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Abstract. In this paper, we develop a simple and powerful multiscale model
for synthesizing nonGaussian, long-range dependent (LRD) network traffic.
Although wavelets effectively decorrelate LRD data, wavelet-based models
have generally been restricted by a Gaussianity assumption that can be un-
realistic for traffic. Using a multiplicative superstructure on top of the Haar
wavelet transform, we exploit the decorrelating properties of wavelets while
simultaneously capturing the positivity and “spikiness” of nonGaussian traf-
fic. This leads to a swift O(N) algorithm for fitting and synthesizing N -point
data sets. The resulting model belongs to the class of multifractal cascades,
a set of processes with rich statistical properties. We elucidate our model’s
ability to capture the covariance structure of real data and then fit it to real
traffic traces. Queueing experiments demonstrate the accuracy of the model
for matching real data.

1. Introduction

Fractal models arise frequently in a variety of scientific disciplines, such as physics,
chemistry, astronomy, and biology. More recently, fractal models have had a major
impact on the analysis of data communication networks such as the Internet. In
their landmark paper [1], Leland et al. demonstrated that network traffic loads
exhibit fractal properties such as self-similarity, “burstiness,” and long-range de-
pendence (LRD) that are inadequately described by classical traffic models. Char-
acterization of these fractal properties, particularly LRD, has provided exciting
new insights into network behavior and performance.

As the pre-eminent random fractal model, fractional Brownian motion (fBm)
has played a central rôle in many fields [1, 2]. FBm is the unique Gaussian process
with stationary increments and the following scaling property for all a > 0

B(at)
fd
= aHB(t), (1)
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Figure 1. Bytes-per-time arrival process for (a) wide-area TCP
traffic at the Lawrence Berkeley Laboratory (trace LBL-TCP-
3) [4], (b) one realization of the state-of-the-art wavelet-domain
independent Gaussian (WIG) model [3], and (c) one realization
of the multifractal wavelet model (MWM) synthesis. The MWM
traces closely resemble the real data, while the WIG traces (with
their large number of negative values) do not.

with the equality in (finite-dimensional) distribution. The parameter H, 0 < H <
1, is known as the Hurst parameter. It rules the LRD of fBm, as we will see later,
but it also governs its local “spikiness.” In particular, for all t

B(t + s) − B(t) � sH , (2)

meaning that, for 0 < H < 1, fBm has “infinite slope” everywhere. Gaussian
processes with a more flexible scaling relation than (1) can be synthesized by the
wavelet-domain independent Gaussian (WIG) model [3].

Real network traffic traces, however, do not exhibit the strict self-similarity
of (1) and are positive and nonGaussian in nature thus limiting the use of fBm as
a traffic model. The transmission control protocol (TCP) traffic we study in this
paper exhibits local scaling similar to (2), but with an exponent Ht that depends
on t. This has been termed multifractal behavior and was reported for the first
time in [5] and subsequently in [6, 7, 8, 9]. Amazingly, the statistical properties
of Ht as a random variable in t can be described compactly through a function
T (q) that controls the scaling behavior of the sample moments of order q. This
powerful relation, called the multifractal formalism, ties burstiness, higher-order
dependence structure, and moments of marginals together in one unified theory.

In this paper, we propose a new non-linear model for network traffic data.
The multifractal wavelet model (MWM) is based on a multifractal cascade in the
wavelet domain that by design guarantees a positive output. Each sample of the
MWM process is obtained as a product of several positive independent random
variables resulting in an approximately lognormal marginal density.

Fitting the MWM to real traffic traces results in an excellent match, far better
than the Gaussian WIG model, visually (see Figure 1) and, as we will see, in the
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multifractal partition function T (q), the burstiness as measured by the multifractal
spectrum, the marginals, and the queueing behavior.

In this paper, we describe LRD and its relationship with fBm in Section 2.
After introducing the wavelet transform and describing the WIG model in Section
3, we derive the MWM in Section 4. Section 6 reports on the results of simulation
experiments with real data traces. We give an intuitive introduction to multifractal
cascades in Section 5 and close with conclusions in Section 7.

2. fBm and LRD

Although we analyze fBm from a continuous-time point of view, for practical
computations and simulations, we often work with sampled continuous-time fBm.
The increments process of sampled fBm

X[n] := B(n) − B(n − 1) (3)

defines a stationary Gaussian sequence known as discrete fractional Gaussian noise
(fGn) with covariance behavior [10]

rX [k] � |k|2H−2, for |k| large. (4)

For 1/2 < H < 1, the covariance of fGn is strictly positive and decays so
slowly that it is non-summable (i.e.,

∑
k rX [k] = ∞). This property is called LRD.

The LRD of fGn can be equivalently characterized in terms of how the ag-
gregated processes

X(m)(n) :=
1
m

km∑
i=(k−1)m+1

X(i) (5)

behave. It follows from (1) that X(n)
fd
= m1−HX(m)(n).

Hence, a log-log plot of the variance of X(m)(n) as a function of m — known
as a variance-time plot — will have a slope of 2H − 2. The variance-time plot can
characterize LRD in non-Gaussian, non-zero-mean data as well [1].

3. Wavelets and LRD Processes

3.1. Wavelet transform

The discrete wavelet transform is a multi-scale signal representation of the form
[11]

c(t) =
∑

k

uk 2−J0/2 φ
(
2−J0t − k

)
+

J0∑
j=−∞

∑
k

wj,k 2−j/2 ψ
(
2−jt − k

)
, j, k ∈ ZZ
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Figure 2. (a) WIG construction: Generate the Wj,k’s as mutu-
ally independent and identically distributed within scale accord-
ing to Wj,k ∼ N(0, σ2

j ). Then compute the Haar scaling coeffi-
cients Uj+1,2k and Uj+1,2k+1 at scale j + 1 as sums and differ-
ences of the scaling and wavelet coefficients Uj,k and Wj,k at scale
j (normalized by 1/

√
2). (b) MWM construction: At scale j, gen-

erate the multiplier Aj,k ∼ β(pj , pj), form the wavelet coefficient
as the product Wj,k = Aj,kUj,k and them form scaling coefficients
at scale j + 1 as in (a).

with J0 the coarsest scale and uk and wj,k the scaling and wavelet coefficients,
respectively. The scaling coefficients may be viewed as providing a coarse approxi-
mation of the signal, with the wavelet coefficients providing higher-frequency “de-
tail” information. Using filter bank techniques, the wavelet transform and inverse
wavelet transform can be computed in O(N) operations for a length-N

In the Haar wavelet transform (see Figure 2), the prototype scaling and
wavelet functions are given by

φ(t) =
{

1, 0 ≤ t < 1
0, else and ψ(t) =

⎧⎨
⎩

1, 0 ≤ t < 1/2
−1, 1/2 ≤ t < 1

0, else.

The Haar scaling and wavelet coefficients can be recursively computed via [11]

uj−1,k = 2−1/2(uj,2k + uj,2k+1), wj−1,k = 2−1/2(uj,2k − uj,2k+1). (6)

3.2. Modeling LRD data

Wavelets serve as an approximate Karhunen-Loève or decorrelating transform for
fBm [2], fGn, and more general LRD signals [12]. Hence, modeling and processing
of these signals in the wavelet domain is often more efficient and powerful than in
the time domain.

Gaussian LRD processes can be approximately synthesized by generating
wavelet coefficients as independent zero-mean Gaussian random variables, identi-
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cally distributed within scale according to Wj,k ∼ N(0, σ2
j ),1 with σ2

j the wavelet-
coefficient variance at scale j [3]. We call the resulting model the wavelet-domain
independent Gaussian (WIG) model [3] (see Figure 2(a)). A power-law decay for
the σ2

j ’s leads to approximate wavelet synthesis of fBm or fGn [2].
The WIG model assumes Gaussianity even though network traffic signals

(such as loads and interarrival times) are positive and can be highly nonGaussian.
We seek a more accurate marginal characterization for these spiky, non-negative
LRD processes.

3.3. Modeling non-negative data with the Haar wavelet

It is easily shown that the Haar scaling coefficients uj,k are non-negative if and
only if the signal itself is non-negative; that is, c(t) ≥ 0 ⇔ uj,k ≥ 0, ∀ j, k. Solving
(6) for uj,2k and uj,2k+1, we find

uj,2k = 2−1/2(uj−1,k + wj−1,k), uj,2k+1 = 2−1/2(uj−1,k − wj−1,k). (7)

Combining (7) with the constraint uj,k ≥ 0, we obtain the condition

c(t) ≥ 0 ⇔ |wj,k| ≤ uj,k, ∀ j, k. (8)

4. Multifractal Wavelet Model

The positivity constraints (8) on the Haar wavelet coefficients suggest a very simple
multiscale, multiplicative signal model for positive processes. In the multifractal
wavelet model (MWM) – a name which we will explain in a moment – we compute
the wavelet coefficients recursively by

Wj,k = Aj,k Uj,k, (9)

with Aj,k a random variable supported on the interval [−1, 1]. Together with (7),
we obtain (see Figure 2(b))

Uj,2k = 2−1/2(1 + Aj+1,k)Uj−1,k, Uj,2k+1 = 2−1/2(1 − Aj+1,k)Uj−1,k. (10)

Thus, to generate a MWM realization we first synthesize U0,0 and then compute
scaling coefficients at finer scales recursively using (10) till we reach a desired finest
scale. This algorithm synthesizes an N -point using O(N) computations.

The synthesized signal C[k] is a discrete time approximation of the con-
tinuous time signal c(t). Decomposing each shift k into a binary expansion
k =

∑n−1
i=0 k′

i2
n−1−i, we can write

C[k] = 2−n/2Un,k = 2−n U0,0

n−1∏
i=0

(1 + (−1)k′
iAi,ki

)
2

, (11)

with

1We use capital letters when we consider the underlying variables to be random.



6 Riedi et. al.

k0 ≡ 0, and ki =
i−1∑
j=0

k′
i2

i−1−j , i = 1, . . . , n − 1. (12)

In our experiments we choose the symmetric beta distribution, β(p, p) for the
Aj,k’s

Aj,k ∼ β(pj , pj), (13)

with pj the beta parameter at scale j. We set the pj ’s to get the desired decay of
the variances of Wj,k’s.

5. MWM is a Cascade

The MWM is a special case of the rich class of multiplicative cascades. Cascades
provide a natural framework for producing positive “bursty” processes and offer
greater flexibility and richer scaling properties than fractal models such as fGn and
fBm. The subtle structure of cascades is best understood in terms of the powerful
theory of multifractals, a statistical tool for measuring “burstiness” superior to
LRD which merely measures “high variability”.

Identifying the MWM algorithm with a multiplicative cascade allows us to
benefit from the accumulated theoretical and practical knowledge of the field of
multifractals, including a precise understanding of the convergence of the MWM
algorithm, properties of the marginal distributions, advantages over monofractal
fGn models, and a range of possible refinements and extensions [5, 9]. For these
reasons, we find it useful to examine the MWM within the context of cascades and
multifractals.

5.1. Cascades

The backbone of a cascade is a construction where one starts at a coarse scale
and develops details of the process on finer scales iteratively in a multiplicative
fashion. The MWM, e.g., is a multiplicative cascade: as (10) and (11) reveal we
may write

CMWM[k] = 2−nM0
0

n∏
i=1

Mi,ki
, with M i

ki
=

(1 + (−1)k′
i−1Ai−1,ki−1)
2

. (14)

This construction procedure naturally results in a process that “sits” just
above the zero line and emits occasional positive jumps or spikes. In contrast,
additive self-similar models such as fGn and the WIG “hover” around the mean
with occasional outbursts in both positive and negative directions.



Network Traffic Modeling Using a Multifractal Wavelet Model 7

5.2. Multifractal analysis

Intuitively, multifractal analysis measures the frequency with which bursts of dif-
ferent strengths occur in a signal. Consider a positive process Y (t). The strength
of the burst of Y at time t, also called the degree of Hölder continuity, can be
characterized by

α(t) = lim
kn2−n→t

αn
kn

where αn
kn

:= − 1
n

log2

∣∣Y ((kn + 1)2−n) − Y (kn2−n)
∣∣ (15)

where kn2−n → t means that t ∈ [kn2−n, (kn + 1)2−n) and n → ∞. The smaller
the α(t), the larger the increments of Y around time t, and the “burstier” it is at
time t. The frequency of occurrence of a given strength α, can be measured by the
multifractal spectrum:

f(α) := lim
ε→0

lim
n→∞

1
n log2 #{kn = 0, . . . , 2n − 1 : αn

kn
∈ (α − ε, α + ε)}. (16)

By definition, f takes values between 0 and 1 and is often shaped like a ∩
and concave. The smaller the f(α), the “fewer” points t will exhibit α(t) ≈ α. If
α0 denotes the value α(t) assumed by “most” points t, then f(α0) = 1. See Figure
3(b) for the multifractal spectrum of the LBL-TCP-3 data set and of synthetic
MWM data. We observe that the MWM captures the spectrum of the real data
except for large values of α. This means that the MWM does not generate as many
small values as the signal possesses.

5.3. Multifractal spectrum and higher-order moments

Though (16) gives us a simple measure of burstiness in data, in practice it is im-
possible to compute the right side of (16). However, f(α) can be obtained through
the use of high and low-order moments of the signal Y (t).

Define the partition function that captures the scaling of different moments
of Y as

T (q) := lim
n→∞

1
−n

log2 IE [Sn(q)] , (17)

with

Sn(q) :=
2n−1∑
kn=0

∣∣Y ((kn + 1)2−n) − Y (kn2−n)
∣∣q =

2n−1∑
kn=0

2−qnαn
kn . (18)

The multifractal spectrum f(α) and T (q) are closely related, as the follow-
ing hand-waving argument shows. Grouping in the sum Sn(q) of (18) the terms
behaving as αn

kn
≈ α, and using (16) we get

Sn(q) =
∑
α

∑
αn∼α

(
2−nα

)q ≈
∑
α

2nf(α)2−nqα ≈ 2−n infα(qα−f(α)). (19)

We conclude that we must “expect” T (q) to equal infα(qα − f(α)), the so-called
Legendre transform of f(α). For the special case of an MWM process, i.e., Y (t) =
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Figure 3. (a) Variance-time plot of the LBL-TCP-3 data “×”,
the WIGdata “�”, and one realization of the MWM synthesis
“◦”. (b) Multifractal spectra of the LBL-TCP-3 data and one
realization of the MWM synthesis. (c) Comparison of the queu-
ing performance of real data traces with those of synthetic WIG
and MWM traces. Observe that the MWM synthesis matches the
queuing behavior of the LBL-TCP-3 data closely, while the WIG
synthesis does not.

∫ t

0
c(t) dt, it can be shown (see [13]) that the inverse relation holds, called the

multifractal formalism

f(α) = T ∗(α) := inf
q

(qα − T (q)) . (20)

This relation makes the multifractal spectrum more accessible for practical
purposes.

6. Experimental Results

In order to compare the MWM and WIG models we train them on a well-known
real data trace, the LBL-TCP-3 [4]. We compare the correlation matching abilities
through the variance-time plots of the real data, the MWM traces, and the WIG
traces in Figure 3(a). Observe that, as expected, both the MWM and WIG models
perform well in matching the correlation structure of the real data.

We plot the multifractal spectra (see Section 5) of the LBL-TCP-3 data and
the synthetic MWM trace in Figure 3(b) (calculations for the negative moments
of the WIG data become numerically unstable and hence the spectra for the WIG
is not included). We observe that the spectra match extremely well except for
large values of α. This corresponds to a close match of the scaling of higher-
order moments, but a somewhat less accurate match of the scaling of the negative
moments.

In Figure 3(c) we compare the average queuing behavior of the MWM and
WIG traces to that of the real trace LBL-TCP-3. We observe that the MWM
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traces match the queuing behavior of the real data trace much better than the
WIG traces.

7. Conclusions

The multiplicative wavelet model (MWM) combines the power of multifractals
with the efficiency of the wavelet transform to form a flexible framework natural for
characterizing and synthesizing positive-valued data with LRD. As our numerical
experiments have shown, the MWM is particularly suited to the analysis and
synthesis of network traffic data. In addition, the model could find application
in areas as diverse as financial time-series characterization, geophysics (using 2-d
and 3-d wavelets), and texture modeling. The parameters of the MWM are simple
enough to be easily inferred from observed data or chosen a priori. Computations
involving the MWM are extremely efficient — synthesis of a trace of N sample
points requires only O(N) computations. Finally, several extensions to the MWM
are straightforward. The choice of β-distributed wavelet multipliers Aj,k is not
essential. Alternatively, we can employ mixtures of β’s or even purely discrete
distributions to fit higher-order multifractal moments.
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