STAT 582 H 8 Practice Exam 2

Handed out April 17. Not graded.

Solutions posted Friday, April 21, 2005

Instructor: Dr. Rudolf Riedi

- 25. Let N_k be a sequence of independent Poisson random variables of mean $\lambda_n > 0$, i.e., $P[N_k = m] = \exp(-\lambda_k) \frac{(\lambda_k)^m}{m!}$ for integer $m \ge 0$.
 - (a) Show that the characteristic function ϕ_k of N_k is $\phi_k(t) = \exp(\lambda_k(e^{it} 1))$. Hint: Compute explicitly and recall that $\exp(ku) = \exp(u)^k$.
 - (b) Conclude that the sum $S_m = N_1 + \dots N_m$ is again Poisson. Hint: Uniqueness theorem.
 - (c) Show that $\sum_{k} N_k$ converges in distribution iff $\sum_{n} \lambda_n < \infty$ using the continuity theorem.
 - (d) Conclude the following fact about $sums\ S_n$ of independent random variables with Poisson distribution:

 S_n converges almost surely if and only if it converges in distribution.

26. Consider the following 4 functions:

$$\phi_1(u) = \exp(-|u|)$$
 $\phi_2(u) = 1 - u^2$
 $\phi_3(u) = \sin(u)$ $\phi_4(u) = 1/2 + 1/2\cos(u) + i/2\sin(u)$

- (a) Exactly 2 of these functions are characteristic functions of some random variables. Identify them by eliminating the two functions which can not possibly be characteristic functions.
- (b) Of the 2 characteristic functions you identified to be characteristic functions in (a), which ones correspond to a symmetrical random variable (a random variable X is called symmetric iff X and -X are equal in distribution).
- (c) Of the 2 characteristic functions you identified to be characteristic functions in (a), which ones correspond to a continuous random variable (a random variable X is called continuous iff the distribution of X has a density). You are not required to compute the density.
- 27. (a) Assume that X_n and Y_n are independent for each n and assume that $X_n \xrightarrow{D} X_{\infty}$ and $Y_n \xrightarrow{D} Y_{\infty}$. Set $Z_n := X_n + Y_n$. Show (using the characteristic function) that $Z_n \xrightarrow{D} Z_{\infty}$ for some (proper) random variable Z_{∞} .

Hint: be careful to check all assumptions of the theorem you choose to use.

- (b) Express the distribution of Z_{∞} in terms of those of X_{∞} and Y_{∞} .
- (c) Slutsky's theorem is more restrictive than the above result in the sense that it assumes that Y_{∞} is almost surely zero. What is the advantage of Slutsky's theorem?
- 28. Let U and V be two i.i.d. Bernoulli random variables with P[U=0]=P[U=1]=P[V=0]=P[V=1]=1/2 (toss two fair coins). Let S=U+V.
 - (a) Compute $\mathbb{E}[S|\sigma(U)]$ and $\mathbb{E}[S|\sigma(V)]$.
 - (b) Compute $\mathbb{E}[S|\sigma(U,V)]$.
 - (c) Compute $\mathbb{E}[U|\sigma(S)]$.

Hint: Using the rules of conditional expectations (such as linearity, independence on the conditioning field and others) is more simple than computing explicitly.