STAT 650 Homework 2

Instructors: Drs. Dennis Cox and Rudolf Riedi

Due date: Tuesday, Feb. 21, 2006 Bring to class or hand in to Dr. Riedi, Duncan Hall 2082

- 4. A sequence of random variables $\{U_n\}_n$ is called a martingale with respect to \mathcal{F}_n iff for each n,
 - (a) \mathcal{F}_n is a subfield of \mathcal{F} and $\mathcal{F}_n \subset \mathcal{F}_{n+1}$,
 - (b) U_n is in L^1 and \mathcal{F}_n -measurable, and
 - (c) $\mathbb{E}[U_{n+1}|\mathcal{F}_n] = U_n.$

Let X_n be iid zero mean random variables, and let Y_n be iid mean 1 random variables. Let $S_n = X_1 + \ldots + X_n$, let $T_n = Y_1 \ldots Y_n$ and assume that S_n and T_n are in L^1 for all n.

- (a) Assume that U_n is a martingale. Show that $\mathbb{E}[U_{n+1}] = \mathbb{E}[U_n] = \mathbb{E}[U_1]$. Hint: use property (c) of a martingale.
- (b) Show, that S_n is a martingale with respect to $\mathcal{F}_n := \sigma(X_1, \ldots, X_n)$.
- (c) What is wrong about the following statement (consult the properties (a)-(c) of a martingale): " S_n is a martingale with respect to $\mathcal{H}_n := \sigma(S_n)$."
- (d) Show that T_n is a martingale with respect to $\mathcal{G}_n := \sigma(Y_1, \ldots, Y_n)$.
- 5. Check whether the following processes X_t are martingales w.r.t. the indicated filtration.
 - (a) $X_t = W_t + 4t$ w.r.t. $\mathcal{W}_t = \sigma(W_s : s \le t)$. Hint: consider $\mathbb{E}[X_t]$.
 - (b) $X_t = W_t \tilde{W}_t$ w.r.t. $\mathcal{G}_t = \sigma(W_s, \tilde{W}_s : s \leq t)$, where W_t and \tilde{W}_t are two independent BM.
- 6. Show that the following processes X_t are martingales w.r.t. $\mathcal{W}_t = \sigma(W_s : s \leq t)$.
 - (a) X_t = t²W_t − 2 ∫₀^t sW_sds. Hint: Use Ito's formula to identify X_t as an Ito integral.
 (b) X_t = W_t³ − 3tW_t.
 - Hint: proceed as before, but in two steps
- 7. Let X_t and Y_t be Ito processes on \mathbb{R} (one dimensional, w.r.t. the same BM). Establish the general form of "integration by parts":

$$d(X_tY_t) = X_t dY_t + Y_t dX_t + dX_t dY_t$$

which means that

$$\int_{0}^{t} X_{s} dY_{s} = X_{t} Y_{t} - X_{0} Y_{0} - \int_{0}^{t} Y_{s} dX_{s} - \int_{0}^{t} dX_{s} dY_{s}$$

Hint: Use Ito's formula.

8. Solve the Ornstein-Uhlenbeck differential equation (or Langevin equation):

$$dX_t = \mu X_t dt + \sigma dW_t$$

Hint: Apply Ito's formula to $g(t, x) = e^{-t\mu}x$; here, $e^{-t\mu}$ is called an integrating factor.