STAT 582 Homework 6

Due date: In class on Friday, March 25, 2005

Instructor: Dr. Rudolf Riedi

17. Let X_n be a sequence of random variables such that

$$P[X_n = n] = 1/n$$
 $P[X_n = 0] = 1 - 1/n.$

- (a) Does the sequence $\{X_n\}_n$ converge in probability? If so to what limit? Show your argument.
- (b) Does the sequence $\{X_n\}_n$ converge in distribution? If so to what limit? Show your argument.
- (c) Assume in addition that the random variables in the sequence $\{X_n\}_n$ are mutually independent. Does the sequence $\{X_n\}_n$ converge almost surely? If so to what limit? Show your argument. Hint: compute first what $\limsup_n X_n$ and $\liminf_n X_n$ are almost surely.
- 18. Suppose U_n $(n \in \mathbb{N})$ are i.i.d. random variables, uniformly distributed on [0, 1]. Set

$$Z_n := (U_1 \cdots U_n)^{1/n} = \prod_{k=1}^n U_k^{1/n}.$$

Show that Z_n converges almost surely. Hint: SLLN

- 19. Let X_n $(n \in \mathbb{N})$ be non-negative, integer valued random variables. Let F_n be the (cumulative) distribution function of X_n , i.e., $F_n(x) = P[X_n \leq x]$.
 - (a) Show that F_n converges weakly if and only if for every non-negative integer k we have

$$P[X_n = k] \to p_k \qquad \text{as } n \to \infty$$

where $\{p_k\}_k$ is some sequence of non-negative numbers. Provided that it exists, express the weak limit F of the sequence $\{F_n\}_n$ in terms of the p_k .

Hint: Explain first why it is enough to study $F_n(x)$ (as $n \to \infty$) for non-integer x.

- (b) Conclude that weak and vague convergence are equivalent for non-negative integer valued random variables (but not necessary with the same limit). To clarify whether this property is due to the integer values or due to the non-negative values do the following: Show that the distributions of $Y_n = (-1)^n n$ converges vaguely but not weakly. (the limiting distribution can not be proper; what is it?) Show that if G_n converges vaguely to G and there exists a^* such that $G_n(a^*) = 0$ for all n then G_n converges also weakly to G' for some G'. Is G necessarily proper?
- (c) Assume that F_n converges weakly to F. Show that necessarily $p_0 + \ldots + p_m \leq 1$ for all m. Conclude that $\sum_k p_k \leq 1$. Under what conditions does F_n converge in distribution (meaning: under what conditions is F proper).

The following is an application of the above.

- 20. Let N_k be a sequence of Poisson random variables of mean λ_k , i.e., $P[N_k = m] = e^{-\lambda_k} \frac{(\lambda_k)^m}{m!}$ for integer $m \ge 0$.
 - (a) Show that the distribution functions of N_k converge weakly iff $\lambda_k \to \lambda$ where $0 \le \lambda \le \infty$. (Recall that $\lambda_n \to \infty$ means that for all M > 0 there exists n_0 such that $\lambda_n \ge M$ for all $n > n_0$. Sometimes such a sequence is said to "diverge to (plus) infinity". Usually —and certainly in this course— such a sequence is not considered "convergent".)
 - (b) Show that the distribution functions of N_k converge properly (or equivalently: N_k converges in distribution) iff λ_k converges, i.e, $\lambda_k \to \lambda$ where $0 \le \lambda < \infty$. Is the limiting distribution Poisson again? If so, with what mean?
 - (c) What is the limiting df if $\lambda_k \to \infty$? Hint: this can not be a proper df.
 - (d) Let N be Poisson with parameter λ . Verify by direct computation that $\mathbb{E}[N] = \lambda$ and $\operatorname{var}(N) = \lambda$. Hint: to compute the mean use that k/k! = 1/(k-1)! and $\sum_{k=0}^{\infty} \lambda^k/k! = e^{\lambda}$; to compute second order moments, start by computing $\mathbb{E}[N(N-1)]$ and use the earlier hint.