ELEC 535 Homework 8

Due date: In class on Monday, April 7, 2003

Instructor: Rudolf Riedi Rice University, Spring 2003

Problem 8.1 (Channel capacity.)

Consider the discrete memoryless channel $Y = X + Z \pmod{11}$, where

$$Z = \left(\begin{array}{rrr} 1, & 2, & 3\\ 1/3, & 1/3, & 1/3 \end{array}\right)$$

and $X \in \{0, 1, ..., 10\}$. Assume that Z is independent of X.

- 1. Find the capacity.
- 2. What is the maximizing $p^*(x)$?

Problem 8.2 (Zero-error capacity.)

A channel with alphabet $\{0, 1, 2, 3, 4\}$ has transmission probabilities of the form

$$p(y|x) = \begin{cases} 1/2 & \text{if } y = x \pm 1 \mod 5\\ 0 & \text{otherwise} \end{cases}$$

- 1. Compute the capacity of this channel in bits.
- 2. The zero-error capacity of a channel is the number of bits per channel use that can be transmitted with zero probability of error. Clearly, the zero-error capacity of this pentagonal channel is at least 1 bit (transmit 0 or 1 with probability 1/2). Find a block code that shows that the zero-error capacity is greater than 1 bit. Can you estimate the exact value of the zero-error capacity? (Hint: Consider codes of length 2 for this channel.)

Problem 8.3 (Maximum likelihood decoding.)

A source produces independent, equally probable symbols from an alphabet (a_1, a_2) at a rate of one symbol every 3 seconds. These symbols are transmitted over a binary symmetric channel which is used once each second by encoding the source symbol a_1 as 000 and the source symbol a_2 as 111. If in the corresponding 3 second interval of the channel output, any of the sequences 000,001,010,100 is received, a_1 is decoded; otherwise a_2 is decoded. Let $\epsilon < 1/2$ be the channel crossover probability.

1. For each possible received 3-bit sequence in the interval corresponding to a given source letter, find the probability that a_1 came out of the source given that received sequence. Hint: Recall Bayes' rule: for any events A and B,

$$\Pr(A|B) = \frac{\Pr(A)\Pr(B|A)}{\Pr(B)}$$

- 2. Using the above part (1), show that the above decoding rule minimizes the probability of an incorrect decision.
- 3. Find the probability of an incorrect decision (using part (1) is not the easy way here).
- 4. If the source is slowed down to produce one letter every 2n + 1 seconds, a_1 being encoded by 2n + 10's and a_2 being encoded by 2n + 1 1's. What decision rule minimizes the probability of error at the decoder? Find the probability of error as $n \to \infty$.

Problem 8.4 (Channels with memory have higher capacity.)

Consider a binary symmetric channel with $Y_i = X_i \oplus Z_i$ where \oplus is mod 2 addition, and $X_i, Y_i \in \{0, 1\}$. Suppose that $\{Z_i\}$ has constant marginal probabilities $\Pr\{Z_i = 1\} = p = 1 - \Pr\{Z_i = 0\}$, but that Z_1, Z_2, \ldots, Z_n are not necessarily independent. Assume that Z^n is independent of the input X^n . Let C = 1 - H(p, 1-p). Show that $\max_{p(x_1, x_2, \ldots, x_n)} I(X_1, X_2, \ldots, X_n; Y_1, Y_2, \ldots, Y_n) \ge nC$. (Hint: Use that $X^n | Y^n = Z^n | Y^n$ and express $I(X^n; Y^n)$ in terms of entropies.)

Problem 8.5 (Differential entropy.)

Evaluate the differential entropy $h(X) = -\int f \ln f$ for the following:

- 1. The exponential density, $f(x) = \lambda e^{-\lambda x}, x \ge 0$.
- 2. The Laplacian density, $f(x) = \frac{1}{2}\lambda e^{-\lambda|x|}$.
- 3. The sum of X_1 and X_2 , where X_1 and X_2 are independent normal random variables with means μ_i and variances σ_i^2 , i = 1, 2.