STAT 552 Homework 7

Due date: In class on Thursday, November 16, 2006

Instructor: Dr. Rudolf Riedi

23. Consider the renewal process N(t) where the interarrival times Y_0 , Y_i (i = 1, 2, ...) take only the values 1 or 2 and are all i.i.d. with common distribution:

$$P[Y_k = 2] = 1 - P[Y_k = 1] = p \quad (k = 0, 1, 2, ...)$$

Recall the formula obtained in an earlier homework:

$$P[N(t) = k] = \binom{k}{t-k} p^{t-k} (1-p)^{2k-t} + \binom{k}{t-k-1} p^{t-k} (1-p)^{2k-t+1}$$

- (a) Write the renewal equation for $\mu(t) = V(t) = \mathbb{E}[N(t)]$.
- (b) Show that $\mu(0) = 0$ and $\mu(1) = 1 p$ with the Y_0 given.
- (c) Verify that $\mu(n) = n/(1+p) p^2(1-(-p)^n)/(1+p)^2$ for integer $n \ge 0$.
- (d) Compute $\lim_{n\to\infty} \mu(n)/n$.
- (e) Show that the sequence $X_n = N(n)$ is not a Markov chain.
- (f) Show that the sequence $S_n = Y_0 + \ldots + Y_n$ is a Markov chain.
- (g) Compute F_0 , i.e., the distribution for Y_0 which makes the renewal sequence stationary.
- (h) Assume now that Y_0 is distributed according to F_0 . Compute $\mu(0)$ and $\mu(1)$ in this case.
- (i) Is $X_n = N(n)$ a Markov chain when Y_0 is distributed according to F_0 ?

24. (Age and excess life)

Let N(t) be a *pure* renewal process. Let A(t) be the age of the current item, and B(t) its excess life time as usual. Also, set as usual

$$F_0(x) = \frac{1}{\mu} \int_0^x (1 - F(u)) du.$$
(1)

- (a) Fix x. State the renewal equation for Z(t) = P[B(t) > x)].
- (b) Recall Blackwell's key renewal theorem which says that $U * z(t) \to \frac{1}{\mu} \int_0^\infty z(u) du$. Compute $\lim Z(t)$ with Z as in (a).
- (c) From (a) and (b) conclude that $P[B(t) \le x] \to F_0(x)$ as $t \to \infty$.
- (d) In the same way, show that $P[A(t) \le x] \to F_0(x)$.
- (e) Fix now two positive numbers x and y and define

$$\tilde{Z}(t) := P[A(t) > x, B(t) > y].$$

$$\tag{2}$$

Show that $\tilde{Z}(t)$ satisfies a renewal equation with $\tilde{z}(t) = \mathbf{1}_{[t>x]}(1 - F(t+y))$. Hint: Write

$$\ddot{Z}(t) = P[A(t) > x, B(t) > y, Y_1 > t] + P[A(t) > x, B(t) > y, Y_1 \le t].$$

and show that the first term is \tilde{z} , while the second terms is $\tilde{Z} * F$.

(f) Compute $\lim_{t\to\infty} \tilde{Z}(t)$. Hint: Use Blackwell. You should find $1 - F_0(x+y)$.