STAT 582 Homework 5, Practice Test

Due March 16, 2007

Instructor: Dr. Rudolf Riedi

15. Let X_n be a sequence of random variables such that

$$P[X_n = 1] = 1/n$$
 $P[X_n = 0] = 1 - 1/n.$

- (a) Does the sequence $\{X_n\}_n$ converge in probability? If so to what limit? Show your argument.
- (b) Does the sequence $\{X_n\}_n$ converge in distribution? If so to what limit? Show your argument.
- (c) Assume in addition that the random variables in the sequence $\{X_n\}_n$ are mutually independent. Show that $\limsup_n X_n = 1$ and $\liminf_n X_n = 0$ almost surely.
- 16. Suppose U_n ($n \in \mathbb{N}$) are i.i.d. random variables, uniformly distributed on [0, 1]. Set

$$Z_n := (U_1 \cdots U_n)^{1/n} = \prod_{k=1}^n U_k^{1/n}.$$

Show that Z_n converges almost surely to some variable Z. Determine Z. Hint: SLLN

vaguely. Then, for every non-negative integer k we have

- 17. Let X_n $(n \in \mathbb{N})$ be non-negative, integer valued random variables. In other words, $F_n(x) = P[X_n \leq x] = \sum_{k \leq x} P[X_n = k]$ and $F_n(y) = 0$ for all y < 0.
 - (a) Show by direct verification that weak and vague convergence of F_n are equivalent since the random variables are all positive. In other words, show without using (b) and (c): if F_n converges vaguely, then it also converges weakly.

Hint: Note that $F_n(-7) = 0$ for all *n* (Here, -7 is someone's favorite negative number).

- (b) Assume that there exists a sequence of numbers $p_k \ge 0$ such that $\sum_k p_k \le 1$ and such that $P[X_n = k] \to p_k$ as $n \to \infty$. Show that F_n converges weakly.
- (c) Assume that the vague limit F of F_n exists. Show that F is proper iff ∑_k p_k = 1. Give an example of random variables X_n with ∑_k p_k = 0.
 Hint: Identify (compute) the limiting df F in terms of p_k. Think about whether F is unique (recall (a)). Further, we mention the following fact which can be used without proof: Assume that F_n converges

$$P[X_n = k] \to p_k \qquad \text{as } n \to \infty \tag{1}$$

where $p_k \ge 0$ for each k and $\sum_k p_k \le 1$. (note that this, together with (b) implies (a))

In summary:

The df of non-negative, integer-valued random variables converge weakly iff they converge vaguely iff (1) holds.

- 18. Let N_k be a sequence of Poisson random variables of mean λ_k , i.e., $P[N_k = m] = e^{-\lambda_k} \frac{(\lambda_k)^m}{m!}$ for integer $m \ge 0$.
 - (a) Show that the distribution functions of N_k converge weakly if and only if either $\lambda_k \to \lambda$ where $0 \le \lambda < \infty$ or λ_k diverges to infinity (meaning that for all M > 0 there exists n_0 such that $\lambda_n \ge M$ for all $n > n_0$). Hint: Use the last problem.
 - (b) Show that the limit of the distribution functions of N_k is proper iff $\lambda_k \to \lambda$ where $0 \le \lambda < \infty$. Is the limiting distribution Poisson again? If so, with what mean?
 - (c) What is the weak limit in the case $\lambda_k \to \infty$? Hint: this can not be a proper df.