STAT 582 Homework 3

Due date: In class on Wednesday, March 1, 2006

Instructor: Dr. Rudolf Riedi

- 9. [A Kinchine-type L_1 -LLN. This could be an exam question.] Let X_n be iid in L_1 . Let $\bar{X}_n = (1/n) \sum_{k=1...n} X_k$.
 - (a) Show that X_n has uniformly bounded first moments. Hint: Triangular inequality.
 - (b) Show that \bar{X}_n is uniformly absolutely continuous. Hint: Use that $Q(A) = \int_A |X_1| dP$ is absolutely continuous and again the triangular inequality.
 - (c) Conclude that X_n converges in L_1 . Hint: use theorems from class. no "new proofs" needed.
- 10. Here, we establish a simplified version of the Three Series Theorem for positive random variables, sometimes called Two-Series Theorem.

Assume that $\{X_n\}$ are positive. Show that

if $\sum_{n} \mathbb{E}[X_n \mathbb{I}_{\{|X_n| < c\}}]$ converges,

then $\sum_{n} \operatorname{var}(X_n \mathbb{I}_{\{|X_n| < c\}}) < \infty$.

In conclusion (Two-Series Theorem): The sum of positive independent r.v. converges almost surely iff the two series (i) and (iii) of the Three Series Theorem converge.

Hint: Recall that the variance is bounded by the second moment.

- 11. Let $\{Z_n\}_n$ be a sequence of exponential random variables with mean one, i.e., $P[Z_n > x] = \exp(-x)$. Let $\{\lambda_n\}_n$ be a sequence of strictly positive numbers. Set $X_n = Z_n/\lambda_n$; then, obviously, X_n is exponential with $P[X_n > x] = \exp(-x\lambda_n)$.
 - (a) Assume that X_n is u.i. Conclude that there exists a constant $\theta > 0$ such that $\lambda_n \ge \theta$ for all n; we say that "the sequence λ_n is bounded away from zero".
 - (b) Vice versa, assume that the sequence λ_n is bounded away from zero. Show that X_n is then u.i. Hint: Use that the Z_n have identical distribution.
 - (c) Assume that X_n converges in L_p for some $p \ge 1$. Show that the sequence λ_n converges to a positive, non-zero number or diverges to ∞ . Hint: Use moments.
 - (d) Assume that Y_n are non-negative random variables. Show that $T_n = Y_1 + ... + Y_n$ converges in L_1 iff $\sum_n \mathbb{E}[Y_n] < \infty$. Conclude that for exponential variables X_n as above we have that $\sum_n X_n$ converges in L_1 iff $\sum_n 1/\lambda_n < \infty$.

Hint: Cauchy criterium as for the earlier similar problem about L_2 .

Note: In this example you can verify explicitly that convergence in L_1 implies u.i. (Indeed, if the strictly positive sequence λ_n goes to a positive, non-zero number or diverges to ∞ then certainly it is bounded away from zero.)

- 12. Let $\{Z_n\}_n$ be a sequence of *independent* exponential random variables with mean one, i.e., $P[Z_n > x] = \exp(-x)$. Let $\{\lambda_n\}_n$ be a sequence of strictly positive numbers. Set $X_n = Z_n/\lambda_n$ and $S_n = X_1 + \ldots + X_n$.
 - (a) Let c > 0. Show that

$$\mathbb{E}[X_n \mathbb{I}_{\{X_n < c\}}] = \frac{1}{\lambda_n} - \left(c + \frac{1}{\lambda_n}\right) e^{-c\lambda_n} \tag{1}$$

(b) Assume that S_n converges a.s. Show that necessarily $\sum_n 1/\lambda_n < \infty$.

(c) Assume now that $\sum_{n} 1/\lambda_n < \infty$. Show that S_n converges almost surely.

Hints:

- (a) Direct computation.
- (b) Proceed along the following steps.
 - (i) Use that $P[X_n > x] = \exp(-x\lambda_n)$ to show $\sum_n \exp(-c\lambda_n) < \infty$.
 - (ii) Conclude that $\lambda_n \to \infty$.
 - (iii) Using this fact conclude that the second additive terms in (1) can be summed over n. Conclude that the first additive terms can be summed, which is the claim.
- (c) You may proceed similarly as before in (b) by concluding first that λ_n → ∞ and then applying the Two-Series-Theorem.
 Alternatively, and maybe even faster, you can apply Kolmogorov's convergence criterium by which you even get convergence in L₂ for free.
 Finally, a third (and quickest) possibility is to combine one of the results developed in this set of questions with theorems from class.

Note the following fact about sequences of *independent* random variables X_n :

- $[\alpha]$ Either $X_n \xrightarrow{\text{a.s.}} Z$ or $P[\{\omega : X_n(\omega) \text{ is not Cauchy in } \mathbb{R}\}] = 1.$
- $[\beta]$ If $X_n \xrightarrow{\text{a.s.}} Z$ for some random variable Z then there exists a constant c such that $Z(\omega) = c$ a.s.
- $[\gamma]$ If $X_n \xrightarrow{P} Z$ for some random variable Z then there exists a constant c such that $Z(\omega) = c$ a.s.
- [δ] If X_n are i.i.d. then, almost surely, $X_n(\omega)$ does not converge and X_n does not converge in probability unless there exists c such that $X_n = c$ almost surely, for all n.

The proof uses Kolmogorov zero-one law in $[\alpha]$ and $[\beta]$. In $[\gamma]$ use that there is a subsequence that converges a.s. and so Z has to be a constant. In $[\delta]$ set $a = \sup\{x : F(x) = 0\}$ and $b = \inf\{x : F(x) = 1\}$. If a = bthen X_n is constant a.s.. If a < b then pick a < m < m' < b and use Borel-Cantelli to conclude that almost surely we have $X_n < m$ i.o. and $X_n > m'$ i.o.; thus, $P[X_n(\omega) \neq] = 1$. If X_n were converging in probability, then a subsequence would converge a.s.; but any subsequence is an i.i.d. sequence and cannot converge a.s.. Alternatively, we note that $P[|X_n - X_m| > \varepsilon] = P[|X_1 - X_2| > \varepsilon]$ for all $n \neq m$ since all pairs (X_n, X_m) with distinct n and m are of equal distribution. So, either $P[|X_n - X_m| > \varepsilon] = 0$ for all n, m or it does not converge to zero.