
PROCEEDINGS ICASSP SALT LAKE CITY, UTAH, MAY 7-11, 2001 1

WAVELETS AND MULTIFRACTALS
FOR NETWORK TRAFFIC MODELING AND INFERENCE

Vinay J. Ribeiro, Rudolf H. Riedi, and Richard G. Baraniuk

Department of Electrical and Computer Engineering, Rice University

6100 South Main Street, Houston, TX 77005, USA

ABSTRACT

This paper reviews the multifractal wavelet model (MWM)
and its applications to network traf£c modeling and infer-
ence. The discovery of the fractal nature of traf£c has made
new models and analysis tools for traf£c essential, since clas-
sical Poisson and Markov models do not capture important
fractal properties like multiscale variability and burstiness
that deleteriously affect performance. Set in the framework
of multiplicative cascades, the MWM provides a link to mul-
tifractal analysis, a natural tool to characterize burstiness.
The simple structure of the MWM enables fast O(N) syn-
thesis of traf£c for simulations and a tractable queuing anal-
ysis, thus rendering it suitable for real networking applica-
tions including end-to-end path modeling.

1. INTRODUCTION
Fractal models have made a major impact in communica-
tions, particularly in the arena of queuing analysis of data
networks (such as local-area networks (LANs), wide-area
networks (WANs), and the Internet). It has been convinc-
ingly demonstrated and con£rmed by many studies that net-
work traf£c signals, such as the time series of number of
bytes or packets arriving at a router, exhibit fractal proper-
ties such as self-similarity, burstiness, and long-range de-
pendence (LRD) [1]. These properties are inadequately de-
scribed by classical traf£c models such as Poisson, Markov,
and ARMA models [1], with the result that these models are
far too optimistic in their predictions of performance.

Fractals are geometric objects that exhibit an irregular
structure at all resolutions. Most fractals are self-similar; if
we use a magnifying glass to “zoom” (in or out) of the frac-
tal, we obtain a picture similar to the original. Deterministic
fractals usually are constructed by predetermined iterative
re£nement steps and, thus, exhibit strong patterns that repeat
at all scales. Real-world phenomena can rarely be described
using such simple models. Nevertheless, “similarity on all
scales” can hold in a statistical sense, leading to the notion
of random fractals. For example the bytes per time traf£c
observed on a WAN when viewed on different time-scales
displays a similar bursty structure (see Figure 1).
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(a) Real traf£c (b) MWM synthesis
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Figure 1: Modeling bursty traf£c data. Arrival processes of bytes
per 8ms (top) and 32ms (bottom) for (a) real wide-area traf£c [3]
and (b) one realization of a multifractal wavelet model (MWM)
synthesis. The MWM trace has the same bursty nature as the real
data at different scales.

As the pre-eminent random fractal model, fractional
Brownian motion (fBm) has played a central rôle in many
£elds [1, 2]. fBm is the unique Gaussian process with sta-
tionary increments and the following scaling property for all
a > 0

B(at)
fd
= aHB(t), (1)

with the equality in (£nite-dimensional) distribution. In
other words, when “zoomed” into, fBm appears statistically
the same up to a rescaling factor. The constant H , 0 < H <
1, is known as the Hurst parameter. For 1/2 < H < 1,
fBm’s increments process, fractional Gaussian noise (fGn),
has an autocorrelation function that decays so slowly that it is
non-summable, a property known as long-range dependence
(LRD).

Wavelets are a powerful tool for the analysis and synthe-
sis of LRD signals. Though LRD signals are highly corre-
lated in the time domain, they become nearly decorrelated
in the wavelet domain. Exploiting this fact, several authors
have proposed wavelet-based generalizations of fGn [2]. Us-
ing ef£cient multiscale tree structures, these models provide
fast O(N) synthesis algorithms to synthesize N -point data



sets. As a consequence of their Gaussian nature, however,
these can produce unrealistic synthetic traf£c traces in cer-
tain situations. First, Gaussian traf£c can take negative val-
ues, while real traf£c is inherently positive. Second, a Gaus-
sian marginal cannot capture the burstiness on small time
scales that greatly affects queuing [4].

In [5], we proposed a simple multiplicative traf£c
model called the multifractal wavelet model (MWM). Set
in the framework of multifractal cascades, the non-Gaussian
MWM outperforms Gaussian LRD traf£c models in captur-
ing the “spiky” bursts [5] and queuing behavior of measured
traf£c [4]. The MWM’s attractive features include linear
time synthesis of traf£c traces, a tractable queuing analysis,
and strong multifractal properties that closely match those of
real traf£c. These make it viable for numerous networking
applications including a novel cross-traf£c estimation algo-
rithm [6]. In this paper, we review the MWM and several of
its applications.

2. WAVELETS AND LRD

The discrete wavelet transform is a multiscale signal repre-
sentation of the form [7]

x(t) =
∑

k

uk 2−J0/2 φ
(
2−J0t − k

)
+ (2)

J0∑

j=−∞

∑

k

wj,k 2−j/2 ψ
(
2−jt − k

)
, j, k ∈ ZZ

with J0 the coarsest scale and uk and wj,k the scaling and
wavelet coef£cients. The scaling coef£cients may be viewed
as providing a coarse approximation of the signal, with the
wavelet coef£cients providing higher-frequency “detail” in-
formation.

Wavelets serve as an approximate Karhunen-LoÁeve
transform for fBm [2], fGn, and more general LRD signals.
In other words highly-correlated signals become nearly un-
correlated in the wavelet domain. In addition, the energy of
the wavelet coef£cients of continuous-time fBm decays with
scale according to a power law [2]. While for sampled fBm
the power-law decay is not exact [2], the Haar wavelet trans-
form of fGn exhibits power-law scaling of the form1

var(Wj,k) = σ2 2(2H−1)(j−1) (2 − 22H−1). (3)

Thus, by generating independent wavelet coef£cients Wj,k

with appropriate decay of energy with scale and inverting
the wavelet transform, we can synthesize Gaussian LRD pro-
cesses. Gaussian processes, however, possess negative val-
ues that are unrealistic for real traf£c and cannot capture the
burstiness of traf£c at £ner scales [4].

1We use capital letters when we consider the underlying signal X (and,
hence, its wavelet and scaling coef£cients) to be random.

(a) Scaling coef£cient tree (b) MWM construction
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Figure 2: (a) Binary tree of Haar scaling coef£cients. (b) MWM
construction: At scale j, we form the wavelet coef£cient as the
product Wj,k = Aj,kUj,k. Then, at scale j − 1, we form the scal-
ing coef£cients Uj−1,2k and Uj−1,2k+1 as sums and differences of
Uj,k and Wj,k (normalized by 1/

√
2).

3. MULTIFRACTAL WAVELET MODEL

The basic idea behind the MWM is simple. To preserve non-
negativity, we use the Haar wavelet transform with special
wavelet-domain constraints. To capture LRD, we mimic the
wavelet energy decay as a function of scale.

3.1. Haar wavelets and non-negative Data

Before we can model non-negative signals using the wavelet
transform, we must develop conditions on the scaling and
wavelet coef£cient values for x in (3) to be non-negative.
While cumbersome for a general wavelet system, these con-
ditions are simple for the Haar system. In a Haar transform,
the scaling coef£cients can be recursively computed using

uj,2k = 2−1/2(uj+1,k + wj+1,k)

uj,2k+1 = 2−1/2(uj+1,k − wj+1,k).
(4)

For non-negative signals, uj,k ≥ 0, ∀ j, k, which with (4)
implies that

|wj,k| ≤ uj,k, ∀ j, k. (5)

3.2. Multiplicative model

The positivity constraints (5) on the Haar wavelet coef£-
cients lead us to a very simple multiscale, multiplicative sig-
nal model for positive processes. Let Aj,k be a random vari-
able supported on the interval [−1, 1] and de£ne the wavelet
coef£cients recursively by

Wj,k = Aj,k Uj,k. (6)

Together with (4), we obtain (see Figure 2(b))

Uj,2k = 2−1/2(1 + Aj+1,k)Uj+1,k

Uj,2k+1 = 2−1/2(1 − Aj+1,k)Uj+1,k.
(7)

We use beta distributions for Aj,k.



3.3. Multifractal analysis
The MWM is a multiplicative cascade [5]. Cascades are as-
sociated with a powerful tool called multifractal analysis,
which provides a statistical language and calculus to charac-
terize burstiness.

At the heart of multifractal analysis lies the multifractal
formalism [5], which relates the scaling behavior of sam-
ple moments of a trace to the frequency of occurrence of
“bursts” of different strength in that trace. This formalism
exploits the moments of all orders, unlike the concept of
LRD that relies on second-order statistics only. The multi-
fractal formalism relates non-Gaussianity and burstiness ex-
plicitly and furnishes a solid formalism on which to explain
the superiority of the MWM over Gaussian models in model-
ing bursty network traf£c loads. Moreover, this formalism is
instrumental in relating the burstiness of traf£c to the range
of buffer sizes for which the multiscale queuing formula of
Section 4.2 is valid [8].

4. NETWORKING APPLICATIONS

The MWM has proven to be a versatile model, mainly due
to its simple structure. This section overviews some of its
applications to networking.

4.1. Traf£c synthesis
The MWM provides fast synthesis of traf£c for simulation
purposes. Starting from the top node, UJ0,0, of the Haar scal-
ing coef£cient tree (see Figure 2(a)), the scaling coef£cients
at a £ner scales are computed iteratively by applying (6) and
(7) thus obtaining a realization of the process. In essence
the algorithm simultaneously synthesizes the wavelet coef-
£cients and inverts the wavelet transform, requiring only
O(N) operations to create a length-N signal.

By specifying the variances for the Aj,k, we can model
the time-domain LRD or covariance structure of a signal
through the energy decay of its wavelet coef£cients with
scale j [5]. The MWM construction guarantees decorrelated
wavelet coef£cients. Typically, the residual correlation be-
tween the wavelet coef£cients of LRD processes is small,
and therefore we can approximate the time-domain behavior
of such LRD processes quite accurately.

4.2. Multiscale queuing
Data packets are multiplexed and queued at Internet routers,
where they are delayed and often discarded (or dropped) due
to over¤ow. The queuing behavior of traf£c is thus crucial to
network performance. Traf£c models with tractable queuing
analyses can help understand and ameliorate network con-
gestion. Though the queuing analysis of classical models is
well developed, most queuing results for LRD models are
valid only for asymptotically large queue sizes, thus limiting
their utility for real networks with £nite router queue sizes.

The MWM, however, possesses a non-asymptotic queu-
ing formula [4]. Exploiting the binary tree structure of the
MWM (see Figure 2), we have developed a queuing formula
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Figure 3: Accuracy of MWM queuing behavior and the multiscale
queuing formula (MSQ). The MWM matches the queuing behavior
of real WAN traf£c [3] accurately. The MSQ formula is an accurate
approximation to the MWM queuing for all queue sizes.

applicable to tree-based models for any £nite queue size (see
Figure 3).

The queue length of an in£nite-length buffer with con-
stant link capacity c (assuming the queue was empty some
time in the past) obeys the identity

Q = sup
r

(K[r] − rc). (8)

Here K[r] is the total traf£c that entered the queue in the
past r time instants. In other words, the queue size Q is a
function of the traf£c arrivals aggregated over time scales
of r time units. In the multiscale representation of the
MWM model, such aggregates appear explicitly at dyadic
time scales (r = 2m) as the Haar scaling coef£cients (up to
normalization constants). We exploit the fact that the scaling
coef£cients are related to each other by independent random
multipliers 2−1/2(1±Aj,k) to derive an approximation to the
tail queue probability P (Q > b) called the multiscale queu-
ing formula (MSQ) [4]. The MSQ can be directly computed
from the distributions of Aj,k.

From Figure 3 observe that the MWM has tail queue
probability very close to that of the real traf£c and that the
MSQ accurately tracks the MWM’s queuing behavior. These
make the MWM useful for numerous practical applications
like end-to-end path modeling.

4.3. End-to-end path modeling
Packets from network connections, while traveling from one
end of the Internet to the other, pass through several routers
where they are multiplexed with traf£c from other connec-
tions (end-to-end paths). A better understanding of the traf£c
dynamics on an end-to-end path will greatly bene£t the de-
sign and development of future network control algorithms
and protocols. Two facts make this task dif£cult. First, it
is unrealistic to expect internal routers to determine and re-
port these properties, because this would require their main-
taining overwhelming amounts of state information. Thus
it becomes necessary to infer the properties by sampling
the current network state through probe packets (end-based
measurements), which are relatively easy and inexpensive to
make. Second, modeling every aspect of the several routers
that comprise an end-to-end path has proved intractable,
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Figure 4: Cross-traf£c estimation via end-to-end path modeling.
We model an end-to-end path as a single bottleneck queue fed by
cross-traf£c from the MWM and estimate cross-traf£c volumes via
ef£cient exponentially spaced “chirp” packet trains.

thus necessitating reduced-complexity models for end-to-
end paths.

The MWM inspires a simple edge-based algorithm,
Delphi for estimating instantaneous volumes of competing
cross-traf£c from delays experienced by probe packets [6].
Delphi uses a simple reduced-complexity model for an en-
tire end-to-end path: a single bottleneck queue where probe
packets are multiplexed with competing cross-traf£c mod-
eled by the MWM (see Figure 4).

Inherent in any probing scheme is an uncertainty prin-
ciple or “accuracy-sparsity” tradeoff. The volume of cross-
traf£c entering a queue between two probes can be computed
exactly from their delay spread at the receiver provided the
queue does not empty in between. Unfortunately, this situa-
tion is guaranteed only if the probes are very closely spaced.
However, sending long trains of narrowly spaced probes will
congest the network and affect the very cross-traf£c we are
trying to measure. If probes are spaced far apart, then the
queue can empty in between, which results in uncertainty in
the cross-traf£c volume.

Delphi balances this “accuracy-sparsity” tradeoff
through a “chirp” probing packet train that matches the
binary tree structure underlying the MWM (see Figure 5).
The £rst three probes of the chirp are spaced close enough
to provide exact estimates of the cross-traf£c at the bottom
of the binary tree, i.e., Uj,0 and Uj,1, and thus Uj+1,0.
The succeeding probes are exponentially spaced to reduce
the probe traf£c load, thus reducing their impact on the
cross-traf£c. Using an approximate maximum likelihood
estimator based on the MSQ, we can recursively estimate
the scaling coef£cients Uj+i,0 from Uj+i−1,0 and the
queuing delay experienced by probe Pi+2. The recursion
halts when a required coarsest scale is reached. Delphi does
not require a priori statistics of cross-traf£c and uses an
adaptive algorithm to estimate the model parameters. It has
performed well in simulation experiments (see Figure 6)
and is being deployed in the Internet.

5. CONCLUSIONS

There is a great need for new analytical tools to help under-
stand and improve current networks. We have presented one
such tool, the MWM, which though simple has proved useful
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Figure 6: Cross-traf£c estimates in simulation experiments. Plot-
ted is the cross-traf£c at a £ne time-scale (9.6ms) and the actual
and estimated cross-traf£c at a coarse time-scale (307.2ms). Ob-
serve that the estimates are accurate.

for real networking applications, including traf£c synthesis,
queuing analysis, and end-to-end path modeling.
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