STAT 582 Homework 4

Due date: In class on Friday, March 4, 2005

Instructor: Dr. Rudolf Riedi

- 11. Here, we establish an extension to the SLLN. Assume that $\{X_n\}$ are iid with $\mathbb{E}[X_1^-] < \infty$ and $\mathbb{E}[X_1^+] = \infty$.
 - (a) Using Kolmogorov's SLLN show that for any c > 0 we have $\liminf_n \bar{X}_n \ge \mathbb{E}[X_n \mathbb{I}_{\{X_n < c\}}]$ almost surely.
 - (b) Conclude that $\lim_{n \to \infty} \bar{X}_n = \infty$ a.s.

The extended SLLN says then: If $\mathbb{E}[X_1^-]$ and $\mathbb{E}[X_1^+]$ are not both infinite, e.g., if $\mathbb{E}[X_1]$ is well defined, then $\bar{X}_n \to \mathbb{E}[X_1]$.

12. Here, we establish a simplified version of the Three Series Theorem for positive random variables.

Assume that $\{X_n\}$ are positive. Show that

if $\sum_{n} \mathbb{E}[X_n \mathbb{I}_{\{|X_n| < c\}}]$ converges,

then $\sum_{n} \operatorname{var}(X_n \mathbb{I}_{\{|X_n| < c\}}) < \infty.$

In conclusion: The sum of positive independent r.v. converges almost surely iff the two series (i) and (iii) of the Three Series Theorem converge.

Hint: Recall that the variance is bounded by the second moment.

13. Let X_n be exponential with parameter λ_n , i.e., $P[X_n > x] = \exp(-x\lambda_n)$. Give sufficient and necessary conditions on the series $\{\lambda_n\}_n$ such that $\sum_n X_n$ is almost surely converging. For which $\alpha \in \mathbb{R}$ does $\sum_n X_n$ converge almost surely when setting $\lambda_n = n^{\alpha}$?