STAT 551 Homework 1

Due date: In class on Monday, November 6, 2006

Instructor: Dr. Rudolf Riedi

1. Let $\{Z(t)\}_t$ be a stochastic process. Recall that the process Z has stationary increments iff

$$\{Z(t+h) - Z(t)\}_h \stackrel{\text{fdd}}{=} \{Z(h) - Z(0)\}_h \tag{1}$$

(a) Show that stationary increments imply that for all sample points $t_1 < s_1 < t_2 < s_3 < \dots < t_n < s_n$ we have

$$(Z(t+s_1) - Z(t+t_1), ..., Z(t+s_n) - Z(t+t_n)) \stackrel{d}{=} (Z(s_1) - Z(t_1), ..., Z(s_n) - Z(t_n))$$
(2)

Hint: we could even include the increments $Z(t+t_k) - Z(t+s_{k-1})$ and $Z(t_k) - Z(s_{k-1})$.

- (b) Show that stationary increments imply that the increment processes Y^(τ) are stationary for all τ where {Y^(τ)(t)}_t := {Z(t + τ) Z(t)}_t. Hint: use (2) when comparing the f.d.d. of Y^(τ) and Y^(τ)(· + h). For easy of notation write Y instead of Y^(τ) when the choice of τ is clear or when τ is arbitrary.
- (c) Assume that the increment processes $Y^{(\tau)}$ are stationary. Show that (2) holds for any sample points $t_1 < s_1, ..., t_n < s_n$ such that one can find τ with $(s_k t_k)/\tau \in \mathbb{Z}$.
- (d) Conclude for a process indexed by rational times: $\{Z(t)\}_{t\in\mathbb{Q}}$ has stationary increments iff its increment processes $Y^{(\tau)}$ are stationary.
- (e) Conclude: Assume that $\{Z(t)\}_{t \in \mathbb{R}}$ has almost surely continuous paths. Then, $\{Z(t)\}_{t \in \mathbb{R}}$ has stationary increments iff its increment processes $Y^{(\tau)}$ are stationary.
- 2. Let $X_t(\omega) = X(t, \omega) = X(t) = t$ for all t and ω . Show that X_t is H-sssi with H = 1. Assume that $\{Z(t)\}_{t \in \mathbb{R}}$ is H-sssi, $0 < H \ge 1$, with Z(1) = 1. Show that for each t the random variable Z(t) is almost surely constant. What is the value of that constant as a function of t?
- 3. [Linear Sequence]

Recall the convolution operator which maps two series $c := \{c_j\}_j$ and $d := \{d_j\}_j$ to a new series c * d defined by

$$(c*d)_k := \sum_{j \in \mathbb{Z}} c_{k-j} d_j = \sum_{j \in \mathbb{Z}} c_j d_{k-j}$$

(a) [Auto-covariance]

Let $\{X_k\}_k$ be a linear sequence of the form

$$X_k = c * \varepsilon = \varepsilon * c \tag{3}$$

where $c = \{c_j\}_j$ is in l_2 , i.e., $\sum_j |c_j|^2 < \infty$, and where $\varepsilon = \{\varepsilon_j\}_j$ is a sequence of i.i.d. random variables with finite variance σ^2 and zero mean. Show that the auto-covariance of X is

$$\gamma_X(k) = \mathbb{E}[X_i X_{i+k}] = \sigma^2 \sum_{j \in \mathbb{Z}} c_j c_{k+j}$$

in other words, $\{\gamma(k)\}_k = \sigma^2 \cdot c * c^-$ where $c_j^- = c_{-j}$. Note, this also implies that X is second-order stationary and that $\gamma_X(k) = \gamma_X(-k)$.

(b) [Exponential decay of correlations for AR series]

Assume now that $\{X_k\}_k$ is FARIMA(1,0,0), in other words an AR(1) process, and satisfies an auto-regressive invariance of the form

$$X_k = (1 - \phi B)^{-1} \varepsilon_k = \sum_{j \ge 0} (\phi B)^j \varepsilon_k = \sum_{j \ge 0} \phi^j \varepsilon_{k-j}$$

Again in other words, $\{X_k\}_k$ is a linear sequence of the form $\phi * \varepsilon$ with $\phi = \{\phi^j\}_j$. Determine the range of real numbers ϕ for which this makes sense. For such ϕ , show that the auto-covariance is $\gamma_X(k) = \phi^k \sigma^2/(1-\phi^2)$ and thus decays exponentially fast.

(c) [FARIMA(0,d,0) series]

Assume now that $\{X_k\}_k$ is FARIMA(0,d,0) for some -1/2 < d < 1/2 with $d \neq 0$, and satisfies an auto-regressive invariance of the form

$$X_k = (1-B)^{-d} \varepsilon_k = \sum_{j \ge 0} b_j B^j \varepsilon_k = \sum_{j \ge 0} b_j \varepsilon_{k-j}$$

where

$$b_j = \frac{\Gamma(d+j)}{\Gamma(j+1)\Gamma(d)} = \frac{(d+j-1)(d+j-2)...(d+1)d}{j!} \qquad (j \ge 0)$$

Use Stirling's formula $\Gamma(x+1) \sim \sqrt{2\pi}e^{-x}x^{x+1/2}$ and the well known $(1+x/j)^j \to e^x$ to show that $b_j \cdot j^{1-d} \to \eta$ as $j \to \infty$ for some constant η . Conclude that the FARIMA(0,d,0) is well-defined in L_2 and almost surely for d < 1/2.

Conclude that the FARIMA(0,d,0) is well-defined in L_2 and almost surely for a < 1/2(d) [Power-law decay of correlations for FARIMA(0,d,0) series]

Assume $\{X_k\}_k$ is FARIMA(0,d,0) as in (3c). Use (3a) to conclude that the autocovariance decays as

$$\gamma(|k|) \sim |1/k|^{1-2d}$$

Conclude that FARIMA(0,d,0) exhibits LRD for 0 < d < 1/2 with the same autocovariance decay as the increment process of an H-sssi process with H = d + 1/2. Hint: You may use a fact similar to Prop 4.1 of the lecture notes saying that if a sequence c is positive and ultimately monotone, then we have: $\hat{c}(\nu) \sim |\nu|^{-d} (\nu \to 0)$ if and only if $c_j + c_j^- \sim (1/j)^{1-d} (|j| \to \infty)$. The point is that here we may know the precise decay of c at one side only. Here, \hat{c} denotes the spectral density or Fourier transform of c. Note the simple relation between \hat{c}, \hat{c}^- and $\hat{c} + \hat{c}^-$.

(e) [FARIMA(1,d,0) series]

Assume finally that $\{X_k\}_k$ is FARIMA(1,d,0) for some -1/2 < d < 1/2 with $d \neq 0$, and satisfies an auto-regressive invariance of the form

$$X_k = (1 - \phi B)^{-1} (1 - B)^{-d} \varepsilon_k$$

Show that this is a linear sequence of the form $X = d * \varepsilon$ and express d_j in terms of ϕ and b_k from (3c). Does the order in which the two "filters" are applied to the noise play a role?

Hint: Express $d = \{d_j\}_j$ first in terms of convolutions, then compute it.