there exists $k \notin T$ and n such that $p_{ik}^{(n)} \neq 0$.

Hints: It is easy to show that there must be recurrent states in S—the task is to show that there is one that can be reached from i. Use (13a).

(d) [Way to leave finite T in bounded time] Improve (13c) as follows. Assume that T is finite. Show that for any $i \in T$ there exists $k \notin T$ such that $p_{ik}^{(m+1)} \neq 0$. Hint: "General hint".

Note: from all this we may conclude that the sojourn time in finite T decays faster than exponential:

$$P[\tau_{T^c} \ge u(m+1)+1] \le ma^u.$$

14. The Media Police have identified six states associated with television watching: 0 (never watching), 1 (watch occasionally), 2 (watch frequently), 3 (addict), 4 (undergoing behavioral modification), 5 (brain dead). Transitions from state to state can be modelled as an MC with the following transition matrix:

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ .5 & 0 & .5 & 0 & 0 & 0 \\ .1 & 0 & .5 & .3 & 0 & .1 \\ 0 & 0 & 0 & .7 & .1 & .2 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
(1)

- (a) Which states are transient, which are recurrent?
- (b) Give the canonical decomposition of the state space.
- (c) Set $q_i = P[X_n = 5 \text{ for some } n \ge 1 | X_0 = i]$. Starting from state 1, we are interested in the chance to enter state 5 before state 0. Show that this chance is exactly equal to q_1 .
- (d) Looking at the rows of P find four relations between q_1, \ldots, q_4 , e.g., from row 3 we get $q_2 = .5q_2 + .3q_3 + .1$. Solve for q_1 . Hint: recall problem 9.
- (e) (Bonus) Express q_1 in terms of the limiting distribution.
- 15. Let Z_n be a simple branching process with $Z_0 = 1$, $Z_1 = Z_{1,1}$ etc. and i.i.d. $Z_{j,k}$. As usual, let π denote the probability of extinction.
 - (a) Show that if $P[Z_{j,k} = 0] = 0$ then $\pi = 0$.
 - (b) Show the reverse, i.e., if $\pi = 0$ then necessarily $P[Z_{j,k} = 0] = 0$. Hint: both are simple.