STAT 650 Homework 1

Instructors: Drs. Dennis Cox and Rudolf Riedi

Due date: Thursday, Feb. 9, 2006

Bring to class or hand in to Dr. Riedi, Duncan Hall 2082

1. Let U be a discrete random variable with values $\{u_i\}_{i\in I}$. Let $A_i := \{\omega : U(\omega) = u_i\}$. Note that the sets A_i form a partition of Ω , and that $\sigma(U) = \sigma(A_i, i \in I)$. for ease of notation we write $\mathbb{E}[Y|U] = \mathbb{E}[Y|\sigma(U)]$.

Let Y be in L^1 . Recall that $\mathbb{E}[Y|U]$ is uniquely determined (in the sense of a.s. equality) by two properties, i.e., a r.v. Z is a.s. equal to $\mathbb{E}[Y|U]$ if and only if

- ((i)) Z is $\sigma(U)$ -measurable
- ((ii)) $\mathbb{E}[\mathbb{1}_A \cdot Z] = \mathbb{E}[\mathbb{1}_A \cdot Y]$ for all $A \in \sigma(U)$

Verify the following facts using *only* the definition of a conditional expectations, i.e., the properties ((i)) and ((ii)) above. Thereby note that you need to verify ((ii)) only for the generating sets $A = A_i$.

(a) Show that there exist real numbers a_i such that

$$\mathbb{E}[Y|U] = \sum_{i \in I} a_i \mathbb{I}_{A_i}(\omega) \tag{1}$$

where the a_i must satisfy the condition $\mathbb{E}[a_i \mathbb{1}_{A_i}] = \mathbb{E}[Y \mathbb{1}_{A_i}]$ and can otherwise be chosen arbitrarily (note the case $P[A_i] = 0$). More precisely, set $Z = \sum_{i \in I} a_i \mathbb{1}_{A_i}(\omega)$ and verify ((i)) and ((ii)).

(b) Assume that Y is independent of U. Show that

$$\mathbb{E}[Y|U] = \mathbb{E}[Y].$$

More precisely, set $Z = \mathbb{E}[Y]$ and verify ((i)) and ((ii)).

(c) Let h(x, y) be measurable and assume that h(U, Y) lies in L^1 . Due to (a) we know that the following form must hold:

$$\mathbb{E}[h(U,Y)|U] = \sum_{i \in I} \alpha_i \mathbb{1}_{A_i}(\omega).$$

Compute α_i .

(d) Let h be as above. Show the following fact. If Y and U are independent, then we have $\alpha_i P(A_i) = \mathbb{E}[h(u_i, Y)]P(A_i)$ for all i. In other words,

$$\mathbb{E}[h(U,Y)|U] = f(U) \qquad \text{where } f(x) = \mathbb{E}[h(x,Y)].$$

More precisely, set Z = f(U) and verify ((ii)). You may assume that ((i)) holds.

(e) Let h be as above. Show the following fact. If g is measurable such that g(U)Y is in L^1 then

 $\mathbb{E}[g(U)Y|U] = g(U)\mathbb{E}[Y|U]$

More precisely, set $Z = g(U)\mathbb{E}[Y|U]$ and verify ((i)) and ((ii)).

- 2. Show that $X_t = W_t^2 t$ is a martingale w.r.t. $\mathcal{W}_t := \sigma(W_s : s \le t)$. Hint: Write $W_t = W_s + (W_t - W_s)$ for s < t.
- 3. Notation:

Generic partition π of a compact interval [S,T]: $\pi = \{t_j\}_{j=0}^N$ where $S = t_0 \leq t_1 \leq \ldots \leq t_N = T$. The partition intervals $I_j = [t_j, t_{j+1})$ have length $\Delta_j = (t_{j+1} - t_j)$ and indicator functions:

$$\mathbb{I}_{j}(t) = \begin{cases} 1 & \text{if } t_{j} \leq t < t_{j+1} \\ 0 & \text{else.} \end{cases}$$

Granularity: $||\pi|| := \max{\{\Delta_j : 0 \le j < N\}}.$ Corresponding Brownian increments: $\Delta W_j = W(t_{j+1}) - W(t_j).$

(a) From a result in class it follows that

$$\{Z_{\pi}(t,\omega)\}_t := \left\{\sum_{j=0}^{N-1} W(t_j,\omega) \mathbb{1}_j(t)\right\}_t \xrightarrow{\mathcal{V},L_2} \{W(t,\omega)\}_t \quad \text{as } ||\pi|| \to 0.$$

$$(2)$$

Verify this explicitly, i.e., show that $\mathbb{E} \int_{S}^{T} |Z_{\pi}(t,\omega) - W(t,\omega)|^{2} dt \to 0$ as $||\pi|| \to 0$. Hint: write $\int_{S}^{T} \dots = \sum_{j} \int_{I_{j}} \dots$ and note that $\mathbb{I}_{k}(t)$ vanishes identically over I_{j} unless j = k.

(b) In class we saw that

$$\int_{0}^{t} W(s)dW(s) := \lim W(t_j)\Delta W_j = \frac{1}{2}(W^2(t) - t)$$
(3)

Generalize this result as follows. Let $\theta \in [0, 1]$. Then,

$$\int_{0}^{t} W(s) * dW(s) := \lim W(t_{j} + \theta \cdot \Delta_{j}) \Delta W_{j} = \frac{1}{2} W^{2}(t) + (\theta - 1/2) \cdot t$$
(4)

This means that the Stratonovich version of the integral (3) which is obtained by setting $\theta = 1/2$, becomes:

$$\int_0^t W(s) \circ dW(s) := \lim W(\frac{t_j + t_{j+1}}{2}) \Delta W_j = \frac{1}{2} W^2(t)$$
(5)

Also, it means that $\mathbb{E}[\int_0^t W(s) * dW(s)] = \theta \cdot t$, which we obtained in class for $\theta = 0$ and $\theta = 1$.

Hint: Exploiting the known fact (3) from class it is enough to show that $\int_0^t W(s) * dW(s) - \int_0^t W(s) dW(s) = \theta \cdot t$. To this end, show that

$$\sum_{j} \Delta_{\theta} W_{j} \Delta W_{j} - \theta \cdot t \xrightarrow{L_{2}} 0 \quad \text{as } ||\pi|| \to 0.$$

Here we set $\Delta_{\theta}W_j = W(t_j + \theta \cdot \Delta_j) - W(t_j)$. It helps to introduce $\Delta_{\theta}^*W_j = W(t_{j+1}) - W(t_j + \theta \cdot \Delta_j)$, so that $\Delta_{\theta}W_j + \Delta_{\theta}^*W_j = \Delta W_j$ and to exploit independence of increments over disjoint intervals. Also, write $t = \sum_j \Delta_j$ is in class. Recall that the 4th moment of a zero-mean Gaussian variable is three times the square of the variance.