STAT 582 Homework 3

Due date: In class on Monday, February 19, 2007

or slide under door of Instructor's office, Duncan Hall 2082 Instructor: Dr. Rudolf Riedi

9. [A Kinchine-type L_1 -LLN. This could be an exam question.] Let $\{X_n\}_n$ be a sequence of iid random variables. Set $\bar{X}_n = (1/n) \sum_{k=1...n} X_k$. We assume that there exists $p \ge 1$ which will be specified such that $X_1 \in L_p$. We note that

$$||\bar{X}_{n}||_{p} = \left\|\frac{X_{1} + \dots + X_{n}}{n}\right\|_{p} \le \frac{1}{n} \left(\|X_{1}\|_{p} + \dots + \|X_{n}\|_{p}\right)$$
(1)

- (a) Assume p > 1. Show that $\{\bar{X}_n\}_n$ is u.i. Hint: Use the "triangular inequality" (1).
- (b) Assume p > 1. Show that $\bar{X}_n \xrightarrow{L_1} \mathbb{E}[X_1]$. Hint: You can use the following fact without proof: If X_n are iid and L_1 then $\bar{X}_n \xrightarrow{\text{a.s.}} \mathbb{E}[X_1]$.
- (c) Assume p > 1. Strengthen your argument above to show that $\bar{X}_n \xrightarrow{L_q} \mathbb{E}[X_1]$ for any q < p.
- (d) Voluntary: (you do not need to submit this problem for full credit.) Assume p = 1. Show that X_n converges in L₁.
 Hints: (i) Show that X_n has uniformly bounded first moments using the triangular inequality.
 (ii) Show that X_n is uniformly absolutely continuous. Use the triangular inequality again and also that the "family" {X₁} is u.i., thus, uniformly absolutely continuous.
 (iii) Use again the fact that X_n ^{a.s.} E[X₁].
- 10. [Using moment conditions for u.i. and convergence in L_p .]

Let $\{Z_n\}_n$ be a sequence of exponential random variables with mean one, i.e., $P[Z_n > x] = \exp(-x)$. Let $\{\lambda_n\}_n$ be a sequence of strictly positive numbers. Set $X_n = Z_n/\lambda_n$; then, obviously, X_n is exponential with $P[X_n > x] = \exp(-x\lambda_n)$.

- (a) Assume that X_n is u.i. Conclude that there exists a constant $\theta > 0$ such that $\lambda_n \ge \theta$ for all n; we say that "the sequence λ_n is bounded away from zero".
- (b) Vice versa, assume that the sequence λ_n is bounded away from zero. Show that X_n is then u.i. Hint: Verify a moment condition using that the Z_n have identical distribution.
- (c) Assume that X_n converges in L_p for some $p \ge 1$. Show that the sequence λ_n converges to a positive, non-zero number or diverges to ∞ . Hint: Consider the mean.
- (d) Assume that Y_n are non-negative random variables. Show that $T_n = Y_1 + ... + Y_n$ converges in L_1 iff $\sum_n \mathbb{E}[Y_n] < \infty$. Conclude that for exponential variables X_n as above we have that $\sum_n X_n$ converges in L_1 iff $\sum_n 1/\lambda_n < \infty$. Hint: Cauchy criterium as for the earlier similar problem about L_2 .

Note: In this example you can verify explicitly that convergence in L_1 implies u.i. (Indeed, if the strictly positive sequence λ_n goes to a positive, non-zero number or diverges to ∞ then certainly it is bounded away from zero.)