STAT 582 Homework 1

Due date: In class on Friday, February 3, 2006

Instructor: Dr. Rudolf Riedi

1. (a) Show the following fact.

Let $\{a_n\}_n$ be a non-decreasing sequence of real numbers. If any subsequence $\{a_{n(k)}\}_k$ converges, then the entire series $\{a_n\}_n$ converges. Hint: Proof that $\{a_n\}_n$ converges if and only if it is bounded which occurs if and only if any

Hint: Proof that $\{a_n\}_n$ converges if and only if it is bounded which occurs if and only if any subsequence is bounded. For both parts, you will need to use the monotonicity!

(b) Let X_n be a non-decreasing sequence of random variables. Assume that $X_n \xrightarrow{P} X$. Show that $X_n \xrightarrow{\text{a.s.}} X$.

Hint: Use (a).

2. Let X_n be a sequence of r.v. Assume that there exists a measurable set N with P[N] = 0 with the following property: for every subsequence $\{n(k)\}_k$ there exists a sub-subsequence $\{n(k(i))\}_i$ such that

$$X_{n(k(i))}(\omega) \to X(\omega)$$

for each $\omega \notin N$. Conclude that $X_n \stackrel{\text{a.s.}}{\to} X$.

3. Give an example of a probability space such that for all $0 the expression <math>||X||_p = (\mathbb{E}|X|^p)^{1/p}$ is not a norm, i.e., such that the triangular inequality $||X + Y||_p \le ||X||_p + ||Y||_p$ fails for some random variables X and Y.

Hint: Consider a simple coin toss, and set X and Y such that X + Y = 1 always.

- 4. Let X_n be any sequence of random variables. Set $S_n = X_1 + \ldots X_n$.
 - (a) Assume that the sequence of real numbers a_n converges to a. Show that then also $(a_1 + \ldots + a_n)/n$ converges to a.
 - (b) Conclude that if $X_n \stackrel{\text{a.s.}}{\to} 0$ then $S_n/n \stackrel{\text{a.s.}}{\to} 0$.
 - (c) Let $p \ge 1$. Show that if $X_n \xrightarrow{L_p} 0$ then $S_n/n \xrightarrow{L_p} 0$. Hint: triangular inequality.
 - (d) Show that $X_n \xrightarrow{P} 0$ does NOT imply $S_n/n \xrightarrow{P} 0$. Hint: Consider a suitable sequence of random variables with $X_n = 2^n$ with probability 1/n, and $X_n = 0$ else.