ELEC 535 Homework 3

Due date: In class on Friday, February 7, 2003

Instructor: Rudolf Riedi Rice University, Spring 2003

Problem 3.1 (Monotonic convergence of the empirical distribution)

Let \hat{p}_n denote the empirical probability mass function corresponding to X_1, X_2, \ldots, X_n independent and identically distributed with distribution $p(x), x \in \mathcal{X}$. Specifically,

$$\widehat{p}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i = x)$$

is the proportion of times that $X_i = x$ in the first *n* samples, where *I* is an indicator function. (a) Show for \mathcal{X} binary that

$$ED(\widehat{p}_{2n}||p) \le ED(\widehat{p}_n||p)$$

Thus the expected relative entropy "distance" from the empirical distribution to the true distribution decreases with sample size.

Hint: Write $\hat{p}_{2n} = \frac{1}{2}\hat{p}_n + \frac{1}{2}\hat{p}'_n$ and use the convexity of D. (b) Show for an arbitrary discrete \mathcal{X} that

$$ED(\widehat{p}_n||p) \le ED(\widehat{p}_{n-1}||p).$$

Problem 3.2 (Entropy of a disjoint mixture)

Let X_1 and X_2 be discrete random variables drawn according to probability mass functions p_1 over the set $\mathcal{X}_1 = \{1 \dots m\}$ and p_2 over the set $\mathcal{X}_2 = \{m + 1 \dots n\}$, respectively.

Let X be a random variable which equals X_1 with probability α and X_2 with probability $1 - \alpha$.

(a) Find H(X) in terms of $H(X_1)$, $H(X_2)$ and α .

(b) Maximize H(X) over α to show that

$$2^{H(X)} \le 2^{H(X_1)} + 2^{H(X_2)}$$

and interpret this result using the notion that $2^{H(X)}$ is the effective alphabet size.

Problem 3.3 (Measure of correlation)

Let X_1 and X_2 be identically distributed but not necessarily independent. Set

$$\rho = 1 - \frac{H(X_2|X_1)}{H(X_1)}$$

- (a) Show that $\rho = I(X_1; X_2) / H(X_1)$.
- (b) Show that $0 \le \rho \le 1$.
- (c) When is $\rho = 0$?
- (d) When is $\rho = 1$?