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Abstract— In this paper we study the broadcast capacity
of multihop wireless networks which we define as the max-
imum rate at which broadcast packets can be generated
in the network such that all nodes receive the packets
successfully within a given time. To asses the impact of
topology and interference on the broadcast capacity we
employ the Physical Model and Generalized Physical Model
for the channel. Prior work was limited either by density
constraints or by using the less realistic but manageable
Protocol model [1], [2]. Under the Physical Model, we find
that the broadcast capacity is within a constant factor of
the channel capacity for a wide class of network topologies.
Under the Generalized Physical Model, on the other hand,
the network configuration is divided into three regimes
depending on how the power is tuned in relation to network
density and size and in which the broadcast capacity is
asymptotically either zero, constant or unbounded. As we
show, the broadcast capacity is limited by distant nodes
in the first regime and by interference in the second
regime. In the second regime, which covers a wide class
of networks, the broadcast capacity is within a constant
factor of the bandwidth.

I. INTRODUCTION

There has been a growing interest to understand the
fundamental capacity limits of wireless networks [3]–
[8]. Results on network capacity are not only important
from a theoretical point of view but also provide guide-
lines for protocol design in wireless networks. Hitherto,
most research on network capacity has focused on the
capacity of unicast connections between random source
and destination nodes.

In this paper we study the broadcast capacity λB(g)
of multihop wireless networks, which we define as the
maximum rate of generation of broadcast packets by a
set of nodes B in the network such that all nodes receive
the packets successfully. In this work, we consider two
channel models which are known in the literature as
the Physical and the Generalized Physical Model. For
comparison purposes we will also refer to the simpler
Protocol Model.

The Protocol Model incorporates interference through

simple distances, allowing to apply the usual graph
theoretical approaches. The Physical Model models in-
terference more accurately, but still assigns a constant
transmission rate once successful transmission is guaran-
teed. In this latter sense it is close to the Protocol Model.
The Generalized Physical Model finally allows for a
transmission rate that depends on the level of interference
and the distance between sender and receiver and thus
allows for a more precise assessment of the broadcast
capacity.

To the best of our knowledge, only two papers so far
study the capacity of wireless networks for broadcasting.
The first paper [1] models the locations of the nodes via
a Poisson point process and the channel via the Gen-
eralized Physical Model. The author of [1] studies the
broadcast capacity λB(g) for the case when B consists
of one single generating node, providing an upper bound
for λB(g) and showing that this bound in achievable up
to a constant factor under the assumption that the Poisson
intensity of the nodes is fixed.

The second related paper [2] computes the broadcast
capacity for an arbitrary connected network but assuming
the somewhat simpler and less realistic Protocol Model
for the channel. It shows that the broadcast capacity is
within a constant factor of the wireless channel capacity
and that it does not depend on radio range, number of
nodes, and area of the network.

As the first contribution of this paper, we study
the broadcast capacity under the Physical Model. This
channel model has been used in earlier work such as
[3], [9] but not for the study of broadcast capacity.
We develop bounds of the broadcast capacity λB(g)
for arbitrary connected wireless networks and for an
arbitrary set of generating nodes B and arbitrary weight
vector g. Surprisingly, we find that the broadcast capacity
does not change more than a constant factor when we
vary the number of nodes, the transmission power and
the area of the network provided we keep a level of
connectivity made precise in the paper. Thus, we are
able to confirm that the earlier similar results of [2]



found for the simpler Protocol Model hold also under
the more realistic Physical Models. For the special case
of homogeneous networks with large number of nodes,
we find that the broadcast capacity is Θ(W ) where W
denotes the wireless channel capacity in bits per second.
Here, we adopt the standard notation from complexity
theory where O(.), Ω(.), and Θ(.) stand for asymptotic
upper, lower, and tight bounds, respectively.

As our second contribution, we study the broadcast
capacity under the Generalized Physical Model which is
widely used in network capacity papers [1], [5], [10].
In this model the transmission rate is determined by
the Shannon capacity formula and thus depends on the
receiving power and the interference of other signals. As
a result, poor connectivity of some nodes and high in-
terference from simultaneous transmissions can limit the
broadcast capacity considerably, which we will quantify
explicitly. Due to the strong impact of the geometry of
node arrangement in this model, one needs to make some
assumption about the topology. In this paper we focus
on homogeneous networks which is a popular model in
network capacity papers.

We find under these assumptions three power regimes
for the broadcast capacity in homogeneous networks
with large number of nodes. In the first regime, low
transmission power causes the isolation of some nodes
in the sense of a limiting receiving rate from the rest of
the nodes. These nodes then become bottlenecks for the
broadcast capacity which is asymptotically zero. In the
second regime, power is sufficiently elevated and tuned
to the size and density of the network to provide every
node in the network with a data reception rate within
a constant factor of the bandwidth. At the same time,
the network size imposes simultaneous transmissions in
order to achieve a constant rate to all nodes. This regime
corresponds to the most common settings in wireless
networking and leads to a broadcast capacity within a
constant factor of the bandwidth. Here, interferences of
simultaneous transmissions is the limiting factor for the
broadcast capacity. In the third regime, the transmission
power is so significant in relation to the network size that
all nodes receive a direct transmission from the broadcast
source with high rate. We will show that in this regime
a multi-hop broadcast does not increase the throughput
by more than a constant over direct single transmission
from the source.

Notably, no prior work identifies nor studies these
three power regimes, to the best of our knowledge.
More concretely, this paper applies to a broader context
than [1] by not imposing restrictions on the asymptotic

densities and by treating also the Physical Model. Indeed,
though not demonstrated due to space constraints, the
low power regime mentioned above can be established
also for a network modeled by a Poisson point process,
thus including the results of [1] as a special case. The
present work also goes beyond [2] which was based
on the Protocol Model by assuming the more realistic
Physical and Generalized Physical Models for wireless
channels.

The paper is organized as follows. In Section II we
summarize existing work on the network capacity. We
introduce a network model and define relevant terms
in Section III. In Section IV we compute upper and
lower bounds for broadcast capacity which apply to
arbitrary wireless networks under the Physical Model.
Section V computes the broadcast capacity of homoge-
neous networks under the Generalized Physical Model
as the number of nodes grows. Finally, we conclude in
Section VI. All proofs are placed in the Appendix.

II. RELATED WORK

Gupta and Kumar [3] studied the per node capacity
for unicast connections between random sources and
destinations in a static wireless network consisting of
n nodes distributed in a fixed area. For planar networks
this per node capacity decreases at least as O(1/

√
n)

in an arbitrary network and even as O(1/
√

n log(n))
in a random network as the number of nodes grows
[3]; extensions to three dimensional space can be found
in [9]. Both studies are based on the Protocol Model
and the Physical Model. Later work [10] established
that the same bounds still hold under the more accurate
Generalized Physical Model. Also, [11] showed how to
achievable asymptotically a throughput within a constant
factor of these bounds in random networks. In another
approach, [5] showed that per node capacity Ω(1/

√
n)

ia achievable using percolation theory techniques.
For mobile wireless networks, Grossglauser and Tse

[4] proposed a mobility-based routing method in which
the number of retransmissions for unicast communica-
tion between source and destination is reduced to 2.
Thus, mobility can increase the per node capacity to
Θ(1) provided that the packet delay is allowed to be
arbitrarily large. Subsequent work analyzed the capacity
under constraints on the delay or the mobility of the
nodes [12]–[17].

Introducing a new direction in network capacity re-
search, [1] studies the “broadcast capacity” of static
wireless networks. The paper computes an upper bound
for broadcast capacity using the Generalized Physical
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Model. The paper proves that the broadcast capacity
is asymptotically within a constant factor of this upper
bound as the number of nodes goes to infinity provided
that the Poisson intensity of the nodes remains fixed.
However, the paper [1] does not address the case where
the node intensity is allowed to tend to infinity as the
number of nodes grows. In particular, it leaves open the
question whether the upper bound O(log n) is achievable
when the intensity is n. Further, and equally important,
it neglects the effects of interference when computing
the upper bound.

The present work goes considerably beyond the work
of [1], taking into account interference and allowing for
more general asymptotic node intensities. As we will see,
there are three asymptotic regimes defined through power
levels one of which covers [1], one of which resolves the
open question left for future study in [1] and a third one
that establishes a novel performance regime.

A related study [2] computes the broadcast capacity
for an arbitrary network under the Protocol Model for the
channel. The paper proves that the broadcast capacity lies
within a constant factor of the wireless channel capacity
(W ) and that it does not depend on the radio range,
the number of nodes in the network and the area of the
network. Only the interference parameter has an effect
on the broadcast capacity.

The present paper extends the prior work [2] by using
the more realistic Physical and the Generalized Physical
Model for the channel. Interestingly, we are able to show
that bounds similar to [2] hold under these more realistic
physical models. Moreover, under the Generalized Phys-
ical Model and under certain conditions on transmission
power and network size, the broadcast capacity comes
within a constant factor of the bandwidth. Due to space
constraints we are unable to continue the study of the
broadcast capacity of mobile networks initiated in [2]
and leave it for future work.

Also, there is another paper on broadcast capacity [18]
which studies a simplified channel and network model.
The paper shows that per node broadcast capacity is
O(1/n) for such a model.

Note that all the above mentioned papers as well
as this paper assume only point-to-point coding at the
receivers. If the nodes are allowed to cooperate and use
sophisticated multi-user coding then a per node capacity
of a higher order than described above can be achieved
[19]–[21]. A full discussion of these results is beyond
the scope of this paper.

III. WIRELESS CHANNEL MODEL AND BASIC

NOTIONS

In this section we describe the wireless network
model and define several terms relevant to our analysis
of broadcast capacity. We consider a wireless network
consisting of n wireless nodes. Let Xi for i = 1, 2, . . . , n
denote the location of the different nodes. For simplicity
we also use Xi to refer to the ith node itself. Note that
in this paper we do all analysis in d-dimensional space,
so Xi ∈ Rd.

A. Network Graph

The following notions lie at the basis of many studies
and will become useful here for comparison and compu-
tation purposes. We denote by G(R) the geometric graph
induced by distance where the vertices of G(R) are the
nodes of the network and where two distinct nodes Xi

and Xj are adjacent in G(R) if and only if |Xi−Xj | ≤ R.
Note that increasing R can only add edges to the ones
of G(R).

A Minimum Connected Dominating Set (MCDS) of a
connected graph is a connected subset of nodes with the
minimum size and the following property: every node of
the graph is adjacent to at least one node in the subset.
MCDS of a network graph uses minimum number of
nodes to disseminate a broadcast packet to all nodes.

For clarity, we include the distance parameter R in
the notation for the above defined sets. For example
MCDS(Rmax) is an MCDS of G(Rmax). We use the
symbol # to denote the size of a set.

B. Homogeneous Networks

We now recall a wireless network model, called ho-
mogeneous network, which is widely employed in the
study of network capacity. In this model, the number of
nodes grows to infinity while the nodes are distributed
uniformly in a d-dimensional sphere or cube of volume
Vn. We point out that the volume Vn is allowed to vary
with the number of nodes n. This model is closely related
to modeling the node locations via a homogeneous
Poisson point process with intensity n

Vn
per unit volume.

Conditioned on knowing that there are exactly n̂ points
produced by the process, these points are independently
and uniformly distributed in Vn. Note that n̂ is a Poisson
random variable with mean n.

For convenience, we introduce D as the diameter of
Vn. For a cube

D =
√

dV 1/d
n (1)
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C. Channel Model

Network capacity papers usually model the wireless
channel in three ways as we explained in the introduc-
tion. Here, we describe each model in details. Let T be
the subset of nodes simultaneously transmitting at some
given time instant. For convenience we call the case,
where T contains only the sender, an exclusive trans-
mission. We call a network interference-free connected
whenever it is connected under the assumption of all
transmissions being exclusive.

1) Protocol Model: A transmission from node Xi ∈
T to node Xj is modeled as successful if |Xi−Xj | ≤ R

and if |Xk −Xj | ≥ (1 + ∆)R for all Xk ∈ T \{Xi} where
∆ is the interference parameter. In this model, the rate
of a successful transmission is considered to be constant,
denoted by W .

We also define Rc as the minimal R such that the
network becomes interference-free connected under the
Protocol Model with high probability (w.h.p.) as number
of nodes tends to infinity. Equivalently, Rc is the minimal
R such that G(R) is a connected graph. It is well known
[22] that in a homogeneous network Rc behaves as
follows as a function of the number n of nodes, as n
grows:

Rc = Rc(n) =
(Vn log(n)

n

)1/d

. (2)

2) Physical Model: We assume that all nodes choose
a common power level P for all their transmissions.
A transmission from a node Xi, i ∈ T is successfully
received by a node Xj if

SINR =
PGij

N +
∑

k 6=i,k∈T PGkj
≥ β (3)

where β is the threshold, N represents the ambient
noise, and Gij denotes the signal loss, whence PGij

is the receiving power at the node j from the transmitter
i. We assume a low power decay for the signal loss of
the form Gij = |Xi −Xj |−α, where α > d is the signal
loss exponent. For a successful transmission the rate is
assumed to be constant W .

We introduce the parameter Rmax as the maximum
possible distance between a transmitter and receiver
to ensure a successful transmission under the Physical
Model. Equation (3) implies that

Rmax =
( P

Nβ

)1/α

(4)

3) Generalized Physical Model: In this model the
transmission rate Wij between a sender i and a receiver
j is determined using Shannon’s formula for a wireless
channel with additive Gaussian white noise [23].

Wij = B log2

(
1 +

PGij

BN0 +
∑

k 6=i,k∈T PGkj

)
(5)

where B is the bandwidth of the wireless channel
and N0/2 is the noise spectral density. While this
model assigns a more realistic transmission rate at large
distance, it also results in a singularity for the signal
loss Gij = |Xi − Xj |−α. Indeed, according to (5) the
receiving power and the rate are amplified to unrealistic
levels if sender and receiver are placed very closely.
Some papers have pointed out this drawback [24], [25].

We introduce Rm as the maximum distance between
any two nodes such that the packets can be received with
rate B under the Generalized Physical Model. From (5)
we have

Rm =
( P

BN0

)1/α

(6)

D. Broadcast Capacity

We define the broadcast capacity for a subset B :=
{Y1, Y2, . . .} of nodes that generate broadcast packets.
Doing so adds flexibility and allows to cover cases where
only a few nodes may be required to broadcast packets
such as when using broadcast backbones or a subset of
control enabled nodes in distributed applications.

Assume that the node Yi generates packets at rate
λYi

≥ 0. We say that the rate vector [λYi
]i is achievable if

all nodes of the network receive all generated broadcast
packets successfully within some given time Tmax < ∞.
We study the maximum achievable broadcast rates for
the case where pre-specified fractions of the aggregate
broadcast rate are available to each node of B. More
precisely, given a vector of weights g = [gi]

#B
i=1, gi > 0

such that
∑

i gi = 1 we study the broadcast capacity

λB(g) := sup{a : λYi
= gia, [λYi

]i is achievable} (7)

Notably, the bounds we derive for the broadcast capacity
λB(g) are independent of B and g. In equivalent terms,
the bounds we derive apply to both, λ := supB,g λB(g)
and λ := infB,g λB(g) which are the maximum broad-
cast capacity which can be achieved by some nodes,
respectively which can be achieved by any nodes.

IV. BROADCAST CAPACITY UNDER THE

PHYSICAL MODEL

In this section we compute bounds for the broadcast
capacity of wireless networks using the Physical Model
described in Section III.
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A. Broadcast Capacity for Arbitrary Wireless Networks

Here, we determine upper and lower bounds for the
broadcast capacity that apply to any arbitrary connected
wireless network. The accuracy of these bounds varies
with the network scenario.

We first note the hard upper bound W for the broad-
cast capacity which holds for any network. Indeed,
since every node must receive the broadcast, its capacity
cannot be higher than the maximum data rate at which
a node can receive data.

We obtain the lower bound using the concept of the
Minimum Connected Dominating Set (MCDS) of a net-
work. To this end, note that the network is interference-
free connected under the Physical Model exactly when
the graph G(Rmax) is connected. Indeed, the max-
imal distance covered by a transmission is exactly
Rmax. Finally, #MCDS(Rmax) is well defined for an
interference-free connected network, since G(Rmax) is
connected. Broadcasting via exclusive transmissions over
an MCDS we find

Theorem 1: Assume that the network is interference-
free connected. Then, under the Physical Model,

W

#MCDS(Rmax) + 1
≤ λB(g) ≤ W. (8)

Instead of considering exclusive broadcasts, one may
note that for R < Rmax simultaneous transmissions
on G(R) become feasible. Assuming that G(R) is
connected Theorem 2 derives a bound on λB(g) for
arbitrary topology by providing a TDMA scheduling
method which considers the location of the nodes and
which schedules the transmissions such as to reduce the
interference between simultaneous transmissions. Allow-
ing simultaneous transmissions Theorem 2 outperforms
Theorem 1 for large networks.

Theorem 2: Assume that G(R) is connected for some
R = Rmax/ρ with ρ > 1. Necessarily, the network
is then interference-free connected. Then, under the
Physical Model,

W

K(ρ)
≤ λB(g) (9)

where

K(ρ) = (5d − 2d)
⌈√

d
(
2 +

(β
∑|J|>0

J∈Zd |J |−α

1− ρ−α

)1/α
)⌉d

(10)

Note that the explicit lower bound on λB(g) via
(9) and (10) is improving as ρ grows. As the most
important conclusion of theorems 1 and 2, the broadcast
capacity is not affected by more than a constant factor

when changing transmission power, number of nodes or
volume Vn as long as for R = Rmax/ρ the graph G(R)
remains connected with the same ρ.

B. Broadcast Capacity of Homogeneous Networks

As a corollary of Theorems 2 and 1 we are able to
bound the broadcast capacity of a homogeneous network
within a constant factor of W .

Theorem 3: Assume that the n nodes are uniformly
distributed in a d-dimensional cube with volume Vn.
Denote ρ = lim inf

n→∞
Rmax/Rc(n). If ρ > 1 then w.h.p.

as n →∞
W

K(ρ)
≤ λB(g) ≤ W. (11)

Clearly, if ρ < 1 then the network is disconnected w.h.p.
and λB(g) = 0 for infinitely many n.

V. BROADCAST CAPACITY UNDER THE

GENERALIZED PHYSICAL MODEL

As the main difference, in the Generalized Physical
Model a node can transmit to any other node with some
rate which depends on various parameters while in the
other two channel models transmissions may or may not
be successful. It does not come as a surprise that this
model is harder to analyze and shows different behavior
in some cases. We will show that poor signal strength
and high interference are the two main limiting factors of
the broadcast capacity. Clearly, already a single poorly
connected node may form a bottleneck for the broadcast
capacity. In well connected large networks, on the other
hand, the broadcast capacity may suffer due to high
interference caused by retransmissions.

Since the relative node locations have such a strong
impact under this model, we obtain stronger results when
making simple assumptions of a homogeneous networks,
a situation often adopted in capacity studies.

A. Broadcast Capacity of Homogeneous Networks

We allow for power to be adjusted to the number of
nodes, i.e., P may depend on n. Consequently, both
Rc = Rc(n) and Rm depend on n. We identify three
asymptotic regimes as n grows by considering the rates
of reception of the most isolated nodes to their next
neighbors and to some given arbitrary node.

Low Power Regime: P = O((Vn log(n)/n)α/d)
In this case the transmission power is so limited that
as n grows some distant nodes cannot receive within
a constant of the bandwidth, even without interfering
signals. These nodes then limit the broadcast capacity as
follows
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Theorem 4: Assume the nodes are uniformly dis-
tributed in d-dimensional cube with volume Vn. Assume
there exists a constant c1 such that Rm ≤ c1Rc(n) for
all n, i.e., P ≤ cα

1 BN0(Vn log(n)/n)α/d . Then, w.h.p. as
n →∞

λB(g) = Θ
(
B log2

(
1 + (

Rm

Rc
)α

))
(12)

An example of a network setting in the Low Power
Regime is the extended network model studied in [1]
where Vn = n with bounded transmission power. Then
λB(g) = Θ(B log2(1 + P

BN0
log(n)−α/d)).

Tuned Power Regime: P =Ω((Vn log(n)/n)α/d) and
P =O(V α/d

n )
In this regime, the transmission power is sufficiently
large so that every node can receive data with rate at
least proportional to the bandwidth from some node.
On the other hand, the area covered by the network is
so large such that nodes cannot transmit their message
to all nodes directly with such a rate. In this case
the interference of simultaneous transmissions limits the
capacity.

Theorem 5: Assume the nodes are uniformly dis-
tributed in d-dimensional cube with volume Vn. As-
sume there exists positive constants c1 and c2 such
that c1Rc(n) ≤ Rm ≤ c2D for all n, i.e.,
cα
1 BN0(Vn log(n)/n)α/d ≤ P ≤ cα

2 dα/2BN0V
α/d
n . Then,

w.h.p. as n →∞

λB(g) = Θ(B) (13)

An example of a network setting in the Tuned
Power Regime is the dense network model where
Vn = 1 and transmission power is bounded. Then,
λB(g) = Θ(B). The broadcast capacity of this model
has been left as open problem for the future study in [1].

High Power Regime: P = Ω(V α/d
n )

In this case the transmission power is so elevated that
a node can transmit to all nodes directly with a rate
that remains at least proportional to the bandwidth as n
grows. In this regime, the area of the network decreases
or the transmission power increases as number of nodes
grows.

Theorem 6: Assume the nodes are uniformly dis-
tributed in d-dimensional cube with volume Vn. Assume
there exits a constant c2 such that c2D ≤ Rm for all n,
i.e., P ≥ cα

2 dα/2BN0V
α/d
n . Then w.h.p. as n →∞

λB(g) = Θ
(
B log2

(
1 + (

Rm

D
)α

))
(14)

This regime is usually not studied in the literature,
as the assumptions seem unrealistic. We include it for
completeness. Interestingly, Theorem 6 shows that in
this regime a broadcast via multi-hop does not increase
throughput by more than a constant factor as compared
to a broadcast by one exclusive transmission.

VI. CONCLUSION AND FUTURE WORK

We studied the broadcast capacity of wireless net-
works under two physically motivated channel models.
First, in the Physical Model the broadcast capacity is
shown to be within a constant of the channel capacity
and little affected by the number of nodes or the volume
occupied as long as the connectivity of network is
maintained properly.

Second, in the Generalized Physical Model all nodes
receive a broadcast at a rate depending on interference
and distance to sender. Here, the broadcast capacity can
vary significantly depending on how the transmission
power is set in relation to the network size and topology.
Focussing on homogeneous networks we identified three
asymptotic regimes via explicit power settings.

Ongoing work concerns the capacity of wireless net-
works with more general topology.
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APPENDIX

Proof of Theorem 1: Consider an arbitrary node Xi

in the network. The maximum rate of transmission or
reception of data by Xi is W , since each broadcast
packet must be either received or generated by Xi.

For showing the lower bound, we design a TDMA
scheme which achieves it. We consider an MCDS of the
graph G(Rmax) as a backbone. Every broadcast packet
is transmitted from its generating node to a neighbor
MCDS node, then the packet is retransmitted along
MCDS nodes. We simply have only one transmission
at the time, so clearly all nodes receive the packet suc-

cessfully. This scheme gives us W/(1 + #MCDS(Rmax))
throughput.
Proof of Theorem 2: Again, we design a TDMA scheme
which achieves the lower bound. We do so in three steps.

Step 1: Divide the space into cells with diame-
ter R such that the coordinates of their centers are
(i1 R√

d
, i2

R√
d
, . . . , id

R√
d
) for i1, . . . , id ∈ Z (see Fig. 1).

Note that by design and by assumption any two nodes
in the same cell are adjacent in G(R). Next, we build
a “cell graph” over the non-empty cells (colored grey
in Fig. 1). The vertices of the cell graph are the non-
empty cells and two cells are connected by an edge if
there exist two nodes, one in each cell, that are adjacent
in G(R). Because G(R) is connected it follows that the
cell graph must be connected. We then build a spanning
tree over the cell graph which we use to route broadcast
packets.

Step 2: We assign color L(ri1 , ri2 , . . . , rid
) to the cell

with center (i1 R√
d
, . . . , id

R√
d
), where ri = i(mod)k. The

value of k is chosen large enough such that when two
nodes in different cells with the same color transmit
simultaneously, all of the nodes closer than R to the
senders can receive successfully. We bound the value of
k as follows. First, we find a lower bound for SINR
for a given k. Recall that the simultaneous transmitters
are in the different cells with the same color. For
example, consider a transmitter Y in cell (0, . . . , 0)
with a receiver X within distance R. Any simultaneous
transmitter Z must lie in a cell (j1k, j2k, . . . , jdk) where
J = (j1, . . . , jd) ∈ Zd

◦ := Zd\{(0, . . . , 0)}. The distance
between the sender Z and the receiver X is then at
least

√
j2
1 + . . . + j2

d
kR√

d
− 2R, and since |J | ≥ 1, at least

≥ R( k√
d
− 2)|J |. Thus,

SINR ≥ PR−α

N +
∑

J∈Zd
◦
P (R( k√

d
− 2)|J |)−α

=
1

N
P Rα + ( k√

d
− 2)−α

∑
J∈Zd

◦
|J |−α

=
1

1
ραβ + ( k√

d
− 2)−α

∑
J∈Zd

◦
|J |−α

One verifies now quickly that

k ≥
√

d((
β

∑
J∈Zd

◦
|J |−α

1− ρ−α
)1/α + 2) (15)

ensures that the SINR becomes larger than β, guaran-
teeing successful simultaneous transmissions in cells of
equal color. Notably, the lower bound of (15) is finite
since α > d.
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Fig. 1. Illustrating the collision free TDMA scheme for broadcasting
in the case of a planar network. It uses k2 colors to schedule the cells
transmissions.

Step 3: For every pair of adjacent cells on the spanning
tree of the cell graph we choose two nodes which
connect the cells to be relays. When a packet needs to
be forwarded from cell S1 to adjacent cell S2, the relay
in cell S1 forwards the packet to the relay in cell S2.
The relay in S2 rebroadcast the packet to all nodes in
S2. If S2 is not a leaf vertex on the spanning tree of
cell graph then the relays which connect it to other cells
will forward the packet and the process continues till the
broadcast packet has been disseminated to all nodes.

By geometry, it is easy to show that every cell has
at most 5d − 2d − 1 adjacent cells. There are thus at
most 5d − 2d − 1 relays in each cell. We divide the time
slot corresponding to each color into 5d − 2d equal time
slots of length T . In the first time slot corresponding to
every color, each node Yi ∈ B generates WTλYi/((5d −
2d)kdλB(g)) bits for broadcast. If more than one Yi’s
are located in the same cell they broadcast the packets
sequentially in some order. In the remaining 5d − 2d − 1
time slots of any particular color, the relays of cells with
that color transmit (to other nodes in the cell or to the
corresponding relay of an adjacent cell) any broadcast
data that they have received but not yet forwarded.

Note that with this setup every relay can forward
packets at the rate W/(5d − 2d)kd which establishes the
desired lower bound for λB(g).
Proof of Theorem 3: The upper bound has been shown
in Theorem 1. The lower bound follows quite easily
from Theorem 2. Indeed, it is known for homogeneous
networks [22] that the graph G(R) is connected for large
n w.h.p provided R = (1+ε)Rc for some ε > 0. Choosing ε

small enough such that ρ
1+ε > 1, Theorem 2 provides the lower

bound W/K( ρ
1+ε ). Now, letting ε → 0, by left continuity of

K(ρ) the lower bound becomes W/K(ρ).
Proof of Theorem 4: We establish the upper bound the
following lemma.

Lemma 1: In a homogeneous network

λB(g) ≤ B log2(1 + (
Rm

Rc
)α) (16)

w.h.p. for large n.
Proof: It has been proved in [22] that for any 0 < a <
1, G(aRc) contains Ω(n1−ad

) isolated nodes w.h.p. for
large n. Consider an isolated node, the receiving rate for
the node is bounded by B log2(1+P (aRc)−α/BN0). This
gives us

λB(g) ≤ B log2(1 +
P (aRc)−α

BN0
) = B log2(1 + (

Rm

aRc
)α)
(17)

Then, letting a → 1 yields (17). ♦
Next, we show a constant factor of the computed upper

bound is achievable. We divide the volume Vn into cube
cells with diameter bRc for a constant b > 1 (e.g. b = 2).
From [22] we know that G(bRc) is connected w.h.p. for
large n. Then we apply the broadcast scheme developed
in the proof of Theorem 2. We may set the parameter k
to any integer larger than 3, i.e. here we choose k = 4.
Then the SINR of a received broadcast packets becomes

SINR ≥ 1
BN0

P (bRc)α + ( 4√
d
− 2)−α

∑
J∈Zd

◦
|J |−α

=
Rα

m(bRc)−α

1 + Rα
m(bRc)−α( 4√

d
− 2)−α

∑
J∈Zd

◦
|J |−α

≥ 1
1 + (c1/b)α( 4√

d
− 2)−α

∑
J∈Zd

◦
|J |−α

(
Rm

bRc
)α

Therefore, the throughput of this scheme is at least
Θ(B log2(1 + (Rm

Rc
)α)).

Proof of Theorem 5: First we show that λB(g) = Θ(B)
is achievable. We broadcast the packets similarly to the
proof of Theorem 4. Here, the SINR of broadcast packets
is at least

SINR ≥ 1
BN0

P (bRc)α + ( 4√
d
− 2)−α

∑
J∈Zd

◦
|J |−α

=
1

R−α
m (bRc)α + ( 4√

d
− 2)−α

∑
J∈Zd

◦
|J |−α

≥ 1
(b/c1)α + ( 4√

d
− 2)−α

∑
J∈Zd

◦
|J |−α

So, the throughput in this case is at least Θ(B).
To prove the upper bound we consider the set I of

isolated nodes of G(R) where R = a d
√

Vn/n and a is a
fixed constant. In the following lemmas we establish two
properties. First, there exists p > 0 such that #I ≥ p · n
for large n and w.h.p. (see lemma 2).

Second, the nodes in I are so far from all other nodes,
that the sum of receiving rates is always bounded by
K · B#I where K is a constant number and B is the
bandwidth (see lemma 3). Consequently, since the sum
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of receiving rates of nodes of I must be at least λB(g)#I
on average we find λB(g) ≤ KB = Θ(B) w.h.p.

Lemma 2: For some p > 0, P [#I > np] → 1 as
n →∞.
Proof: While we establish the lemma for homogeneous
networks, we mention that a proof for the Poisson model
is easy to come by with.

Assume that n nodes are uniformly distributed in Vn.
To each node Xi we assign a random value νi, where νi

is 1 if Xi is isolated in G(R), and 0 otherwise. Thus,
the random variable S =

∑n
i=1 νi represents number

of isolated nodes. We also define V ′
n to be the set of

points in Vn which are within distance less than R from
the boundary of Vn. In abuse of notation we denote its
volume also by V ′

n. Since R = O((Vn

n )1/d), it follows that
V ′

n = O(Vn

n ).
We compute E(νi) = P [νi = 1] as follows

E(νi) = P [νi = 1|Xi /∈ V ′
n]P [Xi /∈ V ′

n]

+P [νi = 1|Xi ∈ V ′
n]P [Xi ∈ V ′

n]

= (1− πdR
d

Vn
)n−1(1−O(

1
n

)) + O(
1
n

)

= exp(−πda
d) + O(

1
n

)

where πd is the volume of unit radius sphere in d-
dimensional space. Also, E(νiνj) = P [νi = 1, νj = 1]
becomes

E(νiνj) = P [νi = νj = 1|Xi, Xj /∈ V ′
n]P [Xi, Xj /∈ V ′

n]

+ P [νi = νj = 1|Xi or Xj ∈ V′
n]P[Xi or Xj ∈ V′

n]

= P [νi = νj = 1|Xi, Xj /∈ V ′
n] + O(

1
n

)

Splitting the two cases |Xi−Xj | > 2R and |Xi−Xj | ≤ 2R

E(νiνj) = P [νi = νj = 1|Xi, Xj /∈ V ′
n, |Xi −Xj | > 2R]

·P [|Xi −Xj | > 2R]] + O(
1
n

)

= (1− πdR
d

Vn
)n−2(1− πdR

d

Vn
)n−2 + O(

1
n

)

= exp(−2πda
d) + O(

1
n

)

Setting p = exp(−πda
d)/2 we have E(S) = 2pn + O(1)

and var(S) = E(S2)− (E(S))2 = O(n). Finally,

P [|S − E(S)| > E(S)/2] ≤ var(S)
(E(S)/2)2

=
O(n)
Θ(n2)

(18)

by the Markov inequality [26]. ♦
Lemma 3: The sum of receiving rates of the nodes of

I is bounded by K ·B ·#I, where K is a constant.
For the proof, we consider two cases.

Case (1): Assume that Xs is the only transmitter in
the network. From equation (5) we have∑

i∈I
Wsi ≤

∑
i∈I

B log2(1 +
P |Xi −Xs|−α

BN0
)

≤
dD/R−1e∑

k=1

f(k)B log2(1 +
P (kR)−α

BN0
)

where f(k) is the maximum number of the isolated
nodes in distance l from Xs where kR < l ≤ (k + 1)R
(note that |Xi −Xs| > R so we start from k = 1). Now
consider the balls with radius R/2 around nodes of I.
Since the nodes are in distance at least R from each
other, the balls are disjoint and by simple geometric
argument we bound the number of balls by f(k) <
πd(k+1+.5)dRd−πd(k−.5)dRd

πd(.5R)d = (k + 3)d − (k − 1)d. So,
clearly there is a constant K1 such that f(k) < K1k

d−1.
Then, continuing and applying Cauchy-Schwartz

∑
i∈I

Wsi≤
dD/R−1e∑

k=1

K1k
d−1B log2(1 + (

Rm

kR
)α)

≤
dD/R−1e∑

k=1

K1k
d−1B log2(

Dα + Rα
m

kαRα
)

≤ K1B

√√√√dD/R−1e∑
k=1

k2d−2

dD/R−1e∑
k=1

log2
2(

Dα + Rα
m

kαRα
)

≤ K1B

√
K2(

D

R
)2d−1

∫ D/R

0

log2
2(

Dα + Rα
m

xαRα
)dx

= K1B

√
K2(

D

R
)2d−1

·
√

D

R
[2α2 + 2 ln(

Dα + Rα
m

Dα
) + ln2(

Dα + Rα
m

Dα
)] log2(e)

≤ K1B

√
K2(

D

R
)2d−1K3(

D

R
) = BK1

√
K2K3(

D

R
)d

= K1

√
K2K3dBn/ad ≤ K1

√
K2K3dB#I/(pad)

where the constant K2 depends on d, and constant K3

depends on c2. Since this is a bound on the sum of
receiving rates of nodes of I, we result that in case (1)
λB(g) ≤ K1

√
K2K3d

1
pad B

Case (2): Now assume that there are more than one
simultaneous transmitters. Denote T the set of transmit-
ters. For every Xs ∈ T , we consider Xs′ as the closest
transmitter to Xs and we define U(s) = |Xs−Xs′ |/2. Also
we define Ball(s) to be the ball with radius U(s) around
the node Xs. In lemma 4 we show that these balls are
disjoint. Moreover, lemma 5 bounds the receiving rate
of the nodes in terms of the radii of the balls. ♦
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Lemma 4: The balls Ball(s) (Xs ∈ T ) are disjoint in
d-dimensional space.
Proof: Assume that two balls Ball(s1) and Ball(s2) are
not disjoint and U(s1) ≤ U(s2). Then, |Xs2 − Xs1 | <

U(s1) + U(s2) ≤ 2U(s2). It shows that Xs1 is closer than
the closest transmitter to Xs2 . This is a contradiction. ♦

Lemma 5: Assume Xs the closest transmitter to an
arbitrary node Xi, then the receiving rate of Xi is
bounded by B[1 + α log2(1 + 2U(s)

|Xi−Xs| )]. As a result if Xi

is not located in the Ball(s), the rate is bounded by
[1 + α log2(3)]B.
Proof: The receiving rate of Xi is bounded by Wsi

because the signal of Xs is the strongest receiving signal
at Xi. So, we bound Wsi as the following

Wsi ≤ B log2(1 +
P |Xi −Xs|−α

BN0 + P |Xi −Xs′ |−α
)

≤ B log2(1 + (
|Xi −Xs′ |
|Xi −Xs|

)α)

≤ B log2(1 + (
|Xi −Xs|+ 2U(s)

|Xi −Xs|
)α)

≤ B log2(2(1 +
2U(s)

|Xi −Xs|
)α)

= B[1 + α log2(1 +
2U(s)

|Xi −Xs|
)] ♦

Next, we bound the sum of receiving rates for the
nodes of I inside Ball(s) for an arbitrary Xs ∈ T .

∑
i∈Ball(s)

Wsi ≤
∑

i∈Ball(s)

B[1 + α log2(1 +
2U(s)

|Xi −Xs|
)]

≤
dU(s)/R−1e∑

k=1

f(k)B[1 + α log2(1 +
2U(s)
kR

)]

≤ K1B

dU(s)/R−1e∑
k=1

kd−1[1 + α log2(
3U(s)
kR

)]

by applying Cauchy-Schwarz inequality we have

≤ K1B

√√√√dU(s)/R−1e∑
k=1

k2d−2

dU(s)/R−1e∑
k=1

[1 + α log2(
3U(s)
kR

)]2

≤ K1B

√
K2(

U(s)
R

)2d−1

∫ U(s)/R

0

[1 + α log2(
3U(s)
xR

)]2dx

≤ K1B

√
K2(

U(s)
R

)2d−1K4(
U(s)
R

)

= BK1

√
K2K4(

U(s)
R

)d

where K4 is a constant which is resulted from the
integral.

From the lemma 4 the balls Ball(s) (Xs ∈ T ) are
disjoint. On the other hand, we can easily show that
all the balls are placed inside the cube V n of side size
(2
√

d + 1) d
√

Vn and where Vn is located in its center.
Therefore, we have∑

s∈T
πdU(s)d ≤ (2

√
d + 1)dVn (19)

Combining this equation with the computed upper
bound∑

s∈T

∑
i∈Ball(s)

Wsi ≤ BK1

√
K2K4

(2
√

d + 1)d

πd

Vn

Rd

= K1

√
K2K4

(2
√

d + 1)d

πdad
Bn

Then, we bound the sum of receiving rates of the nodes
of I as follows∑

i∈I
Wsi =

∑
s∈T

∑
i∈Ball(s)

Wsi +
∑

i/∈
⋃

Ball(s)

Wsi

< K1

√
K2K4

(2
√

d + 1)d

πdad
Bn + [1 + α log2(3)]B#I

≤ K1

√
K2K4

(2
√

d + 1)d

πdpad
B#I + [1 + α log2(3)]B#I

Therefore, in case(2) we have λB(g) <

[K1

√
K2K4(2

√
d + 1)d/(πdpad) + 1 + α log2(3)]B

Proof of Theorem 6: The following lemma provides a
lower bound.

Lemma 6: Assume the network is contained in a
bounded set with diameter D, then

B log2(1 + (
Rm

D
)α) ≤ λB(g) (20)

Proof: If the source node of broadcast transmit the pack-
ets to all nodes directly, then every node in the network
can receive with the rate larger than B log2(1+ PD−α

BN0
) =

B log2(1 + (Rm
D )α), because the distance between the

source and any node is less than D. ♦
For the proof of upper bound, we build a set I similar

to the proof of Theorem 5 and we consider the analogous
two cases. In case (1), we follow the same inequalities,
but we write K5 log2

2(1 + (Rm
D )α) (where K5 is constant

depends on c2) instead of K3. Continuing the argument
we find that λB(g) is bounded by Θ(B log2(1 + Rm

D )α).
In case (2), we use the same inequalities as before finding
that λB(g) is bounded by Θ(B). This shows that using
more than one simultaneous transmitters might even
decrease the broadcast throughput in the third regime.
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