STAT 582 Homework 3

Due date: In class on Friday, February 25, 2005

Instructor: Dr. Rudolf Riedi

9. Recall that $\sum_{n = \infty} \frac{1}{n} = \infty$, but $\sum_{n = \infty} \frac{(-1)^n}{n}$ converges. Let X_n be iid with

$$P[X_n = \pm 1] = \frac{1}{2}$$

Does $\sum_{n} \frac{X_n}{n}$ converge in probability? Does it converge almost surely? In L_2 ?

10. Let X_n be iid in L_1 . Let $\bar{X}_n = (1/n) \sum_{k=1...n} X_k$.

- (a) Show that \bar{X}_n has uniformly bounded first moments.
- (b) Using that $Q(A) = \int_A |X_1| dP$ is absolutely continuous show that \bar{X}_n is uniformly absolutely continuous.
- (c) Conclude that \bar{X}_n converges in L_1 .