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Introduction

It has been recognized that most fractalsK observed in nature are actually composed

of an in�nite set of interwoven subfractals� This structure becomes apparent when a

particular probability measure � supported by K is considered� to every � belongs

the set C� of all points of K� for which the measure of the balls with radius � roughly

scales as �� for � � �� In other words the various C� are the sets of local H�older

exponent �� Since they are often fractals� � was termed multifractal�

The complexity of the geometry of C� is measured by the spectrum f��� which can

be thought of as representing the box dimension of C�� More precisely speaking

the number of boxes B of a ��grid with ��B� � �� scales as ��f���� However� the

singularities of �may also be measured through the generalized dimensions dq� which

are related to the scaling law of the partition sums�
P

��B�q � ��q���dq �

Spectrum and generalized dimensions are very helpful when comparing multifractals

appearing in nature with analytically treatable measures� In various �elds multi�

fractality has been found to be appropriate to describe phenomena in nature� like

catalytic reactions �GS�� the distribution of galaxies �Sa�� percolation� Brownian mo�

tion �Fed�� growing structures �V� TV�� and many others appearing in the theory

of dynamical systems �T�el� V���

Heuristical arguments suggest a close relation between dq and f � the convex ��q� �

��� q�dq is the Legendre transform of the concave f���� This allows to reduce the

somewhat tedious� if not impossible computation of f to the simpler one of dq�

Though used in di�erent �elds� the various notions developed for the purpose of

numerical simulations di�er only slightly� A mathematically precise de�nition as

well as the important relation ��q� � sup�f���� q�� can be found in �Falc��� But

unfortunately this concept turns out to be unsatisfactory for two reasons�

First of all the spectrum is de�ned through a double limes� which usually does not

exist for great �� Secondly the generalized dimensions take the irrelevant value

dq � � for negative q� More concretely� for as simple multifractals as the middle

third Cantor measure half of the singularity exponents are lost and� even worse� the

important Legendre relation cannot be veri�ed by �Falc�� prop� �����

In the present thesis we propose a concept which meets the two mentioned problems

by a simple improvement� Instead of boxes taken from a grid of size �� we use a

kind of parallel body of these boxes� This renders a measurement F resp� Dq of the

singularities of �� which carries relevant information on the measure and which can
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iv Introduction

be treated with rigorous geometrical arguments� Furthermore� as an invaluable tool

for analytical and practical treatment of the spectrum� we introduce the semispectra

F� and F�� Doing so avoids problems of convergence� Moreover� the semispectra

are in some sense more regular than the spectrum itself�

The superiority of our concept is re�ected in the following facts�

First� the generalized dimensions Dq and the semispectra F
� are invariant under bi�

lipschitzian coordinate transformations� Moreover� they depend regularly on the size

� of the considered grids� In particular it is enough to consider the limit behaviour

for any sequence �n such that �n � �n�� � ��n with constant ��

Secondly� the modi�cation does not a�ect the generalized dimensions for positive q�

i�e� Dq � dq �q � ���

Thirdly� the so�called singularity exponents T �q� �� �� � q�Dq are indeed the

Legendre transform of the spectrum F ���� Therefore T is convex� And� what is

even more interesting in applications� if T is continuously di�erentiable� then F is

the Legendre transform of T � Similar properties have been claimed for f resp� dq�

but hold only for positive q�

Multiplicative cascades generalize the construction of the middle third Cantor set�

Starting with a compact set V � one chooses �rst r closed disjoint subsets Vi of V �

then r closed disjoint subsets Vi�i� of each Vi� and so on� Provided the diameters of

the sets Vi����in tend to zero with increasing n� this process generates a sequence of

compact sets Kn� each consisting of r
n components� which decreases to a nonempty

compact set K� Consequently K is homeomorphic to the product space f�� 	 	 	 � rgIIN�

Now� given r positive numbers pi with p� � 	 	 	 � pr � �� there is a unique product

measure corresponding to the measures fig �� pi on the factors of f�� 	 	 	 � rgIIN� Its

pullback � is a probability measure supported by K� The construction of � explains

the term �multiplicative cascade��

It is almost evident that the structure of the cascade must be re�ected by the

spectrum� Moreover� one�s intuition should be that the so�called cylindrical sets

Vi����in� which possess the measure pi� � 	 	 	 � pin � give the essential information about

the geometry of ��at least if their shapes are similar�

As a consequence most of the notions of spectrum used for the study of multiplicative

cascades work directly with coverings of K by cylindrical sets� instead of coverings

by boxes from a grid� Such a formalism may rightly be called �tailored to multiplica�

tive cascades�� It certainly possesses great advantages� since the embedding of � in

the particular euclidean space causes no problem� Furthermore symbolic dynamics

are used most e�ectively �BR� CM�� For instance the spectrum de�ned through

cylindrical sets is always concave �Lan�� Furthermore� for self�similar measures� i�e�

� �
P

piwi�� with similarities wi� the spectrum can be calculated with reasonable

e�ort �HP�� On the other hand this multifractal formalism cannot distinguish be�

tween � and the product measure� In other words it lacks geometrical relevance and

cannot be used to detect structures�

But exactly this is the aim of our approach� In chapter � we develop a multifractal
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formalism which is based purely on the geometry of measures and which does not

assume any stucture in advance�

Consequently we will treat arbitrary probability measures with bounded support�

Moreover� we will not assume concavity nor di�erentiability of the spectrum F � To

support this approach examples will be developed� for which these properties do not

hold� So the duality between T �q� and F ��� is violated� the singularity exponents

depend more regularly on the measures of the boxes� since they are de�ned through

a sum or �average� �HJKPS�� The spectrum� on the other hand� carries a greater

amount of information�

The present formalism can be applied to any probability measure� in particular to

one obtained from observation and represented�incompletely of course�by some

thousands of sample points� Since the multifractal formalism can be used to compare

such an observed measure with an analytically treatable multifractal� we provide

formulas for the spectrum of self�similar measures in chapter  and of certain self�

a�ne measures in chapter ��

A satisfying result is that the improved formalism leads to the same conclusions as

the one �tailored to multiplicative cascades��at least for self�similar measures� In

this case all the cylindrical sets have the same shape and can be approximated by

balls� However� in the a�ne case� some of the cylindrical sets are long stretched and

thin� These sets of course cannot be thought of as representing balls� Our treatment

of this case shows how to modify one�s intuition�

Finally� besides a lot of examples� we provide evidence as well as rigorous results

concerning the interpretation of F ��� as the Hausdor� dimension of the sets C� of

local H�older exponent �� The main problem here is� that the boxes of size � with

measure � �� do not necessarily form a sequence of decreasing sets as � � ��

Summarizing we feel that the present thesis provides a better understanding of

multifractality and re�nes one�s intuition on self�a�ne measures�



Abstract

To characterize the geometry of a probability measure � with bounded support�

its so�called spectrum f has been introduced recently� A mathematically precise

de�nition has been given in �Falc���

f��� � lim
���
lim

���
log�n��� � 
�� n���� 
��

� log �

whenever this limes exists� Thereby n���� is the number of boxes B �
Q

�lk�� �lk�����

in IRd with integers lk� such that ��B� � ��� As will be shown� this de�nition is

unsatisfactory for reasons of convergence as well as of undesired sensitivity to the

particular choice of coordinates� A new de�nition F of the spectrum is introduced�

which is based on box�counting too� but which carries relevant information about

�� The essential modi�cation is that n� is replaced by the number of boxes N����

with ���B��� � ��� where �B�� is the box of size �� concentric to B� In addition�

the lim��� is replaced by the lim sup��� for obvious reasons� The adaptation of the

well known singularity exponents to this concept reads�

T �q� � lim sup

���

log
�P

���B���
q
�

� log �

	

This notion renders exponents T �q�� which are invariant under bi�lipschitzian co�

ordinate transformations and for which the limit behaviour can be extracted from

considering any sequence �n such that �n � �n�� � ��n with constant ��

The important relation

T �q� � sup
��IR

�
F ���� q�
�

is valid for q 	� � and in the case of multiplicative cascades also for q � �� Conse�

quently T �q� is convex� On the other hand� F ��� need not be concave� as examples

prove� In other words F may provide more detailed information than the Legendre

transform of T � However� if T �q� equals lim��� 	 	 	 and is di�erentiable on all of IR�

then

F ��� � lim
���
lim

���
log�N��� � 
��N���� 
��

� log �

� inf
q�IR
�T �q� � q��

for all ��

vii



viii Abstract

Invariant measures play a crucial role in multifractal theory� They satisfy an invari�

ance condition � �
Pr

� piwi�� with positive numbers pi such that p� � 	 	 	� pr � ��

When the maps wi are similitudes� i�e� jwi�x� � wi�y�j � �ijx � yj� and when the

open set condition �OSC� holds� then � is termed self�similar and the singularity

exponents satisfy

rX
i��

pi
q�i
T �q� � � ���

for all q 
 IR� This formula is already well known� but only for positive q� Moreover�

no rigorous proof has been given until now�

Self�a�ne measures are de�ned mutatis mutandis� We investigate maps of the form

wi�x� y� � ���ix� ui���iy� vi�� Again under certain open set conditions we prove

that T �q� � max� ��q�� ��q��� Thereby  � and  � can be obtained from equations

which naturally involve the characteristical values �i and �i and which reduce to ���

if �i � �i� In particular� the box dimension of the support K is recovered for q � ��

dbox�K� � T ��� � max�d�� d��	

Thereby d� and d� are de�ned through

rX
i��

�i
D���
�i
�d��D���� � � resp�

rX
i��

�i
D���
�i
�d��D���� � ��

andD�k� denotes the box dimension of the projection ofK onto the x�k��axis� Finally�

the �almost sure� Hausdor� dimension of K �Falc�� equals

dHD�K� � max�!��!���

where�����
����

rX
i��

��
�

i � � if
P

�i � ��

rP
i��
�i�
����

i � � otherwise�
����	

���
 and

����
���

rP
i��
��
�

i � � if
P

�i � ��

rP
i��
�i�
����

i � � otherwise�
���	

��


Zusammenfassung

Um die Geometrie eines Wahrscheinlichkeitsmasses � mit beschr�anktem Tr�ager

charakterisieren zu k�onnen wurde der Begri� des �Spektrums� f eingef�uhrt� Eine

mathematisch pr�azise De�nition �ndet sich in �Falc���

f��� � lim
���
lim

���
log�n��� � 
�� n���� 
��

� log �

wann immer dieser Grenzwert existiert� Dabei ist n���� die Anzahl der W�urfel B �Q
�lk�� �lk����� in IR
d mit ganzzahligen lk� f�ur welche ��B� � ��� Wie gezeigt wird� ist

diese De�nition unbefriedigend aus Gr�unden der Konvergenz wie auch wegen einer

unerw�unschten Abh�angigkeit von der Wahl der Koordinaten� Ein neues Spektrum

F wird eingef�uhrt� welches ebenfalls auf �box counting� beruht� aber geometrisch

relevante Informationen tr�agt� Die wesentliche Ver�anderung besteht darin� dass neu

statt n� die Anzahl N���� der W�urfel mit ���B��� � �� verwendet wird� wobei �B��

der zu B konzentrische W�urfel mit Seite �� ist� Aus einleuchtenden Gr�unden wird

zus�atzlich der lim��� ersetzt durch lim sup���� Die wohlbekannten �Singularit�ats

Exponenten� werden in dieses Konzept eingebettet durch die De�nition

T �q� � lim sup

���

log
�P

���B���
q
�

� log �

	

Sie sind invariant unter bilipschitz�stetigen Koordinatentransformationen� und das

massgebende asymptotische Verhalten kann aus einer beliebigen Folge �n herausge�

lesen werden� vorausgesetzt �n � �n�� � ��n mit konstantem ��

Die wichtige Beziehung

T �q� � sup
��IR

�
F ���� q�
�

ist allgemein g�ultig f�ur q 	� �� und typischerweise auch f�ur q � �� Folglich ist T �q�

konvex� Andererseits muss F ��� keineswegs konkav sein� wie Beispiele belegen� In

anderen Worten� F ��� kann mehr Information �uber � beinhalten als die Legendre

Transformierte von T �q�� Doch solche Beispiele scheinen untypisch zu sein� denn es

gilt� Falls T �q� gleich lim��� 	 	 	 und di�erenzierbar ist �uberall auf IR� dann ist

F ��� � lim
���
lim

���
log�N��� � 
��N���� 
��

� log �

� inf
q�IR
�T �q� � q��

ix



x Zusammenfassung

f�ur alle ��

Invariante Masse spielen eine zentrale Rolle in der Theorie der Multifraktale� Sie

erf�ullen eine Invarianzbedingung der Art � �
Pr

� piwi��� wobei die pi positive Zahlen

sind mit p� � 	 	 	 � pr � �� Falls die Abbildungen wi
�Ahnlichkeiten sind� also

falls jwi�x� � wi�y�j � �ijx � yj� and falls es eine �Urzelle� gibt � englisch� open

set condition �OSC� � dann nennt man � selbst��ahnlich� und die Singularit�ats

Exponenten erf�ullen die Gleichung
rX

i��
pi
q�i
T �q� � � ���

f�ur alle q 
 IR� Diese Formel ist bereits bekannt� jedoch nur f�ur positive q� Ausser�

dem ist uns bis jetzt kein strenger Beweis bekannt�

Selbst�a�ne Masse werden mutatis mutandis de�niert� Wir untersuchen Abbildun�

gen der Form wi�x� y� � ���ix � ui���iy � vi�� Wiederum unter gewissen �Urzel�

lenbedingungen� gilt T �q� � max� ��q�� ��q��� Dabei k�onnen  � und  � aus Glei�

chungen erhalten werden� welche die charakteristischen Werte �i und �i nat�urlich

einbeziehen� und welche sich im Falle �i � �i auf ��� vereinfachen� Insbesondere

erh�alt man die Box Dimension des Tr�agers K f�ur q � ��

dbox�K� � T ��� � max�d�� d��	

Dabei sind d� und d� de�niert durch

rX
i��

�i
D���
�i
�d��D���� � � und

rX
i��

�i
D���
�i
�d��D���� � ��

und D�k� steht f�ur die Box Dimension der Projektion von K auf die x�k��Axe�

Schliesslich l�asst sich die �fast sichere� Hausdor� Dimension von K �Falc�� berechnen

durch

dHD�K� � max�!��!���

wobei�����
����

rX
i��

��
�

i � � falls
P

�i � ��

rP
i��
�i�
����

i � � sonst�

����	
���
 und

����
���

rP
i��
��
�

i � � falls
P

�i � ��

rP
i��
�i�
����

i � � sonst�

���	
��


Chapter �

A Multifractal Formalism

To characterize the geometry of a measure� its so�called spectrum has proved to

be an invaluable tool� The present chapter� dedicated to its study� is organized

as follows� in the �rst section we introduce the multifractal formalism based on

box�counting�as it is developed and used at present�and give two reasons why it

should be changed� Thereby we stick to the notation of Falconer �Falc��� In section

two we present a new concept and show that it possesses the expected regularities�

In the third section simple properties of the newly de�ned spectrum are discussed�

in particular its connection to the so�called singularity exponents�

The spirit of our approach is summarized in two remarks� First� we shall consider

arbitrary probability measures with compact support and provide results of consid�

erable generality� However� when more is assumed about the measure� in particular

that it is constructed by a multiplicative cascade� much more can be said� This

will be carried out in the remaining chapters� Secondly� we focus in this work on a

formalism based purely on the geometry of the measure� allowing a characterization

free from any assumption on the structure in advance� This is quite di�erent from a

concept which emphasizes on multiplicative cascades and uses this underlying struc�

ture essentially� However for the measures considered in the subsequent chapters�

the two formalisms lead to identical conclusions� This will allow us to study limit

behaviours in the more convenient space f�� 	 	 	 � rgIIN and to derive exact formulas

for the spectra�

��� The Status Quo

A compact set K in euclidean space IRd� such as the middle third Cantor set� may

carry a rich geometrical structure� One way to measure the complexity of its ge�

ometry is to use a ��grid with variable � � � in the following way� A set of the

�
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form

dY
k��
�lk�� �lk � ����

with integer values lk for k � �� 	 	 	 � d will be called a ��box� Letting N��K� denote

the number of ��boxes meeting K� the box dimension of K is de�ned as

dbox�K� � lim sup

���

logN��K�

� log �
	

Moreover� the notation dbox�K� is used to indicate that the lim��� actually exists�

The box dimension measures the amount of information needed to locate a point on

K� In particular� the box dimensions of a point� a line and a square are �� � and �

respectively� which explains the name dimension� The literature on this �eld is vast�

For a profound introduction and for di�erent equivalent de�nitions we recommend

�Falc���

The dimension dbox�K� describes the geometry ofK in a global manner� More subtle

structures of K can be detected by considering an appropriate probability measure

� with support K� As an easy example imagine K to be the union of a line segment

and a disjoint square and let the measure �ls correspond to length on the line and to

area on the square� Then� obviously� �ls is more strongly �concentrated� on the line

than on the square� In general one may think of K as the union of in�nitely many

interwoven subsets� usually fractals� with homogeneous concentration of �� Since

this structure is induced by � we call � a multifractal� Thus� we use �multifractal�

as a synonym for probability measure with compact support� Note� however� that

other authors �MEH� HJKPS� use the same name with di�erent meanings�

A �rst attempt to seize this structure is the following� given by Falconer �Falc��

p ����

De�nition ��� Falconer� Let G� �� G�
� be the set of all ��boxes with ��B� 	� �

and let n���� be the number of all boxes in G� with ��B� � ��� Then

f��� �� lim
���
lim

���
log�n��� � 
�� n���� 
��

� log �

whenever the limes exists� Thereby log��� �� �� and this value is allowed for f �

This de�nition is still based on the method of box counting� but it involves the

measure �� The function f is usually referred to as the multifractal spectrum or

simply spectrum of �� For the simple example �ls above f takes only two nontrivial

values� namely f��� � � and f�� � � which arise from the boxes covering the

straight line and the square� respectively� So� given �� the value of f��� indicates

the density in the sense of box�counting of the set of points where � has the �con�

centration� �� This is the intuitive understanding of the spectrum �HJKPS� JKL��

Indeed� under certain conditions f��� equals the dimension of the set of all points

���� THE STATUS QUO �

x with local H�older exponent �� which means that the measure of a ball with center

x scales as the ��th power of its diameter �EM�� For more precise statements we

refer to example ��� and to �CM� CLP� S�� Furthermore� the spectrum f of certain

self�similar measures can be directly related to the �probabilistic� distribution of the

local H�older exponents �EM�� But note that this matter is far from trivial� if treated

rigorously�

The spectrum often is a strictly concave function with a single maximum� But it

may as well look quite di�erent �see Ex� ���� ��	� ���� ���� ��� and ��	�� Note

that most proofs in the literature �BR� Lan� concerning this matter work with a

notion of spectrum �tailored for multiplicative cascades� rather than one relying on

box�counting�

However� provided f is concave� then f��� � supff�t� � t  �g in the increasing

part and f��� � supff�t� � t � �g in the decreasing part of f � This leads us to

de�ning the following auxiliary functions�

De�nition ��� Let m���� be the number of all boxes in G� with ��B�  ��� so that

n���� � m���� equals "G�� the number of all ��boxes with nonvanishing measure�

Then set

f���� � lim sup

���

logn����

� log �

f���� � lim sup

���

logm����

� log �
	

Despite their simplicity� f� and f� usually contain the same information on � as

does f � when n� is strictly increasing at �� the term n��� � 
� in the di�erence

n��� � 
�� n��� � 
� is negligible� So� the increasing part of f is usually equal to

f�� Since n���� 
��n���� 
� � m���� 
��m���� 
�� a similar argument shows

that the decreasing part of f is usually equal to f��

Performing numerical simulations or analytical investigations one will �nd it hard�

if not impossible� to calculate f� and f�� Even more tedious is the computation of

f � But the related singularity exponents ��q� de�ned below are easier to determine

�GP� GP�� Gr�� BP� JKP� BPPV� L�� in particular since they depend more regularly

on the data ��B� �HJKPS� JKL�� Because f��� is usually a concave function related

to ��q� through the Legendre transformation �CLP� Falc�� BR� it is in most cases

enough to know ��q��

This points to certain advantages of f� in contrast with f � their de�nition is sim�

ple and f� are de�ned for all �� Moreover� it is straightforward that they are

monotonous� As a consequence� f� and f� can immediately be derived from ��q��

while the existence and the concavity of f do not hold in general and have to be

veri�ed before applying the Legendre transformation� �Compare our theorem ���

with proposition ��� in �Falc����

By introducing f� and f� a central di�culty in the handling of spectra�existence

and concavity of f�is removed �

To discuss a second di�culty hidden in de�nition of f let us introduce ��q�� We

keep close to the notation in �Falc�� p ����
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De�nition ��� For q 
 IR let s��q� ��
P

B�G�
��B�q and de�ne the singularity

exponents to be

��q� � lim sup

���

log s��q�

� log �
	

For later convenience� denote the corresponding lim inf by � �q�� Finally the gener�

alized dimensions are given by

dq ��

�
�� q
��q� for q 	� � and d� � lim sup

���

X
B�G�

��B�q
log��B�

log �
	

The de�nition of G� guarantees that boxes of measure zero do not contribute to s��

Usually �see corollary ��� d� is just dbox�K�� which explains the name �generalized

dimensions�� Since ���� � � holds trivially� a closer look at d� is required� This

will be carried out in section ���� The special value d�� which seems to be the most

interesting of all dq for several reasons �Gr�� was termed information dimension�

Together with the correlation dimension d� it was the �rst of all dq to be introduced

�GP�� GP� OWY��

Several recent publications are concerned with the generalized dimensions of con�

crete examples and include more or less rigorously derived formulas� As it was

recognized in �CLP� HR�� the di�culty in calculating dq is imperceptibly hidden in

the negative q�range� Even for the simplest multifractals as the middle third Cantor

set �Ex� ����� boxes with exceptionally small measure occur for certain scales � of the

grid� When risen to a negative power the measures of these boxes give an unnatural

large contribution to s��q�� They will dominate the asymptotics of s��q�� which is

of course not intended�

A di�erent asymptotic behaviour can only be obtained by restricting the measure�

ment to certain scales � of the considered grids� But this requires that the structure

to be detected is known in advance� This point will be made explicit in the following

example� Note that it is neither exotic nor pathological� but on the contrary the

multifractal presented the most�

Example ��� Cantor Measure� Let p� � �� p� � � with p��p� � �� Subdivide

��� �� into three equally spaced intervals� assign the measure p� to the left one� the

measure p� to the right one and throw away the middle one� With the remaining two

intervals proceed the same way� creating four intervals of length ��� so that the �rst

one obtains the measure p�
�� the second and the third p� �p� and the last one p�� �see

Fig� ����� Repeating this procedure ad in�nitum leaves one with a Borel probability

measure �compare section ��� having the well known middle third Cantor set as its

support�

The �rst claim is�

q  �  � �q� ��	

Proof To every n 
 IIN there is a kn 
 IIN with p�
kn � ��� � ��n�n� because

p�  �� Without loss of generality kn � n � �� Then� �n �� �� � ��kn���n lies in

���� THE STATUS QUO �
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Figure ���� The construction of the Cantor multifractal for p� � ��� and p� � ��

on the left and an illustration concerning the exceptional behaviour of some �n�boxes

on the right �n � ���

���� ��n���n� ��n�� Since ��n � ���n � �� the box Bn �� ��n�n� ��
n � ���n� has very

small measure� Bn � ��� �� � �� � ��kn� ��� thus ��Bn� � p�
kn � ��n�
n� For q  � it

follows

s�n�q� � ��Bn�
q � ��n�
nq

and

log s�n�q�

� log �n�q�
� n � ��q��

which proves the claim� �

To keep the proof simple� the box Bn was chosen in special position at the border

of ��� ��� However� the same behaviour can of course be recognized at every point of

K�
Only the restriction of � to a suitable sequence as e�g� ��n �� ��n allows to observe

the naturally expected behaviour�

s��n�q� �

X
�i������in��f���gn

pqi� � 	 	 	 � pqin � �p�
q � pq��
n�

and hence

� ��q� �� lim
n��

log s��n�q�

� log ��n
�
log�pq� � pq��

log �

	

By the argument of theorem �� the double limes

f ���� �� lim
���
lim

n��
log�n��n��� 
�� n��n��� 
��

� log ��n

exists for all � 
 IR and equals the Legendre transform infq�IR��
��q� � �q� of � ��q��

The function f ���� carries information about � and agrees with the intuitive under�

standing of the spectrum� it gives the dimension of the sets with H�older exponent

�� The graphs of � � and f � reveal the typical features� in particular the asymptotic

behaviour of d�q � � ��q����� q� and the concavity of f � �see Fig� ����

A closer look reveals � ��q� � � �q� �q 
 IR and even ��q� � ��q� � � ��q� for q � ��

But note that this result is derived using strongly the particular position of K in

the ��n�grid�
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Figure ��� Generalized dimensions �on the left� and spectrum of the middle third

Cantor measure with p� � �� und p� � ���� The dashed parts are the asymptotical

lines for d� resp� the internal bisector of the axes touching the graph of f ��

Proof In section �� we will introduce T �q� which is a lower bound to ��q� due to

proposition ��	� By corollary �� T �q� � T �q� � � ��q�� Moreover� T �q� � ��q� for

q � � again by proposition ��	� Regarding the sequence ��n completes the proof� �

Similarly one can show
f ���� � lim

���
lim inf

���

log �n��� � 
�� n���� 
��

� log �

for all � 
 IR� and even f ���� � f��� for � � ��� where �� denotes the maximum of

f �� However� provided � is large enough to satisfy ��  min�p�� p��� the di�erence

n��� � 
� � n��� � 
� takes the value zero as well as positive values for arbitrary

small � � �� Consequently� f��� does not exist for these �� �

This example provides strong arguments for the need of a concept replacing de�ni�

tion ����

� For negative q the singularity exponents ��q� do not provide any useful in�

formation about ��

� As a �rst alternative � �q� is at hand� However� even in the simple example ���

� �q� depends heavily on the particular positioning of � in the space�

� The double limes f��� does in general not exist for all �� So� the theory

developed in �Falc�� cannot be applied �in particular proposition ��� giving

the Legendre relation between f and ���

� Finally� one may interfere that the restriction of the considered values � to

a suitable sequence �n would be su�cient� But the comparison of ��n and

�n 
 ������n���n� ��n� in example ��� must destroy any con�dence in such prac�

tice� since strict self�similarity cannot be expected in numerical simulations�

Moreover� even if the latter would be assumed� one had to know in advance

the contraction ratios of the self�similar process generating the multifractal�

���� AN IMPROVED FORMALISM �

It is our concern to show that a simple but e�ective change in the way of measuring

the concentrations of � is enough to make the generalized dimensions a useful tool

also for negative q�

��� An Improved Formalism

This section provides the de�nition as well as the basic properties of the formalism

we propose�

Before starting we would like to put our method into a broader context�

Remember that the undesired behaviour described in the previous section arises

from boxes with exceptionally small measure� Collet et al� �CLP� pointed out that

for certain measures every such box possesses a neighbouring box with �normal�

measure� While in �CLP� a very technical partition sum is constructed to replace

s��q�� the idea in our mind is as simple as e�ective� we use the measure of boxes

blown up by a factor three�

The essential geometrical argument in the proofs below will be the following� when�

ever a box B intersecting K is considered� the enlarged concentric box B� meets K

in its �middle part�� i�e�# in B� Hence B� is a better approximation of a ball with

center in K than the original box B �see Fig� ����� So� we feel that this method is

Figure ���� When a box intersects the support K� then an enlarged and concentric

box will constitute a better approximation of a ball centered in K and eventually

meets K in a more representative part than the original box�

more accurate to measure local behaviour such as the H�older exponents� where one

usually works with balls centered in K� Moreover� for multifractals constructed as

the Cantor measure� a considerable part of K must be contained in the enlarged

box� leading to further properties and to the formulas for the spectrum of self�similar

and self�a�ne measures as given in the subsequent chapters�
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However� this does not mean that every multifractal can entirely be described by its

spectrum� In particular� also the newly de�ned singularity exponents may be in��

nite and so�called left�sided spectra may occur� For examples see example ��� and

�MEH� ME� GA�� But it is important to notice that with the new concept one can

be sure that in�nite singularity exponents imply arbitrarily large local H�older expo�

nents� while in the former formalism ��q� �� may as well arise from inappropriate

measurement�

Our formalism uses the parallel�body of a box� for � � � and B �

dQ
k��
�lk�� �lk � ����

let

�B�� ��

dY
k��
��lk � ���� �lk � � � ����	 �����

As will be shown� the particular choice of � is of no importance� as long as it is kept

�xed through the process� For numerical simulations it might be most convenient

to choose � � ��

De�nition ��� Singularity Exponents� For q 
 IR let S��q� ��

P
B�G�
���B���
q

and set

T �q� � lim sup

���

logS��q�

� log �
	

Thereby the value � is allowed� For convenience denote the respective lim inf by

T �q�� Moreover� whenever T �q� and T �q� coincide for a particular q� T �q� will be

called grid�regular�

Note that the condition ���B� 	� �� chooses the boxes� not ����B��� 	� ��� This is

the central idea of the new formalism �see also Fig� �����

Note� furthermore� that T �q� � �� for all q� if q  �� then S��q� � �� If q � �

consider a ��box B with maximal measure� Of course ��B� � ��"G�� and since

there are at the most "G� � c � �d boxes with nonvanishing measure� this leads to

T �q� � �dq�

The question concerning the grid�regularity of T is of importance in applications for

obvious reasons�

The same argument that gives the independence of T from the choice � � � also

proves its invariance under a considerable class of coordinate transformations and

justi�es the restriction of the considered � to a suitable sequence� So� the three

assertions will be treated in one proposition� Following the usual lines of interest

�OWY� Koh� FM� a bijective map $ from an open neighbourhood U of K � supp���

into IRd will be called an admissible coordinate transformation� if it is bi�lipschitzian�

i�e� if L��jx � yj � j$�x� � $�y�j � Ljx � yj for some constant L� A sequence

��n�n�IIN will be called admissible� if �n � � and if there is a � � � such that

�n � �n�� � ��n �n 
 IIN�

���� AN IMPROVED FORMALISM �

Proposition ��	 Let $ be an admissible coordinate transformation� let �� � $���

�� � �� � � � and let ��n�n�IIN be an admissible sequence� Then

T �q� � lim sup

n��

log
�P

B�G�n
���B���
q
�

� log �n

� lim sup

���

log
�P

B�G�
�
����B����
q
�

� log �

for all q 
 IR� Similar for T �q�� In particular these values are independent of � and

of the choice of the coordinate system�

Remark The same holds for ��q�� but only for q � �� as the two admissible

sequences of example ��� show�

Proof We let G�
�� � G��
�� be the set of �
��boxes B with ���B� 	� � and compare the

values S ����q� �
�� �
P

B�G�
��
����B����
q with S��q� �� �
P

B�G�
���B���
q�

i� To every term in S ����q� �
�� a greater one will be constructed in S��q� ���

Take �� � �� B� 
 G�
�� � Writing C �� $���B�� and D �� $����B����� for short�

��C� � ���B�� 	� � and diam�D� � L � diam��B����� � L
p

d�� � ������ For

every � � �� the choice of which is postponed at the moment� the ��boxes

constitute a covering of IRd� Hence there must be one of them� say BC � which

meets C and is no ��nullset� Consequently BC is in G�� Choosing � suitable

can result in �BC�� � D or D � �BC��� as desired�

B
C

D

B’

Φ

(B) (B’)
κ κ’

(1+2κ)δ (1+2κ’)δ’

Figure ���� $ and $�� are lipschitzian�

a� q � �� The constructed box BC should be large� The claim to prove is�

with �� �� ���L
p

d�� � ��� and b� �� �L
p

d����� � �d the estimate

S ����q� �
�� �

X
B��G�

��
����B�����
q � b�
X

B�G�
���B���
q � b�S��q� �� ����

is valid for every � 
 ����
�� ������
��� First� the de�nition of �� guarantees�

that �� � diam�D�� Thus D is contained in �BC�� �see Fig� ����� and

���BC��� � ��D� � ����B����� 	� �	
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The same estimate holds for the q
th powers and the larger term in

S��q� �� is found� The given construction is not one�to�one� but the

number of all ���boxes B� for which the same box BC has been con�

structed� is bounded by the constant b�� Repeating each term in S��q� ��

b� times produces a counterpart for every term in S ����q� �
��� This estab�

lishes ����� To prove the mentioned property of b� �x B� If B has been

constructed as the counterpart of some B�� then $�B� � B� 	� �� But

since diam�$�B�� � L
p

d� � L
p

d������
�� there are at the most b� boxes

B� which can intersect $�B�� So� we are done�

b� q  �� This time the constructed box B should be small� For any � �

�� � �� �� ��� � ��
p

dL�������� the set �B�� is contained in D and so

� 	� ��B� � ���B��� � ��D� � ����B������ Rising the inequality to the

q
th power reverses the sign� Similar as in a� the number of boxes B��

which lead to the same B� is bounded� since diam�$�B�� � L
p

d���
��

at the most b� � �L
p

d�� � �d ���boxes can meet $�B�� This implies

immediately�

S ����q� �
�� � b�S��q� �� � � � ���
�	 �����

ii� Interchanging K with K � and � with �� yields�

a� q � �� S��q� �� � b	S
�

���q� �
�� � �� 
 ��	�� �
���	��	 �����

b� q  �� S��q� �� � b
S
�

���q� �
�� � �� � �
�	 �����

iii� It is easy to derive the desired conclusions from i� and ii�� The proof is only

given for the limes superior�

a� q � �� Applying ����� with �� � �	� implies�

logS��q� ��

� log �

� logS ����q� �
�� � log b	

� log���� � log �	
�

hence

lim sup

���

logS��q� ��

� log �

� lim sup

����

logS ����q� �
��

� log ��
	

On the other hand� given ��� n can be chosen such that �n � ���
� � �n���

Then �n � ����n�� � ���
����� and with ����

logS ����q� �
��

� log ��

� logS�n�q� �� � log b�

� log��n� � log ��
�

thus
lim sup

����

logS ����q� �
��

� log ��

� lim sup

n��

logS�n�q� ��

� log �n

� lim sup

���

logS��q� ��

� log �
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b� q  �� The argument is the same as in a� except that n is such that �n�� �

���
� � �n� Applying then ����� to � � �n gives the estimate of the

numerator� and �n � ��n�� � ����
� bounds the denominator�

Summarizing�

lim sup

���

logS ���q� �
��

� log �

� lim sup

���

logS��q� ��

� log �

� lim sup

n��

logS�n�q� ��

� log �n

�q 
 IR	

Thereby it is of course possible to choose �� � � or $ to be the identity� �

It is interesting to know how the modi�cation in the measurement of the concentra�

tions of � a�ects the singularity exponents�

Proposition ��� Let ��n�n�IIN be an admissible sequence� Then

T �q� � ��q� � lim sup

n��

log s�n�q�

� log �n
� T �q� � � �q� � lim inf

n��

log s�n�q�

� log �n

for any q � � and

T �q� � ��q�� T �q� � ��q�

for any q  ��

Remark Example ��� provides a multifractal and two admissible sequences ��n�n�IIN

and ��n
��n�IIN with

T �q� � lim
n��

log s��n�q�

� log ��n
 lim

n��
log s�n�q�

� log �n
� ��q� �� �q  �	

Proof The argument is only given for T �q� und ��q��

The �rst part is easy� the measure of each box B 
 G� is nonvanishing and certainly

smaller than the one of �B��� Since the sums s��q� und S��q� run over the same

boxes� this gives immediately

��q� � T �q� �q � � ��q� � T �q� �q  �	 ���	�

Now take q � �� To every term in S��q� a greater one will be found in s��q�� Take

B 
 G�� There are exactly b� � �d ��boxes C intersecting the parallelbody �B���

Letting CB to be one of maximal measure among them yields

�  ���B��� �
X

C	�B�� 
��
��C� � b���CB�	 �����

Now �x a ��box C and ask� how many ��boxes B could possibly share C as CB�

Since C und �B�� meet� so do B and �C��� But �C�� intersects at the most b�

��boxes B� So� observing ����� and repeating the terms in s��q� results in�

S��q� � bq�
X

B�G�
��CB�
q � bq� � b�
X

C�G�
��C�q � bq��
� s��q� �� � �	
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Applying this to the admissible sequence �n� proposition ��� and ���	� yield�

T �q� � lim sup

n��

logS�n�q�

� log �n
� lim sup

n��

log s�n�q�

� log �n
� ��q� � T �q�	

It is not possible to carry out this construction for negative q� Of course to every

��box C one may �nd a ���box B� the parallelbody of which is contained in C� But

as example ��� shows� it is not possible to guarantee simultaneously ��B� 	� � and

�� � const � �� �

The de�nition of the spectrum will now be modi�ed in the same way as the one for

the singularity exponents�

De�nition ��� Spectrum� The semispectra F� and F� are given through

N���� �� "fB 
 G� � ���B��� � ��g M���� �� "fB 
 G� � ���B���  ��g

F���� �� lim sup

���

logN����

� log �

F���� �� lim sup

���

logM����

� log �
	

They have to be considered as auxiliary functions enabling a better treatment of the

spectrum� which is de�ned as follows�

F ��� �� lim
���
lim sup

���

log�N��� � 
��N���� 
��

� log �

	

Thereby the value �� is allowed�

It should be emphasized that this notion uses measures ���B��� where the boxes

B have been selected by the condition ��B� 	� �� In order to discuss problems of

convergence F ��� will be called grid�regular� whenever the lim sup��� is actually a

limes� i�e� whenever
F ��� � lim

���
lim

���
log�N��� � 
��N���� 
��

� log �

�����

for a particular ��

F will prove to be free of the kind of anomalous behaviour f su�ers from� For

instance� for the middle third Cantor measure �Ex� ���� one �nds F � f �� while f

is only known in the increasing part�

First the regularities of the semispectra corresponding to the ones of the singularity

exponents will be proven� The equality T � � �q � �� translates to F����� �

f������ In words� the rising part of the spectrum is essentially left una�ected by

the replacement of ��B� by ���B���� Moreover� F is essentially invariant under

admissible coordinate transformations and one may use an admissible sequence for

its calculation�

The functions F���� and f���� are monotonous increasing� F���� and f����

monotonous decreasing� Thus the onesided limites F����� � lim��� F
��� � 
��

etc� exist�

���� AN IMPROVED FORMALISM ��

Proposition ��� The values F������ F������ F����� and F����� are invari�

ant under admissible coordinate transformations� Moreover� they can be calculated

through admissible sequences and do not depend on the particular choice � � � of

the constant factor the boxes are enlarged with� In addition

F����� � f������ F����� � f�����	

Remark Equality between F� and f� may fail as example �� shows�

Proof The labeling of the steps in this proof as well as some constants correspond

to the ones in the proof of proposition ���� since the basic idea of the argumentation

is the same� As above the notation �� � $��� K
� � $�K� etc� is used� The counting

function N���� �� corresponding to � and enlarged boxes �B�� is compared with

N �
����� �
�� corresponding to �� and enlargement ��� This is done to take advantage

of symmetries�

o� The case �  � is trivial�

a� N �
����� �
�� � N���� �� � n���� � �� F���� � f���� � ��	

b� M���� �� � m���� � "G� � S���� �� and M �
����� �
�� � m�

����� �
�� �

"G�
�� � S ������ �
��� Furthermore� F���� � f���� � T ��� due to ����

and ����� �with q � ���

For the remainder � � � is assumed�

i� Take �� � �� B� 
 G��
�� and 
 � � arbitrarily� Since $���B�� has positive ��

measure� there must be a box B from G�
� intersecting it� The intention is to

compare ����B����� with ���B��� for a suitable ��

a� Concerning N�� Take B
� with ����B����� � ����� and choose � such that

�B�� has large measure too� for � 
 ����
�� ������
�� the set $����B����� is

contained in �B��� For � small enough� i�e� � � ������
���� one obtains

���B��� � ����B����� � ����� � ������ �� � ����	

So far a B 
 G�
� was constructed for every B
� 
 G��

�� � Several B
� can lead

to the same B� But at the most b� such B
� can intersect the same ��xed�

B� Consequently

N �
����� �
�� � b�N��� � 
� ��	

Moreover� for su�ciently small �� � � there is an integer n such that

�n � ���
� � �n��� This implies �n � ����n�� � ������
�� allowing to

conclude from the considerations above �� � �n� � � ���

lim sup

����

logN �
����� �
��

� log ��

� lim sup

n��

logN�n�� � 
�

� log �n

� F��� � 
�	 �����
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b� Concerning M�� Take B
� with ����B�����  ����� and choose � such that

�B�� has small measure too� for � � ���
� the set �B�� is contained in

$����B������ So� if � � ��
��� then

���B��� � ����B�����  ����� � ���� �� � ����	

And by a similar argument as above

M �
����� �
�� � b�M���� 
� ��	

Moreover� if n 
 IIN is such that �n�� � ���
� � �n then �n � ��n�� � ����
��

Using this to estimate the denominator the considerations above yield

�� � �n� � � ���

lim sup

����

logM �
����� �
��

� log ��

� lim sup

n��

logM�n��� 
�

� log �n

� F���� 
�	 ������

ii� Interchanging K with K � and � with �� in i� gives�

a� Concerning N�� N���� �� � b	N
�

���� � 
� ��� for �� 
 ��	�� �
���	�� and �

su�ciently small� With � � � and �� � �	�

F���� � lim sup

����

logN �
���� � 
� ���

� log ��

� ������

and with � � �� � �� $�identity

lim inf

n��

logN�n���

� log �n
� lim inf

����

logN���� � 
�

� log ��

	 �����

Thereby one has to pick the one integer n satisfying ����	�n��  �� �

����	�n for given �
�� ����� will be used later�

b� Concerning M�� M���� �� � b
M
�

���� � 
� ��� for �� � �
� and � su��

ciently small� With � � ��

F���� � lim sup

����

logM �
����� 
� ���

� log ��

	 ������

iii� Applying ����� and ������� resp� ������ and ������ with di�erent values �� �� 
�

�� 
 and so on� the invariance of F����� resp� F����� is readily derived�

Finally let us compare F with the former formalism f �

iv� The trivial estimate ��B� � ���B��� implies f
���� � F���� and f���� �

F�����

v� Let 
 � �� To every given ��box B with ���B��� � �� ����� gives a ��box CB

with

��CB� � b��� ���B��� � �����

provided � � b
����

� � At the most b� boxes B may generate the same ��xed�

CB� Consequently� N���� � b� � n��� � 
� and F���� � f��� � 
��

���� AN IMPROVED FORMALISM ��

vi� From iv� and v� f����� � F����� and f����� � F������ �

Besides being monotonous� F� and F� possess further simple properties� In the

region �  � for instance F���� � �� und F���� � T ���� This is generalized by�

Lemma ���

T��� � max�F����� F����� � T ��� �� 
 IR	

Proof The upper bound is trivial due to "G� � S����� Assume now F����  T ����

Choose � � � such� that F���� � �� � T ���� Then choose a sequence ��n�n�IIN

tending to zero such that

S�n��� � �n
�T ����	 and �n
	 � �



�n 
 IIN	

Now there is n���� such that

N�n��� � �n
�F�����	 � �n
	�n
�T ����	 � �


S�n��� �n � n�	

This implies

M�n��� � S�n����N�n��� �
�


S�n���

and thus F���� � T ���� which proves the claim� �

Finally the relation between the semispectra and the spectrum is investigated� Cer�

tainly

F ��� � min�F������ F������	 ������

The intuition� that equality in ������ should hold� is supported by lemma ���� by the

monotonicity of the semispectra and the intuition that F ��� � supfF �t� � t  �g

� F���� in the increasing part and F ��� � supfF �t� � t � �g � F���� in the

decreasing part� Consider �gure ���� which suggests for which � one can expect

F ��� �F����� at the points where F���� is either strictly monotonous or equal to

��� In fact� to prove the desired equality it is su�cient to require an even weaker

condition� A function t is called quasi increasing at �� if

��  �  ��� implies t����  t�����	

Thereby ��  �� by de�nition� When the same holds with reversed inequality�

t is called quasi decreasing at ��

Proposition ���
 a� If F� is quasi increasing at �� then

F ��� � F����� � f���

and F ��� shares the properties of F����� stated in proposition ��	� If in

addition for any su
ciently small 
 � � there is an admissible sequence �n for

which

lim
n��

logN�n�� � 
�

� log �n

exists� then F ��� is grid�regular�
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b� If F� is quasi decreasing at �� then
F ��� � F�����

and F ��� shares the properties of F����� stated in proposition ��	� If in

addition for any su
ciently small 
 � � there is an admissible sequence �n for

which

lim
n��

logM�n��� 
�

� log �n

exists� then F ��� is grid�regular�

Figure ���� The connection between semispectra and spectrum illustrated using the

spectrum of the middle third Cantor set	 the increasing part of F is given by F��

the decreasing part by F�� Thus F � min�F�� F�� in this example�

Proof For reasons of simplicity only the case � � � is considered� However� it is

immediate that the arguments below apply to any choice of �� From this follows

the independence of F from � under the stated hypothesis�

i� Assume that 
 satis�es F���� 
�  F���� 
�� Given the case F���� 
� 	� ��

this means that N��� � 
� grows essentially faster than N��� � 
�� More

precisely� choose � � � such that F��� � 
� � �� � F��� � 
� and take a

sequence ��n�n�IIN which gives the lim sup F��� � 
�� This means that there

is n���� with

N�n��� 
� � �n
�F�������	� N�n��� 
� � �n
�F�������	� �n
	 � �


������

for all n � n�� This implies

�

N�n��� 
� � N�n�� � 
��N�n��� 
� �n � n�	 ����	�

Observing N���� 
� � � gives

F��� � 
� � lim sup

���

log �N��� � 
��N���� 
��

� log �

� F��� � 
� ������

��
� THE LEGENDRE TRANSFORM OF THE SPECTRUM ��

Given the case F���� 
� � �� there is a �� � � with N���� 
� � � �� � ���

The inequality ������ holds then trivially�

ii� Provided F���� or F����� is quasi increasing at �� ������ holds for all 
 � ��

implying F ��� � F������ If� on the other hand� F� is quasi decreasing at ��

the term M��� � 
� dominates the di�erence M��� � 
� �M��� � 
�� which

equals N��� � 
��N���� 
�� Hence F ��� � F������

iii� Concerning the grid�regularity in a�� by �����

lim inf

���

logN��� � 
�

� log �

� lim inf

n��

logN�n�� � 
��

� log �n

� F���� 
�� � F���� 
�

for su�ciently small 
 � �� Take �rst the case F���� 
� 	� ��� With � � �

satisfying F���� 
� � �� � F���� 
�� it may be proceeded as in i� �nding

����	� to hold not only for a particular sequence but for all su�ciently small

� � �� As a consequence

lim
���

log �N��� � 
��N���� 
��

� log �

� lim
���

logN���� 
�

� log �

� F��� � 
��

which is trivial in the case F��� � 
� � ��� So ����� exists and takes the

value F����� � F ��� by ii�� In the corresponding situation in b� one �nds

the existence of ����� and its value F����� � F ���� �

Finally the modi�ed de�nition of the generalized dimensions reads as�

De�nition ���� Generalized Dimensions�

Dq ��

�
�� q
T �q� �q 	� �� D� �� lim sup

���

�
log���

P
B�G�
���B��� log���B���P

B�G�
���B���

	

��� The Legendre Transform of the Spectrum

As it was already mentioned�and what will be proved in this section�applying the

transformation of Legendre to F leads to T � So� once the spectrum is computed the

singularity exponents are readily obtained�

In typical applications� however� one will meet the converse situation� one would

like to be able to deduce the spectrum from the singularity exponents� This matter

would be straightforward if di�erentiability and concavity of the spectrum could be

assumed� F would simply be the transform of T � But proofs establishing such qual�

ities �BR� Lan� work with a multifractal notion �tailored to multiplicative cascades�

and do not apply to our formalism� Moreover� we put forward counterexamples with

nonconcave spectrum F �Ex� ��� and ��	�� For these multifractals the singularity
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exponents contain less information than the spectrum and cannot be used to obtain

the entire F ����curve�

Calculating F as the Legendre transform of T is thus valid only if it is known in ad�

vance that the spectrum is di�erentiable and concave� It is more convenient to start

with the semispectra F� and F�� which are a priori known to be monotonous� This

property will turn out to be enough to prove that T determines the semispectra and

even the spectrum under reasonable conditions� In particular� no di�erentiability

has to be assumed about F�� To make the terminology precise we de�ne�

De�nition ���� Convexity� A real�valued function t with domain ID is called

convex at the point ��� i there are real numbers q and r such that

r � q� � t��� �� 
 ID ������

with equality holding for � � ��� We call it strictly convex at �� i the inequality

����	� is strict for all � 	� �� in ID� If t is convex at all points of ID� we call it

convex in ID� If ����	� holds with reversed sign we call t concave� respectively strictly

concave�

First a simple result on the Legendre transform is needed� Instead of condemning

the interested reader to an exhausting search of this vast and well known topic we

feel that the proofs are short enough to be presented right here� The assumptions

are tailored to concave functions t and suit our purpose�

Lemma ���� Let t � IR� IR �� IR�f����g be arbitrary and de�ne its Legendre

transform by l�q� �� sup��IR�t��� � q�� for q 
 IR� Then� either l and t are both

identically �� or there exist four numbers A� � A� � A	 � A
 in IR such that

a� l�q� equals � for q not in �A�� A
��

b� l is real�valued� continuous and convex in ID ���A�� A
��

c� l is strictly monotonous decreasing in �A�� A���

d� l is constant and takes its minimal value in �A�� A	��

e� l is strictly monotonous increasing in �A	� A
��

f� �Touching point of t� For all q in �A�� A
� there is a real number x�q��strictly

positive for q 
�A�� A�� and strictly negative for q 
�A	� A
��and a sequence

�xn�n�IIN such that
xn � x�q� t�xn�� l�q� � qx�q� �n���	

Moreover� if l is dierentiable at q� then x�q� � �l��q� is the only touching

point�

��
� THE LEGENDRE TRANSFORM OF THE SPECTRUM ��

g� If l is linear in a neighbourhood of q� then t is not dierentiable at � � �l��q��

h� If A�  A
 and l�A�� resp� l�A
� is �nite� then l�A�� � l�A��� resp� l�A
� �

l�A
���

Figure ��	� The Legendre transform

Proof

i� If there is a q with l�q� � ��� then t must be identically �� and hence l as

well�

ii� Let us assume that q�  q� are such that l�q�� and l�q�� are real numbers� Then� t

is bounded from above by the two linear functions sk��� �� l�qk���qk �k�����

These two meet at ��� � ��l�q��� l�q����q� � q��
��� The linear function with

slope q	 
 �q�� q�� which passes through the intersection point ����� s�������

bounds t as well and hence l�q	� must be a real number too� From this a� and

the �rst part of b� result�

iii� Continuity as well as c�� d� and e� follow directly from convexity� To prove the

latter the existence of x�q� is required �rst� Let q	 
 �q�� q�� as above� By

de�nition there is a sequence �xn�n�IIN such that t�xn� � q	xn � l�q	�� Since

s� and s� bound t� the accumulation points of �xn�n�IIN must all lie between

��	 and ��	� Choose a converging subsequence and call it again xn� Since xn

converges say to x�q	�� t�xn� must converge to r �� s	�x�q	��� The explicit

formula of ��� now gives f�� as soon as c� 
 e� are proven� and g� follows from

f��

iv� Next� the convexity of l is shown using only the existence of x�q�� First� l�q	� �

r � q	x�q	� by de�nition of r� Letting n � �� l�q� � t�xn� � qxn gives

l�q� � r � qx�q	� for all q� Hence l is convex at q	�
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v� It remains to show h�� Take q� 
 fA�� A
g� There is still a sequence xn as above

which may be assumed to converge to x�q�� 
 IR� If x�q�� is �nite the onesided

continuity follows from convexity� If xn � �� then for any 
 � � and q 
 IR

there is n� 
 IIN with l�q� � t�xn� � qxn � l�q�� � 
 � �q� � q�xn for n � n��

For q  q� one concludes l�q� � �� hence q� � A�� Letting q � q� yields

l�q��� � l�q�� � 
� On the other hand� l�q�� � l�q��� since by iv� l is even

with domain �A�� A
� convex at any q 
 �A�� A
� � This proves the claim� The

case xn � �� can be treated in a similar manner� �

Next� the Legendre transforms of the semispectra are calculated� which turn out to

equal T in the essential parts� Since F� is increasing and F� decreasing� one may

only expect T to equal the Legendre transform of F� for q � � and the one of F�

for q  �� Moreover� there is an inherent lack of information about T ���� So it is

useful to express T as the transform of one single function for all q� To this end we

set
De�nition ����

Fm��� �� min �F������ F������ and �� �� supf� 
 IR � F����  F����g	

Proposition ���	

T �q� � sup
��IR
�F����� q�� � sup

��IR
�Fm���� q�� �q � ��

and

T �q� � sup
��IR
�F����� q�� � sup

��IR
�Fm���� q�� �q  �	

Moreover� if �� �� then
T ��� � sup

��IR
Fm��� � sup

��IR
F����	

Example ��� provides a multifractal with �� �� and T ��� � sup��IR F
�����

Remark The proposition could as well be proven with F replacing Fm� However�

as theorem ��� shows� this gives no further information in our context�

Proof The idea of the �rst part is borrowed from J� K� Falconer� We will constantly

make use of the boundedness and the monotonicity of the semispectra �Prop� �����

Write l�q� � sup
��IR
�Fm���� q�� and L��q� � sup

��IR
�F����� q�� for short�

o� As a consequence of the proposition to prove� F� cannot be identically �� due

to T ��� � �� However� for this conclusion to hold the claim of the proposition

has to be veri�ed also for this case� So let us �rst treat the degenerate cases�

First� consider � satisfying F���� � ��� Then� ���B���  �� for all B 
 G��

provided � is small enough� and

S���� � "G� � �� � c � ��d���

��
� THE LEGENDRE TRANSFORM OF THE SPECTRUM �

where c � �diam�K� � �d is a constant and d is the dimension of IRd� From

this � � T ��� � d� �� In particular

� � d  F���� � �� ������

and F� � �� is impossible�

The second degenerate case is� F���� � � for all �� Fix q  � and take �

satisfying F���� � �� Then� there are arbitrarily small � such thatM���� � ��

Thus� for these � there is a box B� 
 G� with ���B
����  �� and

S��q� � ���B����
q � �q�	

From this T �q� � �q�� By ������� the following implication holds�

F���� � � ��  T �q� �� � L��q� � l�q� �q  ��	 �����

Having treated the degenerate cases T shall now be estimated from below by l and

L��
i� Fix q � � and take � with F���� � ��� Of course � � �� For any �  F ���

there are arbitrarily small � � � such that ��
 � N����� For such values �

S��q� �
X

B�G�
���B���
q � X

���B������
���B���
q � N�����
q� � �q��


and hence

T �q� � lim sup

���

logS��q�

� log �
� � � q�	

Since � is arbitrary� T �q� � F����� q�� This is trivial if F���� � ��� Thus

T �q� � L��q�� To establish T �q� � l�q� just take the limit �� � � and obtain

T �q� � F������ q� � Fm���� q� for all ��

Note� assuming the existence of lim����� logN����� log �� one may even con�

clude T �q� � F����� q��

ii� Fix q � �� A similar argument as in i� yields T �q� � F���� � q� for � � ��

Moreover� by direct calculation T �q� � T ��� � F���� � F�����q� for � � ��

Hence T �q� � L��q� and T �q� � l�q��

Note� assuming the existence of lim����� logM����� log �� one may even con�

clude T �q� � F����� q��

Now� to estimate T from above� �x 
 � � and split G� into sets of boxes with �
k� �

���B���  ��k����� For convenience denote these sets by G��k�� Their cardinality is

bounded by N��k
� as well as by M���k� ��
�� The appropriate bound will have to

be carefully chosen� depending on whether F� or F� is estimated and whether k


is greater than �� or not�
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iii� T � L� for q � �� Fix q � � and take 
 � �� Note that by ������ L��q� 
 IR�

Choose m 
 IIN large enough to insure L��q� � qm
 � d� Then

S��q� �
� mX

k��
X

G��k�
�

X
� 
����B�����m�

�
���B���
q �
mX

k��
N��k
��
q�k���� �"G� � �qm�	

Choose �� such that
N��k
� � ���L

��q��qk���� �k � � 	 	 	m�

for all �  �  ��� Then

S��q� �
mX

k��
���L

��q��q���� � c��L
��q� � �m� � � c����L
��q��q����

for �  ��� and hence T �q� � L��q� � q
� 
� Thereby 
 � � is arbitrary�

iv� T � l for q � �� If �� � � then F� � Fm and by iii� l � L� � T for q � ��

Otherwise� �x q � � and assume without loss of generality l�q� 	� �� Take


 � � and choose m 
 IIN such that m
  �� � �m � ��
� Then� for � � m
�

S��q� �

� mX
k��

X
G��k�

�

X
�����B�����m�

�

X
�
����B������

�
���B���
q

�
mX

k��
N��k
��
q�k���� �N�����
qm� �M�����
q�	 �����

First to the case F������ � F������� Choose � � �� such that F���� �

F������ � 
� Then

F���� � Fm���� � 
 � l�q� � q�� � 
�

F���� � F����� � Fm��� � l�q� � q��

F��k
� � F��k
�� � Fm�k
� � l�q� � qk
	

If l and Fm were identically �� then by ����� S��q� � � for small enough ��

This is impossible� thus l�q� 
 IR� Now there is �� such that

N��k
� � ���l�q��qk���� �k � � 	 	 	m�

and

N���� � ���l�q��q�
������ M���� � ���l�q��q����

for all �  �  ��� Hence

S��q� � �m � �����l�q��q���� � ���l�q��q����� � ���l�q����

and T �q� � l�q�� Now� to treat the case F������ � F������� choose � 


�m
� ��� such that F���� � F������ � 
� This time F���� � Fm��� �

l�q� � q� and F���� � l�q� � q�� � 
� The rest goes along similar lines�
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v� T � L� for q  �� unless F� � �� which is treated in ������ one may assume

the existence of a � with F���� � ��� Fix q � � and take 
 � �� Choose

m 
 IIN satisfying m
 � �� Then M��m
� � � and� similar as in iii��

S��q� �
mX

k��
M���k � ��
��qk� � �m � �����L
��q��q����

for small enough �� thus T �q� � L��q��

vi� T � l for q  �� as above one may assume F���� � ��� Fix q � � and take


 � �� Since �� � �  � there are integers n and m such that n
 � � and

m
 � �� � �m � ��
� Then M��n
� � � for small enough � and� provided

�  m
�
S��q� �

� X
�����B���

�

X
�m����B������

�

nX
k�m��

X
G��k�

�
���B���
q

� N�����
q� �M�����
qm� �

nX
k�m��

M���k � ��
��qk�	

Choosing � 
 ��� � 
� ��� such that F���� � F������ � 
 in the case

F������ � F������� resp� � 
 ���� m
� such that F���� � F������ � 


in the case F������ � F������� a similar argumentation as in iv� yields

T �q� � l�q��

vii� For q 	� � the assertions are proved� Provided ��  � iv� holds for q � �

giving with i�� T ��� � l��� � sup��IR F
m��� � sup��IR F
���� � T ���� �

The notes in step i� and ii� of the proof above imply�

Lemma ���� The grid�regularity of T �q� is a consequence of the existence of

lim
���

logN����

� log �

�if q � �� resp� lim
���

logM����

� log �

�if q  ���

where � � �T ��q� and continuity of F� resp� F� at � is assumed�

Moreover� proposition ���� implies that T is convex�

Lemma ���� T is certainly continuous� nonincreasing and convex on IR�� More�

over� either these properties hold on all of IR� or T �q� is in�nite for all q  ��

Proof The monotonicity of S��q� with respect to q carries over to T � Continuity and

convexity follow from general properties of Legendre transforms� Furthermore� either

F���� � � for all � and T �q� � � for all negative q by ������ Or F���� � ��

for � large enough% then T �q� is real�valued for all q and �� � by ������� �
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Example ��� provides a multifractal with grid�regular T �q�� which is not even semi�

continuous at �� Consequently for this multifractal T �q� �� for all q  ��

Now it shall be investigated under which conditions the singularity exponents T

determine the semispectra and hence the spectrum itself� Since there are no regu�

larity conditions imposed on the semispectra� some assumptions must be made on

the singularity exponents�

Theorem ��� a� If T is dierentiable at some q 	� � and if � � �T ��q�� then

F ��� � Fm��� � T �q�� qT ��q�	 ����

In particular� F ��� shares the properties of F����� stated in proposition ��	�

b� Assume that T is continuously dierentiable in an open interval U and let V �

�T ��U�� Then� ������ holds for all q 
 U �including �� and F restricted to V

is strictly concave in the interior of V �

If� in addition� U contains �� T is continuous in U �f�g and T � is bounded in

U � then the equality F � Fm and the continuity of F extend to V �

If� in addition to this� U contains an interval of the form ��� 
�� then �� ��

c� Provided that T is twice�continuously dierentiable in an open interval U with

nonvanishing second derivate� then F is dierentiable with respect to � at

� � �T ��q� with derivate q�

For measures with a situation as described in b� see examples ���� ��	 and �MEH��

Proof Again we often use max�F�� F�� � T ��� without pointing to it�

i� Fix q � �� Apply lemma ���� f� to t � F�� Note that A� � � and A
 �� due

to F���� � � for � � d and F���� � �� for �  �� Set &� �� x�q� � limxn�

The monotonicity of F� then implies F��&��� � limn�� F��xn� � T �q�� q&��

On the other hand� F���� � T �q� � q� for all �� which leads to

F����� � T �q� � q� �� 
 IR� q � ��	 �����

Consequently� F����� � T �q� � q��  T �q� � q&� � F��&��� � F����� for

��  &�  ��� Thus� F
� is quasi increasing at &�� Proposition ���� yields

F �&�� � F��&��� � T �q� � q&�	 �����

To show that F��&��� � F��&���� assume that there is a � � � such that

F��&��� � F��&��� � �� Note that F��&��� � F �&�� is real� By lemma ����

�with t � Fm� there is a sequence xn � &� with Fm�xn�� T �q��q&� � F��&���

for n � �� By monotonicity of F� there is n� 
 IIN such that F��xn� �

F��&��� � � for all n � n�� implying Fm�xn� � F��xn� � F��&��� � � �

limFm�xn�� �� This is a contradiction�

If q  � is such that T is real�valued in a neighbourhood� then &� � x�q� is
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real and by similar arguments as above F����� � F��&��� � T �q� � q&� �

T �q� � q�� � F����� for ��  &�  ��� Thus

F �&�� � F��&��� � T �q� � q&�� �����

which proves �����

Now assume that T is continuously di�erentiable in U � Set U� � U� ����� � U� �

U� ���� �� and Vk � �T ��Uk� �k � �� �� Note that Vk is an interval� not necessarily

open�

ii� First� take q� from U� and set &� � x�q�� � �T ��q��� By ����� and �����

F �&�� � F��&��� � min
q�IR�
�T �q� � q&�� � � sup

q�IR�
��T �q�� q&��	 ���	�

By lemma ���� b� and h� �with t�q� � �T �q� �q � ��� t�q� � �� �q � ��� F

restricted to V� is continuous� This is trivial if V� is a singleton� Suppose F

were linear in a neighbourhood of &� � �T ��q��� contained in V�� Then� again

by lemma ���� f� and g�� t wouldn�t be di�erentiable at the unique touching

point x�&�� � F ��&��� By ����� this point is q�� giving a contradiction� Hence

F must be strictly concave and strictly increasing in int�V���

iii� More can be said� Since F� is strictly increasing in int�V��� it is still quasi

increasing at the boundary of V� and hence F ��� equals F����� in all of

V�� In case that int�V�� is empty� this is trivial by ������ In particular� F is

rightcontinuous at the left boundarypoint of V��

iv� The same argumentation applies to F�� showing that F is continuous and equal

to F����� � Fm��� in V� and that it is strictly concave and strictly decreasing

in int�V��� Moreover� it still equals F����� at the boundary of V� and is

leftcontinuous at the right boundary of V��

v� The case q � � needs a special treatment� since the Legendre connection is in

general not established for q � �� and since the loss of the strict monotonicity

inhibits the argumentation of i�� However� it is enough to know that q �

� corresponds to the maximum of F � The only assumptions are� � 
 U �

continuity of T in U � f�g and boundedness of its derivate for q � � in U �

This is certainly satis�ed when U contains ��

Assume �rst U� 	� �� By convexity &� � �T ��q� increases� say to ��� when

q � �� Of course �� 
 V�� If � 
 U � then �� � �T ����� From �����

F������ � lim
q��
F��&��� � T ����

thus actually equality� By iii� T ��� � F������ � F ����� which in fact proves

�� � ��  � and establishes ���� also for q � � �provided U� 	� ��� More�

over� if V� 	� f��g then it was just proven that F����� is left�continuous at ���
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Thus� F������ � F������� since F����� � F����� in V�� Consequently�

F������ � F������ � T ���	 �����

Similar F ���� � F������ � T ��� for �� � limq�� � � T ��q��� provided that

U� 	� �� Thus� ���� is established also for q � �� since U� and U� are not

both empty�

Moreover� by the strict monotonicity of F in V� and V�� the spectrum is also

in �� strictly concave and attains there its maximal value� Finally� to prove

F ���� � Fm���� proceed as follows� If V � f��g then �� � �T ��q� for all

q 
 U and the claim follows from ii� or iv�� Otherwise� V� and V� cannot both

equal f��g� The assumption V� 	� f��g can be used to prove ����� similar as

it is carried out with V�� Hence ����� is valid� implying what we claimed�

vi� Step ii�� iv� and v� give the continuity of F and the equality F � Fm at the

boundary of V under the assumptions stated in b�� An application of the

inverse function theorem to �T � completes the proof� �

Due to theorem ��� the spectrum is pretty well determined by T � unless the latter is

piecewise linear� In this case only the values at some �wedge��points can be obtained�

However� in the degenerate case this turns out to be enough�

Proposition ���� If T is everywhere linear� i�e� T �q� � T ���� ��q� then

F ��� �
�

T ��� if � � ��

�� otherwise�

This comes to its extreme with T �q� � � for a Dirac measure ��

Proof By ����� F���� � T �q�� q� � T ���� q������ for any � and any positive

q� This allows to conclude with proposition ���� F ��� � F���� � �� for �  ��

and F ��� � F���� � �� for � � ��� Theorem ��� gives F ���� � T ���� �

Besides concavity there is a further property of F one will typically meet and which

arises from the Legendre connection of T and F �

Proposition ���� a� Dq is positive and nonincreasing for q � �� moreover� it is�

except maybe at ��continuous� Provided �� �� these properties hold in the

whole interval in which Dq is real�valued� in particular at ��

b� The existence of limq��Dq is equivalent with the dierentiability of T at � and

implies the following three facts� F touches the inner bisector of the axes at

D� � F �D���

lim
q��
Dq � D� � d� � �T ����

and D� does not depend on the choice � � � in the de�nition �����
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Since the range of Dq is of interest� we let D� denote the in�mum and D�� the

supremum of Dq over all real q� In the case �
� � one �nds

D� �� inf
q�IR
Dq � lim

q��
Dq and D�� �� sup

q�IR
Dq � lim

q���
Dq�

where the value D�� �� is allowed�

Proof From T ��� � ���� � �

Dq � �T �q�� T ���

q � �

for q 	� �	

By lemma ���� Dq is real�valued for q � �� q 	� �� Since it equals the negative

slope of the line intersecting the graph of T at � and at q� it cannot increase and is

positive� Now let �  q�  �  q�� Fix � � � and � � � and set

h�q� �� log �
X

B�G�
���B���
q� � log�S��q� ����

supplementing ����� with �B�� �� B� Since G� is �nite� h is smooth and�by ele�

mentary calculus�convex� The mean value theorem of calculus gives

h�q��� h���

q� � �

� h���� � h�q��� h���

q� � �

	

Dividing by log � and letting � � � gives

Dq� � lim sup

���

�
log���

P
B�G�
���B��� log���B���P

B�G�
���B���

� Dq�	 �����

Thereby proposition ��� and T ��� � ���� � � were used� So� monotonicity of Dq

holds throughout q � � and the proof of a� is complete� Trivially limq��Dq �

�T ����� Let us assume that this limes exists� It must by ����� take the value D��

which does not depend on � � �� With � � � ����� gives D� � d�� Furthermore�

F �D�� � T ���� T ���� � D�

by theorem ���� Observing N��� � 
� � � and applying ����� with q � � shows

F ��� � F����� � � for all � and the proof is complete� �

Comparing the de�nition of Dq with the one of D� one might suggest that the latter

provides a di�erent and speci�c information about the multifractal �� Indeed� D�

is considered to be the most interesting among all Dq �Gr� GP�� Apart from

proposition ���� there are further facts which support the peculiarity of D�� They

are listed without intention to be rigorous�

� D� is the only Dq which remains invariant under a greater family of coordinate

transformations �OWY� Koh��
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� The measure � is concentrated on a set of dimension D� �Falc�� GH��� In

this context it should be referred to subsection ����� in particular to the

examples ���� ��� and ��� therein�

� Closely related to the latter is the fact� that D� often equals the Hausdor�

dimension of �� In addition� the Hausdor� dimension of certain self�similar and

of some self�a�ne sets can be obtained as the maximal information dimension

D� of the canonical invariant measures� Compare example �	 on page �� and

����� on page ����

� Amazing too is the fact that for the family of self�a�ne multifractals in chapter

three the di�erentiability of T can be proved a priori only at q � ��

Finally� some remarks on the grid�regularity of T �q� and F ��� are added� First�

remember proposition ���� and lemma ���	� To conclude in the opposite direction

one can use the theorem below� It gives the grid�regularity of F ��� and even gen�

eralizes ���	�� But it has the disadvantage of not allowing piecewise di�erentiable

functions T � which may appear with self�a�ne multifractals�

Theorem ��� If T is grid�regular and dierentiable on all of IR� then

lim
���
lim

���
log�N��� � 
��N���� 
��

� log �

� F ��� � inf
q�IR
�T �q� � q�� �� 
 IR	

In particular F ��� is grid�regular for all �� Moreover� F is real�valued exactly in

�D�� D��� and continuous there� Thereby� the formula

D�� � lim
q���
�T ��q�

is valid�

Proof Write l��� � � infq�IR�T �q� � q�� � supq�IR��T �q�� q�� for short�

i� T is convex for q � � and for q  �� Since it is di�erentiable at �� it has to be

convex there as well�

ii� Now take any sequence ��n�n�IIN of positive numbers� tending to zero� and �x it�

In order to apply Ellis� theorem II� �Ell� page �� supply G�n with the uniform

distribution denoted by Pn� De�ne the random variable Yn�B� �� log����B���

on G�n and calculate its moment generating function�

En�e
qYn � �

�
"G�n

X
B�G�n

���B���
q �

�
S�n���
S�n�q�	

Next de�ne an �� � log �n and

cn�q� ��
�

an
logEn�e
qYn � �
logS�n�q�

� log �n
� logS�n���

� log �n
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The hypothesis of the theorem to be proven and i� imply� that

c�q� �� lim
n��
cn�q� � T �q�� T ���

exists and is a convex function� di�erentiable on all of IR� Thus� the hypotheses

of Ellis� theorem are satis�ed�

iii� De�ne now
I�z� �� sup

q�IR
�qz � c�q�� � � inf

q�IR
�T �q�� qz � T ���� � T ��� � l��z�

and set H �� ������ � G �� �� ���� for a �xed� but arbitrary �� Then

Pn�
�

an
Yn 
 G� � Pn�
�

an
Yn 
 H� � Pn�Yn � log �n
�� �

�
S�n���
N�n���	

Ellis� theorem II� now reads as

� inffI�z� � z 
 Hg � lim sup

n��

�
an
logPn�
Yn

an

 H� � lim sup

n��

logN�n���

� log �n
�T ����

� inffI�z� � z 
 Gg � lim inf

n��

�
an
logPn�
Yn

an

 G� � lim inf

n��

logN�n���

� log �n
� T ���	

iv� Applying lemma ���� to the function t � �T gives A�� 	 	 	 � A
 with the obvious

properties� Thereby� A� and A	 coincide because t is di�erentiable at �� Fur�

thermore� since T is di�erentiable and convex� it must be continuously di�er�

entiable� The expressions for D� and D�� follow now from their de�nitions�

and the explicit formula for the Legendre transform l�t��q�� � t�q� � qt��q�

gives A� � D�� A
 � D��� Even F � �l is now established in �D�� D����

but not yet the grid�regularity� By continuity of l

inffI�z� � z 
 Hg � inffI�z� � z 
 Gg �
���

��
� � l��� if �  A��

T ��� � l��� if A�  � � A��

T ��� � l�A�� if A�  �	

The value � � A� has to be omitted to guarantee the �rst equality�

v� Since the sequence �n was arbitrary� iii� and iv� imply

F���� � lim
���

logN����

� log �
�

� �l��� if � � A�� � 	� A�

�l�A�� if � � A�	

Moreover� this function is strictly monotonous increasing in �A�� A��� Thus� the

additional precondition of proposition ���� a� is satis�ed for any � 
 ���� A���

giving the grid�regularity of F ��� and its value

F ��� � F����� �
�

� �l���� if �  A�

� �l�A�� if � � A�
�

� �l���	

Note that also the special value � � A� �lemma ���� h� and the special case

A� � A� are covered�
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vi� Changing only the de�nitions of H and G to H ��������� and G ���������

results in
Pn�
�

an
Yn 
 H� � Pn�
�

an
Yn 
 G� � Pn�Yn  log �n
�� �

�
S�n���
M�n���	

Ellis� theorem gives

� inffI�z� � z 
 Hg � lim sup

n��

�
an
logPn�
Yn

an

 H� � lim sup

n��

logM�n���

� log �n
�T ���

and
� inffI�z� � z 
 Gg � lim inf

n��

�
an
logPn�
Yn

an

 G� � lim inf

n��

logM�n���

� log �n
� T ���	

Since A� � A	� one �nds

inffI�z� � z 
 Hg � inffI�z� � z 
 Gg �
���

��
T ��� � l�A�� if �  A��

T ��� � l��� if A� � �  A
�

� � l��� if A
  �	

A similar argument as above gives the grid�regularity of F ��� and its value

F ��� � F����� � �l���

for all � � A�� This completes the proof� �

This proof revealed some facts about the semispectra�

Lemma ���
 If T is grid�regular and dierentiable on all of IR� then F ��� � Fm���

for all � and

F���� � lim
���

logN����

� log �

�� 	� A�� F���� � lim
���

logM����

� log �

�� 	� A
�	

Chapter �

Self�Similar Multifractals

This chapter is devoted to the multifractals arising from a generalization of the

Cantor set construction� Sometimes this kind of construction is referred to as a

�multiplicative cascade� �EM� or as a �Moran construction� �CM�� For the resulting

measures we will use the short form CMF� which may be read as Cantor Multifractal

or Cascade Multifractal� Though all CMFs will share a common basic structure�

their diversity is great enough to �t in the various applications �HP� V�� TV� GS�

T�el�� In section one we give the de�nition of CMFs and prove some properties they

have in common� In section two we present a short survey of a special case of

this construction� the Iterated Function Systems IFS� which are widely used and

studied �Bar� Falc�� Falc�� BEH� BEHM� Bed�� Bed�� GH� GM� Ma�� Ma�� Again

a special kind of IFS are the well�known self�similar measures� The computation of

their multifractal spectrum is carried out in section three and applications follow in

section four�

��� Cantor Set and Codespace

First� the usual formalism in connection with Cantor sets and symbolic dynamics is

introduced� For a full treatment of the statements made in this section �Hut� is a

good reference�

Fix a natural number r� To design a so�called r�adic Cantor set K one generalizes

the construction carried out in example ���� Take a compact subset V of IRd and

choose r closed subsets V�� 	 	 	 � Vr of V � not necessarily disjoint� Now go on like this�

replacing V by Vk and denoting the subsets of Vk by Vk� 	 	 	 Vkr� So� inductively r

closed subsets Vi�k �k � �� 	 	 	 � r� of Vi are obtained� where

i �� i� 	 	 	 in 
 In �� f�� 	 	 	 � rgn and i � k �� i� 	 	 	 ink

for short� We will address i as a �nite word� or just word� of length jij �� n� and

denote by I � �n�IINIn the set of all words� Moreover� it is convenient to introduce

��
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the empty word nil� and to de�ne nil � k �� k and Vnil �� V � The sets Vi may

overlap� but

max fdiam�Vi� � i 
 Ing � � �n���

is required� Then de�ne
Kn ��


i�In
Vi and K ��
�

n�IIN
Kn	 ����

The sequence Kn is sometimes addressed as a cascade� Since it is a decreasing

sequence of compact sets� K is compact too and not empty� It is often a fractal�in

the sense of dbox�K� 	
 IIN�and carries a rich geometrical structure�

The decreasing diameters of the sets Vi enable one to codify the points of K� Call

I� �� fi� � i�i� 	 	 	 � ik 
 f�� 	 	 	 � rg� k 
 IINg � f�� 	 	 	 � rgIIN

the codespace and set

�i�jn� �� i� 	 	 	 in 
 In	

For �xed i� the sets V�i
�

jn� �n 
 IIN� build a decreasing sequence of compact sets�

Thus their intersection will not be empty� Since their diameter decreases to zero�

this intersection is a singleton� say fxi
�

g� and the coordinate map

� � I� � K i� �� xi
�

is continuous and surjectiv �I� carries the product topology of the discrete spaces

f�� 	 	 	 � rg�� Moreover� if the sets Vi �i 
 In� are mutually disjoint for n large enough�

then � provides a homeomorphism of the topological spaces I� and K�

Now a measure � is introduced which is supported by K and which carries informa�

tion about the construction of K� Let �p�� 	 	 	 � pr� be a probability vector� i�e� pi � �

and p� � 	 	 	 � pr � �� and let P be the product measure on I� induced by the

measure fjg �� pj on the factors f� 	 	 	 rg� i�e�

P �fi� 
 I� � ikm � jm� m � � 	 	 	 ng� � pj� � 	 	 	 � pjn �� pj

for all n 
 IIN� all words j of length n and all integers k�  	 	 	  kn� This measure

P exists due to Kolmogorov�s consistency theorem �Pth� p ����� It is Borelsch and

P �I�� � �� Thus the measure � �� ��P �i�e� ��A� � P �����A�� � has total mass

��IRd� � � and at least the Borel sets of IRd are measurable� Moreover�

��Vi� � P �fj
�


 I� � ��j
�
� 
 Vig� � P �fj

�


 I� � �j
�
jn� � ig� � pi ���

with equality holding certainly if Vi does not intersect any Vk with jkj � jij� For

later use note� that if equality does hold in ��� for all �nite words i of su�ciently

large length� then any singleton is a null set�

From ��� it is easy to see� that � is supported by K� For if x would lie in K

but not in supp���� there would be a neighbourhood W of x which would not meet

���� CANTOR SET AND CODESPACE ��

supp���� But since there is also a set Vi contained in W and ��Vi� � pi 	� � this is

not possible� The reverse� i�e� supp��� � K� is immediate�

Thus � is a multifractal� uniquely determined by the coordinate map and the prob�

ability vector� To express this we introduce the following notation�

� � h�% p�� 	 	 	 � pri	 ����

De�nition ��� A multilfractal � � h� % p� � 	 	 	 � pri constructed as above will be

called Cantor Multifractal� for short CMF� Its support is K � ��I���

It is also common to say that � is constructed by a multiplicative cascade� referring

to the product structure of P as well as to the construction of K�

At this point we would like to stop for a moment and explain what is meant by a

multifractal formalism �tailored to multiplicative cascades�� This simply means that

in the de�nitions ��� and ��� of S��q�� N���� and M���� coverings by ��boxes are

replaced by coverings consisting of the cylindrical sets Vi with jij � n�

By de�nition� this multifractal formalism does not distinguish between � on IRd and

P on I�� On the one hand� this allows the use of symbolic dynamics� which is most

e�ective �BR� CM�� On the other hand� it lacks geometrical relevance since � is not

involved�

This relevance is provided by the approach proposed in this thesis� Compare the

proofs of our main theorems �� and ��� and also example ����

All CMFs have some regularity properties in common� A �rst one is the following�

Lemma ��� Given any measure �� substituting the condition ���B� 	� �� in the

de�nition of S�� N� andM� �see de�nitions ��� and ���� by the condition �B�K 	� ��

will not aect the values of T �q�� T �q�� F����� and F������

This might be important in numerical simulations� In particular for q � ��

Corollary ��� The box dimension of the support of any measure � equals

dbox�K� � T ��� � D�

and dbox�K� exists exactly when T ��� is grid�regular�

Proof Let B denote a ��box� Then� since B�K 	� � is a stronger requirement than

��B� 	� ��

S��q� � X
B	K 
��

���B���
q

N���� � "fB � B �K 	� �� ���B��� � ��g

M���� � "fB � B �K 	� �� ���B���  ��g	

On the other hand� if B �K 	� � holds� then by the very de�nition of the support

of a measure

���B����� 	� �	
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Thus� there exists CB 
 G��� and DB 
 G��� i�e� with nonvanishing measure� both

meeting �B����� Since

�CB�� � �B�� � �DB�� � �B���

and at most d� resp� �d ��boxes B can share the same �xed C from G��� as CB resp�

the same �xedD fromG�� asDB� the argumentation of the proofs of propositions ���

and ��� applies� �

Often there exist r numbers �i 
��� �� �i � �� 	 	 	 � r� such that�

diamVi

diamV
� �i �� �i� � 	 	 	 � �in

for all words i � i� 	 	 	 in 
 I� If this is the case� the Cantor set and any resulting

CMF will be called contractive with ��� 	 	 	 � �r� A su�cient� but not necessary

condition is

sup
i

diamVi�j

diamVi
�� �j  � �j � � 	 	 	 r��

where the supremum is taken over all �nite words i�

Lemma ��� If the CMF h� % p�� 	 	 	 � pri is contractive with ��� 	 	 	 � �r then

F���� � �� �� � � �� max
i�����r

log pi

log�i
	

For the proof as well as for later use certain sets J� are needed� Assume that

numbers �i 
 ��� �� �i � �� 	 	 	 � r� are given� Roughly speaking J� is the set of all

words i with �i � �� It will be constructed recursively� Fix � � � and start with

J��� �� I�� Suppose J�m� has been constructed and consider an arbitrary word

i � i� 	 	 	 in from J�m�� If �i � � then let i be a member of J�m � ��� otherwise let

i�k� �k � �� 	 	 	 � r� belong to J�m���� Do so for all words of J�m� and add no further

words to J�m���� This de�nes J�m��� uniquely� Since all �i  �� J�m� � J�m��

for large enough m� and all m � m�� This set of words is the desired J�� Due to its

construction it has the following property� provided �  min���� 	 	 	 � �r��

J� �� J�m�� � fi � i� 	 	 	 in 
 I � �i � �  �i� � 	 	 	 � �in��g	 ����

Moreover� J� is tight �Hut�� i�e� if i is contained in J� then no word of the form i � k

�k 	� nil� will belong to J��or to say it positively�

i 	� j 
 J�  �k � min�jij� jjj� � ik 	� jk	 ����

The latter will be abbreviated by i"j� Also of importance is that J� is secure� i�e�

K � 
i�J�

Vi	 ��	�

���� CANTOR SET AND CODESPACE ��

Equivalently� �secure� means� for any j
�


 I� there is n 
 IIN and i 
 J� with

i � �j
�
jn�� Note that n and i are unique because J� is tight�

Proof of Lemma ��� For simplicity assume diam�V � � � �Prop� ����� Let � � �

and set � � minf��� 	 	 	 � �rg� Fix 
 � � such that � � 
 � �� Take � 
 ��� ���������

and B 
 G�� By ��	� there is i 
 J� s�t� Vi and B meet� Since diamVi � �i � �� Vi

is contained in �B��� So� observing ��� and �����

���B��� � pi � �i
��� � ������� � ��

and M���� � �� This holds for small enough �� leading to F���� � ��� The proof

is complete� but let us draw some further consequences� First� �� � � �� which

calls for an application of lemma ����� Moreover� since ���B��� � �� for all B�

S��q� � "G� � �q� � S���� � �q�

for q  � and

T �q� � lim sup

���

logS���� � q� log �

� log �

� T ���� q�	

Since T ��� � d� T �q� must be real� By proposition ���� Dq increases as q decreases

to ��� and because � � � is arbitrary� the generalized dimensions are bounded by

D�� � lim
q���
Dq � lim

q���

T �q�

�� q
� lim

q���
T ���� q�

�� q

� �	

This is summarized in the following corollary� �

Corollary ��� If the CMF � � h� % p�� 	 	 	 � pri is contractive with ��� 	 	 	 � �r� then

T is the Legendre transform of Fm� real�valued� convex and continuous on all of IR�

Moreover�

� � D� � D�� � �

with � from lemma ����

Considering corollary �� these bounds cannot be improved within this generality�

To relate this result about our fractal formalismwith the one presented in section ����

it should be referred back to the example ���� the former singularity exponents �

are in�nite for negative q� even for contractive CMFs� So these in�nite exponents

do not re�ect a geometrical property of the measure �� such as the occurrence of

arbitrarily large local H�older exponents� but a defect in the method of measurement�

Below a CMF will be constructed for which also the former spectrum f��� does not

provide the intended kind of information�
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Example ��� Old Spectrum f�� versus New Spectrum F ��� Given

r � � �p�� 	 	 	 � pr� and � 
 ��� �r � ���� � a CMF on ����� will be constructed with

f���� � dbox�K� � � log r
log�
	

This f makes one believe that there should be local H�older exponents of arbitrary

large size� However� the new formalism� which is considered to represent local be�

haviour in a more accurate manner� yields the grid�regular

T �q� �
log �
Pr

i�� p
q

i �

� log�

�q 
 IR

for this CMF �theorem ���� This agrees with the geometrical intuition involved

in the construction of the multifractal to be carried out below� Theorem �	 then

establishes the grid�regular F as the Legendre transform of T �see also Fig� ����

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6 f

F

Figure ��� New and old spectrum for a CMF constructed in example ��� with r � ��

p� � ��� p� � ���� p	 � ���� p
 � ���� � � �����

Start with Vnil � ��� ��� In each step of the construction r disjoint� closed subintervals

Vi�m of Vi will be chosen� each of length �
jij�� and carefully positioned� Assume that

Vi has been constructed� Write n for jij� Set Vi�� to be the closed interval of length

�n�� which has its left boundary point in common with Vi �see Fig� ��� Since this

choice remains the same through all stages of the construction� the interval with left

boundary point in common with Vi and length �
n�k is Vj� where j equals i followed

by k letters �� Thus� the construction �nished� Vj will by disjointness carry exactly

the measure pi � p�k� This is very useful to know� since the other subintervals Vi���

��� Vi�r are arranged without a common rule� it is impossible to predict where else

exactly in Vi one will �nd points of the support K of �� To de�ne the remaining

r � � subintervals choose �rst r �  disjoint closed subintervals Vi�	� ���� Vi�r of Vi�

Since ��r���  ����� it is possible to arrange them in a way to leave a subinterval

of Vi of length greater than � � �n�� at one�s disposal� which intersects none of the

so far constructed Vi�m �m 	� � �see Fig� ��� Thus there is li 
 IIN such that

��li � ���n��� �li � ���n��� lies in Vi and meets none of Vi�m �m 	� �� De�ne

Vi�� �� �li�
n�� � �n���kn� �li � ���n�� � �n���kn �

���� ITERATED FUNCTION SYSTEMS ��

where kn has to be chosen large enough to satisfy the inequality

pkn�  �n�n���	

Then the Vi�m are disjoint and the measure of Bi �� ��li � ���n��� li�
n��� amounts

exactly pi � pkn� � The construction is complete� Moreover� corollary �� applies with

�i � � yielding the announced T �q��

Finally let us calculate f����� Let �n � ��n���� Fix � � � and take n � ��

n 
 IIN� For each i with jij � n the �n�box Bi carries by construction the measure

pi �pkn�  �n
n� Since Bi lies in Vi these boxes are mutually disjoint� So� their number

satis�es

m�n��� � "In � rn

and with corollary ��

f���� � lim sup

n��

logm�n���

� log �n
� � log r

log�
� T ��� � dbox�K�	

The reverse inequality follows immediately from lemma ���� �

l λi
n+1

V i

B i

V
i*1

V
i*r

V
i*3Ñ3 λn+1

λ
n+1

Vi*2

Figure �� Construction of example ����

��� Iterated Function Systems

One way to set up the construction of an r�adic Cantor set is to use a set of strict

contractions �w�� 	 	 	 � wr� of IR
d� Each wi possesses a unique �xpoint� Thus a su��

ciently large open ball O satis�es wi�O� � O for i � �� 	 	 	 � r� Letting

Vnil �� O and Vi �� wi�O� �� wi� � 	 	 	 � win�O� ����

yields Vi�k � wi�k�O� � wi�Vk� � wi�O� � Vi� Of course the diameter of Vi tend to

zero with jij � �� moreover� the resulting r�adic Cantor set is contractive with

�i � Lip�wi� �� sup
x
�y

jwi�x�� wi�y�j

jx� yj  � �i � �� 	 	 	 � r�	
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This kind of construction is called an Iterated Function System� for short IFS�

It is essential to regard the IFS from the point of view of the contraction theorem

�Hut� Bar� BEH�� The family K of all nonempty compact subsets of IRd becomes

a complete �Falc�� p ��� metric space when supplied with the Hausdor metric

�i�e� ��A�B� � supfdist�a� B�� dist�b� A� � a 
 A� b 
 Bg� where dist�x�A� ��

inffjx� aj � a 
 Ag�� The set mapping

W � A ��
r

i��
wi�A�

is contractive since ��W �A��W �B�� � maxf��� 	 	 	 � �rg���A�B� �BEH� p ��� Hence

W possesses a unique �xpoint in K and for any choice of a compact set A the

sequence W n�A� converges in Hausdor� metric to this �xpoint� If one chooses A to

be O� then W n�A� � Kn � K �see ����� and hence

��K�W n�A�� � maxfdiamVi � i 
 Ing � �maxf��� 	 	 	 � �rg�n � diam�Vnil�� �	

Thus the �xpoint of W is just K� Moreover� the completeness of K is actually not

needed� since the �xpoint can be explicitly constructed �see also �Falc�� p ������

However�

K �
r

i��
wi�K� ����

and K only depends on �w�� 	 	 	 � wr� and not on the choice of O� This is expressed

by using the notation

K � hw�� 	 	 	 � wri � � hw�� 	 	 	 � wr% p�� 	 	 	 � pri	 ����

The above construction by Kn � W n�O� gives an approximation of K �from above��

which can be realized on a computer screen� There are other ways to get a �picture�

ofK� choose i 
 f�� 	 	 	 � rg arbitrarily and consider A � faig� where ai is the �xpoint

of wi� Obviously ai is contained inW
n�A� for all n� Hence it lies in the closure of K�

which is K itself� By ���� the sets W n�A� form an increasing sequence of subsets of

K� Since they converge to K in the Hausdor� metric� their union must be dense in

K� This gives a deterministic algorithm for �drawing� K� For applications Barnsley

�Bar� is a good reference�

To get a random algorithm choose an arbitrary probability vector �p�� 	 	 	 � pr� and

supplement the IFS K to a CMF� Then pick i� � i�i� 	 	 	 
 I� at random according

to the distribution P � i�e� P �ik � l� � pl for all k� Finally take any x 
 IRd and

de�ne

xn �� win � 	 	 	 � wi��x�	

By the Ergodic theorem �see �BEH� p 	�� the average visiting time of a box B �i�e�

��n � "fxk 
 B � � � k � ng� then approximates ��B� for every choice of x and

P �almost every i�� As a consequence xn tends to K �i�e� dist�xn� K� � �� and K

���� ITERATED FUNCTION SYSTEMS ��

is contained in the closure of the union of all xn� From this it is easy to derive a

random algorithm�

Note that in contrary to xn� the sequence

yn �� wi� � 	 	 	 � win�y�

converges to ��i�� �since yn 
 V�i
�

jn�� for any choice of y 
 O and any i�� An

illuminating way to see the di�erence between the forward and the backward orbits

is to translate the corresponding iteration into a dynamical system on the codespace�

For the choice x � y � ��j
�
� 
 K the sequence of in�nite words

�inin�� 	 	 	 i�i�j�j�j	 	 	 	�n�IIN

is by � mapped onto the sequence �xn�n�IIN� while

�i�i� 	 	 	 in��inj�j�j	 	 	 	�n�IIN

is mapped onto �yn�n�IIN� The �rst one has almost surely �uctuating initial segments�

while the second one obviously converges to i� in the product topology�

More can be said about the approximation of �� The space of all probability mea�

sures with compact support can be supplied with a metric which induces exactly

the weak topology �Hut� p ���� The CMF � � hw�� 	 	 	 � wr% p�� 	 	 	 � pri is the unique

�xpoint of the contraction map
M � � ��

rX
i��

pi � wi��

on this space �Hut� theorem ���� ����� Thus starting with any probability measure

�� with compact support� the sequence �n �� Mn���� converges weakly to �� i�e�

�n�E�� ��E� for all Borel sets E� Moreover�

� �
rX

i��
pi � wi��� �����

which is the only fact concerning M which will actually be used later� For a �nal

remark consider the deterministic algorithm presented above and choose �� � �fxg

�Dirac measure at x�� This results in �n �
P

i�In pi � �wi�x�� provided that the

contractions w�� 	 	 	 � wr are injective� If in addition the sets wi�O� are mutually

disjoint and the maps wi are open� then for any word i

��Vi� � pi	 �����

For a proof choose x 
 O and take a word j with jjj � jij� If j"i ���� then wj�O�

and wi�O� are disjoint open sets and hence wj�x� is not contained in Vi� If� on the

other hand� j � i � k for some word k� then wj�O� is a subset of wi�O� and wj�x�

lies in Vi� For �n �Mn��fxg� and n � jij one obtains �n�Vi� � pi�
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��� Spectrum of Self�Similar Multifractals

In many publications the geometric and multifractal properties of self�similar sets

are studied� They are of interest for their own as well as for applications� See

�Falc�� Bar� Mor� Hut� Bed� CM� HJKPS� HP� GH�� V�� TV�� There is a simple

formula for the singularity exponents of the corresponding CMF� which is already

well known� But as far as we are aware of it� a rigorous proof still awaits to be

written down� Thus this section is considered an important contribution in this

�eld� It provides a proof of the mentioned formula under slightly more general

conditions and an application to self�similar measures�

Let �w�� 	 	 	 � wr� be a set of contracting similarities of IRd with ratios ��� 	 	 	 � �r� i�e�

�i 
 ��� �� and jwi�x��wi�y�j � �i � jx�yj �x�y 
 IRd �i � �� 	 	 	 � r�� Assume further

the existence of a nonempty open bounded set O such that

wi�O� � O �i � �� 	 	 	 � r� and wi�O� � wj�O� � � �i 	� j�	 ����

This property was termed open set condition� or OSC for short� O will be called a

basic open set� Any r�adic Cantor set K constructed using an IFS as above is said

to be self�similar �Hut�� Moran �Mor� was able to give the box dimension as well as

the Hausdor� dimension �see page � for a de�nition� of self�similar sets� they both

equal the unique D� which solves the equation

rX
i��

�Di � �	 �����

To obtain this result one has to use the construction of K provided by ����� due

to the OSC the sets Vi with �xed jij have the same shape and cannot overlap� This

property will also be used in the calculation of the singularity exponents�

De�nition ��� Let w�� 	 	 	 � wr be similarities of IRd with ratios �i
 ��� �� and such

that the OSC holds� Let �p�� 	 	 	 � pr� be a probability vector� Then the CMF � �

hw�� 	 	 	 � wr% p�� 	 	 	 � pri is called a Self�similar Multifractal �for short� SMF� with

ratios ��� 	 	 	 � �r and probability vector �p�� 	 	 	 � pr�� It makes sense to use the ab�

breviation

� � hh��� 	 	 	 � �r% p�� 	 	 	 � prii

since the spectrum of � is determined by these numbers�

Note that the distribution of a SMF � is under excellent control since ����� holds�

To compute the spectrum of a SMF one could deduce a recursive law for S��q� from

the invariance of � ������ similar as it is done to obtain the box dimension of K

�Bed�� BEH� BEHM� Ma� Ma��� The intuitive argument is the following �HP��

The sets G� are split into G��i� �� fB 
 G� � B � Vig �i � �� 	 	 	 � r�� The invariance

of � then supports the approximation

S��q� �
rX

i��

X
B��G��i�

���B����
q �
rX

i��

X
B�G���i
�pi���B����
q �
rX

i��
pqiS���i�q�	

��
� SPECTRUM OF SELF�SIMILAR MULTIFRACTALS ��

The boundedness c�� � S��q��

 � c for �
 ��� �� ����� extends to ��
�

� �� by

S��q��

 �
rX

i��
pqi�



i
�

S���i�q�����i�


�

�

and inductively to ��� ��� provided � is chosen such that

rX
i��

pqi�



i � �	 �����

Thus T �q� must equal the unique solution of ������ By corollary �� this formula

is a generalization of ������

The calculation above is certainly valid when the similarities wi respect some mesh

�i�e� when �n�boxes are mapped onto �n���boxes for all �n of an admissible sequence��

This is indeed true for the middle third Cantor set� But in general� serious di�culties

seem to arise when one is obliged to estimate not only S���� �a simple counting task

leading to dbox�K�� but to treat S��q� for q 	� �� In particular it is troublesome

to establish rigorously the recursion sketched above� It seems that this was not

recognized in �HP��

However� we prefer a di�erent approach� We compare the covering by boxes B from

G� with the covering by cylindrical sets Vi with i from J��with the approximation

S��q��

 �
X

B�G�
���B���
q�
 � X

i�J�
��Vi�
q�
 � X

i�J�
pi
q�i



in mind� When � is chosen according to ����� the last sum equals exactly � for

all �� and the value of T is determined� This procedure has the advantage of not

using the maps wi� Only some control about the shape of Vi and about the possible

extent of overlapping is needed� Thus the obtained result is valid for multifractals

arising from a more general construction than SMFs� such as example ��� As a

further condition the intersection of Vi and K must not be unnaturally small� This

is necessary for the same reason which brought us to work with ��B�� of boxes with

��B� 	� �� Consequently� it is only needed in order to deal with negative q�

Denoting the open ball with center a and radius � by U�a� �� this reads as follows�

Theorem ��� Let � � h�% p�� 	 	 	 � pri be a CMF� let �� � �� � � and let ��� 	 	 	 � �r

be numbers from ��� �� such that for every word i 
 I there is a point xi in Vi with

U�xi� ���i� � Vi � U�xi� ���i�� �����

U�xi� ���i� � Vj � � for all j 	� i with jij � jjj� ���	�

��U�xi� ���i�� 	� �	 �����

Then T �q� is grid�regular for all q 
 IR and equals the unique solution � of �������



� CHAPTER �� SELF�SIMILAR MULTIFRACTALS

Proof

o� The functions x �� pqi�
x

i are strictly monotonous decreasing with range IR��

Thus ����� has exactly one solution� which will be denoted by �� Also for

later use set

� �� minf��� 	 	 	 � �rg � �� maxf��� 	 	 	 � �rg	 �����

Note two properties of J�� which follow immediately from its construction�

From ���� and ��	�� X
i�J�

pi
q�i

 � �	 �����

From ���	� and Vj � Vj����jn �n � jjj��

U�xi� ���i� � U�xj� ���j� � � for all i"j� ����

in particular for all i 	� j from J� by �����

Throughout the proof the assumption � 
��� �� is made� First let q � ��

i� Take B
 G�� For the sake of shortness write J��E� �� fi 
 J� � Vi � E 	� �g� It

is an important fact that "J���B��� is bounded by a number which depends

neither on � nor on B� To establish this bound it is enough to have numbers

�
 � �	 � � such that the intersecting sets Vi have diameters bounded by

�
 � diam��B��� and contain mutually disjoint balls with radius greater than

�	 � diam��B���� just remark that

"J���B��� � b� ��
Vol�U��� � � �
��

Vol�U��� �	��
	 ����

But� due to ������ ���� and ����� one may choose �
 � ����
p

d��� and

�	 � ������
p

d���� Now let us proceed to the estimation of S��q� from above�

Since J� is secure ��	�

���B���
q �
� X

J���B���
��Vi�
�q � �

b� � max

J���B���
��Vi�
�q � b�

q � X
J���B���

��Vi�
q	

Taking the sum over all B 
 G� yields�

S��q� �
X

B�G�
���B���
q � b�
q
X

B�G�

X
i�J���B���

��Vi�
q � b�
qb�
X

i�J�
��Vi�
q	

Here the constant b� is obtained from ���� by interchanging the roles of �B��

and Vi and by setting �
 � �
p

d������
�� and �	 � ����
��� yielding for every

word i 
 J��

"fB 
 G� � Vi � �B�� 	� �g � "fB 
 G� � i 
 J���B���g � b�	

��
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Finally ��Vj� must be compared with pj� This is trivial for SMFs� but in

general these two numbers are not equal� Take j 
 J�� First ����Vj� is

estimated� assume ��k�� 
 Vj� Since J� is secure ��	� there is an integer n

and a word i 
 J� with i � �k�jn�� Hence ��k�� 
 Vi � Vj�

����Vj� � fk� 
 I� � �n 
 IIN with �k�jn� 
 J��Vj�g

and

��Vj� � P �����Vj�� �
X

i�J��Vj�
pi	

By replacing �B�� with Vj and by setting �
 � �������
��� �	 � ����
��

� ����

provides a constant b	 with

"J��Vj� � b		

Consequently

��Vj�
q � �b	 � max

J��Vj�
pi�
q � b	
q

X
i�J��Vj�

pi
q	

Similar as above one obtainsX
j�J�

��Vj�
q � b	
q
X

j�J�

X
i�J��Vj�

pi
q � b	
qb	
X

i�J�
pi
q	

Summarizing�

S��q��

 � b�
qb�b	
q��
X

i�J�
pi
q�
 � b�
qb�b	
q��c�
X

i�J�
pi
q�i

 � b�
qb�b	
q��c�	

Note that b�� b�� b	 and c� � maxf�� ��
g do not depend on ��

ii� Now S��q� will be estimated from below� Take i 
 J�� where �� � �����
����

From � 	� pi � ��Vi� follows the existence of a box Bi 
 G� which meets

Vi� Since diam�Vi� � ���i  �� the parallel body �Bi�� contains Vi and thus

pi � ���Bi���� Moreover� any �xed ��box can meet at the most b
 ���� sets

Vi with i 
 J�� � Hence X
i�J��

pi
q � b

X

B�G�
���B���
q

and by ����
S��q��

 � b��

X

i�J��
pi
q�
 � b��
 c�
X

i�J��
pi
q�i

 �
c�

b

�

where c� � �����

 �maxf�� ��
g is independent of ��

iii� From i� and ii� follows immediately

� �
log c�b
��




� log �
� logS��q�

� log �
� � �
log b�
qb�b	
q��

� log �

for all su�ciently small �� i�e� T �q� is grid�regular and equals ��
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Now let q  ��

iv� Again let us give �rst an upper bound of S��q�� Take B 
 G�� Set �
� � �����
����

To the contrary with i� a Vi has to be found with smaller measure than �B���

This is indeed the easier task since ��B� 	� � due to our de�nition of T �q�� By

��	� there is i 
 J�� such that Vi meets B� As in ii� Vi is a subset of �B�� and

thus � 	� pi � ���B���� So
S��q� �
X

B�G�
���B���
q � b�
X

i�J��
pi
q

since any �xed Vi �i 
 J��� meets at the most some constant number b� ����

of boxes from G�� With ce � �����

 �maxf�� ��
g

S��q��

 � b�c	
X

i�J��
pi
q�i

 � b�c		

v� Take i 
 J��� with �
�� � �
p

d�����
���� Only here the precondition ����� is used�

which implies the existence of a box B�i�
G� which meets U�xi� ���i�� Since

diam�B�i��� � ����
�� � ���i by �����

�B�i��� � U�xi� ���i� � Vi	

The �rst idea now is to continue with ���B�i����
q � ��Vi�
q� But here the

method of i� cannot be applied to compare ��Vi� with pi �in the average��

���B�i���� does not have to be bounded by just some pj� but with pi itself�

However� this is possible since

����U�xi� ���i�� � fk� 
 I� � �k�j jij� � ig

by ���	�� leading to
� 	� ���B�i���� � ��U�xi� ���i�� � pi	

This time ���� is used instead of ���� to conclude that B�i� 	� B�j� for

i"j� From this X
i�J���

pi
q � X

B�G�
���B���
q � S��q�

and

S��q��

 � c

X

i�J���
pi
q�i

 � c
	

vi� From iv� and v� follows the assertion of the theorem for negative q� �

A �rst and almost immediate application of theorem �� is the one to CMFs on the

real axis IR�

��
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Corollary ��� Let � be a CMF on IR such that for all n 
 IIN the cylindrical sets

Vi �i 
 In� are intervals with mutually disjoint interiors� and such that

diam�Vi� � �i � diam�Vnil�

for all words i� Then T �q� is grid�regular for all q 
 IR and equals the unique solution

� of �������

Proof Set c �� diam�Vnil� and �� � according to ������ Take an arbitrary word

i� Among Vi����� 	 	 	 � Vi�r�r there is at least one�say Vi�j�j��with distance at least

���ic from the boundary of Vi� Choose m large enough to ensure �
m

 �� � ��

and set j �� j�j� � � 	 	 	 � 
 Im� Then Vi�j � Vi�j�j� and diam�Vi�j� � �
m

�ic 

�� � ���ic� Thus it is enough to choose xi 
 Vi�j and �� � c� �� � c� � ��� since

Vi�j � U�xi� ���i�� pi�j 	� � and dist�xi� �Vi� � ���i� �

With the necessary care theorem �� provides the singularity exponents of self�

similar measures� The �rst two preconditions are obviously satis�ed due to the

OSC� Moreover� also the third one can be veri�ed provided that there is a basic

open set O with O�K 	� �� This condition was termed strong OSC� for short SOSC

�BG��

Lemma ��	 Let � � hh��� 	 	 	 � �r% p�� 	 	 	 � prii be any SMF� Then the conclusion of

theorem ��� holds for q � �� If� in addition� the SOSC holds� then this is even true

for q 
 IR�

Remark A simple calculation even shows that the SOSC implies ��O� � � and

���O� � �� But still K need not be a subset of O�

Proof The proof of theorem �� reveals that precondition ����� is only needed

for negative q� So it only remains to verify ����������� under the assumption

K � O 	� �� Take x � ��i�� lying in O� Since O is open and bounded there is

�� � �� � � such that U�x� ��� � O � O � U�x� ��� and an integer n such that

�
n � diam�O� � ��� For j � �i�jn� the set Vj contains x� has diameter �j � diam�O�

and is thus a subset of U�x� ���� Letting xk �� wk�x� for all �nite words k one �nds

Vk�j � wk�Vj� � wk�U�x� ���� � U�xk� ���k��

hence ��U�xk � ���k�� � pk�j 	� � and ����� is established� Note that

U�xk� ���k� � Vi � wk�O� � wi�O� � �

for all k"i� giving ���	� for this choice of xi� ����� is evident� �

Two simple examples of SMFs with the SOSC are the following�

Example ��� A Class of Totally Disconnected SMFs� Take a self�similar

set K � hw�� 	 	 	 � wri and assume that the sets wi�K� �i � �� 	 	 	 � r� are mutually

disjoint� Then K is totally disconnected� Moreover� the union O of all U�x� 
� with

center x in K satis�es the OSC for 
  ��� � inffdist�wi�K�� wj�K�� � i 	� jg� due

to the invariance ���� of K� O even contains K� �
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Example ��� SMFs on the Real Axis� For SMFs on the real axis �d � �� the

situation is even trivial� K is uncountable provided r �  and since the boundary of

any open subset of IR is countable� K must intersect O� Note that there are SMFs

on IR with in�nitely connected basic open set� Corollary �� cannot be applied then�

�
At the time when this thesis was submitted� it was not clear whether the OSC

implies the SOSC in general� The state of knowledge was the comparison of the two

conditions by �BG�� Therefore it was opportune to present a geometrical situation

in which the OSC does imply the SOSC� Two examples shall illuminate the problem

�rst�

Example ��� K Lying on the Fractal Boundary of O� Let r � � and

wi�x� �� ��� � �x� ai� � ai

with a� � ��� ��� a� � ��� ��� a	 � ��� �� and a
 � ��� ��� Set O ����� ���nK where

K � hw�� 	 	 	 � w
i as usual� O is of course open and bounded and K lies on its

boundary� As will be shown it is even a basic open set for �w�� 	 	 	 � w
��

Take j 
 f�� 	 	 	 � �g and assume there is a point x 
 O such that wj�x� 
 K� Of

course wj�x� 
 wj�O�� Since wi�K� � wi�O� �i � �� 	 	 	 � ��� which are mutually

disjoint in this example� wj�x� must by ���� be contained in wj�K�� The bijectivity

of wj now implies x 
 K� which is a contradiction to x 
 O� Thus wj�O� is a subset

of ��� ���nK � O for �j � �� 	 	 	 � ��� Concerning the disjointness� wi�O� � wj�O� �

wi���� ��
�� � wj���� ��
�� � �� provided i 	� j� This proves the claim� �

Example ��	 K Lying on the Smooth Boundary of O� Take d �  � r � 

and

w��x� �� ��� � x� w��x� �� ��� � x � ���� �� 	 	 	 � ��	

Let C denote the middle third Cantor set on IR �see Ex� ����� Then K � hw�� w�i �

f�x� �� 	 	 	 � �� � x 
 Cg� since this set is compact and invariant� Obviously� K lies

on the boundary of the basic open set O ����� ��d� �

Thus it is quite possible that K has no point in common with a particular basic

open set O� But the above examples support the intuition that when this happens�

either O has a highly irregular boundary� or the dimension of the embedding space

IRd has been chosen too large� Moreover� a better chosen O satis�es the SOSC� In

applications it is often possible to �nd a basic open set O � IRd with quite regular

boundary� O is the union of a �nite set of polyeders� i�e� its boundary �O lies on

a �nite union of �d � ���dimensional hyperplanes� We shall say then that �O is

piecewise linear� Our aim is to prove that such a basic open set implies the SOSC

und is thus su�cient for the determination of T �

��
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Lemma ��� Let �w�� 	 	 	 � wr� be a set of contracting similarities with basic open set

O� the boundary �O of which is piecewise linear� Then the SOSC holds with some

set O��

Proof The case r � � is trivial� thus assume r � �

i� Let H be the linear subspace spanned by K and denote its dimension by d�� Due

to its minimality H � is invariant under wi� choose d
� � � points of K which

span H �� By the invariance of K ���� their images under wi must again be

contained in K which is a subset of H� They span a hyperplane of dimension

d�� Thus wi�H� � H �i � �� 	 	 	 � r��

ii� Now it will be proved that the SOSC holds for K as a subset of H� Denote the

interior of H � O with respect to H by O�� Note that K is contained in the

closure O�H of O� with respect to H� since K � O and since O� is perfect� We

claim that O� and K have a point in common� Assume the contrary� As a

subset of �HO
�� K must be contained in a �nite union of linear subspaces Ek

�k � �� 	 	 	 � N� of dimension d�� � d�� �� As it will be shown� K lies then in a

linear subspace of dimension less or equal to d��  d�� in contradiction to the

de�nition of H�

Assume �rst a j and a point x of K such that x lies in Ej� but in no Ek with

k 	� j� Since x has positive distance to Ek �k 	� j�� there is a �nite word i

such that Vi contains x but meets no Ek �k 	� j�� From

wi�K� � Vi �K � E�

follows that K lies in wi
���E��� a d
���dimensional linear subspace� Otherwise�

i�e� if there is no such x� K must be a subset of the union of all Ek� � Ek��

where multiply occurring sets have been removed� Inductively the same argu�

mentation as just given can be applied or K can be found to be contained in

Ek� � 	 	 	 � Ekd�
� This is a �nite union of points� in contradiction to r � �

iii� The desired basic open set O�� which intersects K� is now readily constructed�

Denoting the component of y 
 IRd in H by h and the one perpendicular to

H by h�� set

O� �� fy 
 IRd � h 
 O� and jh�j  �g	

�Compare Ex� ���� Certainly O� is bounded and open� andK�O� � K�O� 	�

�� Due to the shape of O and due to the invariance of H the OSC of O carries

over to O� as a subset of H� Since H� is invariant as well this establishes O�

as a basic open set� �

Summarizing� the author was able to give three conditions� each su�cient to imply

the SOSC� d � �� the sets wi�K� are mutually disjoint� or �O is piecewise linear�

However� after this thesis was submitted the author�s attention was brought to �Sch��

due to which the SOSC holds for any SMF�
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Corollary ��	 Let � � hh��� 	 	 	 � �r% p�� 	 	 	 � prii be a SMF in IRd� Then T �q� is

grid�regular for all q 
 IR and uniquely determined by the equation

rX
i��

pqi�
T �q�

i � �	 ���

Figure ��� The typical feature of the generalized dimensions Dq of a SMF� plotted

as a function of q� Here r � �� �� � 	 	 	 � �
 � ��	� p� � p� � ����� p	 � ��� and

p
 � ����

Formulas related to ��� have been found previously� but with less generality� In

�HJKPS� di�erentiability of the spectrum f is assumed� In �HP� the formula is

derived only for positive q and the argumentation is only valid when the similarities

respect some mesh �compare page ����

From ��� the spectrum F follows immediately by an application of theorem ���

To give as much information as possible we set�

�� �� min

i�������r
log pi

log�i
�� ��

rP
i��
pi log pi

rP
i��
pi log�i

�� ��

rP
i��
�Di log pi

rP
i��
�Di log�i

��� �� max

i�������r
log pi

log�i
�

where D is the box dimension of K � supp��� and satis�es ������ Thereby the var�

ious values of � have interpretations as particular �local H�older exponents�� �� and

��� as the H�older of the most probable and the most rare�ed points� respectively�

and �� and a� as the H�older occurring most probably with respect to the underlying

measure � and the D�dimensional Hausdor� measure� respectively� While the �rst

two interpretations follow from the theorem below� see ���� or �EM� for the other

two�

Furthermore� we denote by ��� and �� the unique solutions of the equationsX
pi��
��

i

�i

� � � resp�

X
pi��
�
��

i

�i

� � ��

where the sums are taken over all numbers i 
 f�� 	 	 	 � rg which satisfy the indicated

condition�
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Theorem ��� Spectrum of SMFs� Let � be a CMF� for which ������ holds for

all real q� Then

F ��� � inf
q�IR
�T �q� � q�� �

��������
�������

�� �  ��

�� � � ��

T �q�� qT ��q� � � �T ��q� 
���� ����

�� � � ���

�� � � ����

and F is grid�regular everywhere provided T is� Moreover� F ��� is continuous and

strictly concave in ���� ���� and C� in ���� ����� Its graph touches the internal

bisector of the axes at �� and attains the maximal value D at ��� Furthermore� the

�  equation system ��������
rP

i��
�

pi
��i

�q � �
i � � �a�

rP
i��
log
�

pi
��i

��
pi

��i
�q � �
i � � �b�

�������� ����

is for every � 
���� ���� uniquely solved by � � F ���� q � F �����

Figure ��� The typical feature of the spectrum F ��� of a SMF� Here r � �� �� �

	 	 	 � �
 � ��	� p� � p� � ����� p	 � ��� and p
 � ��� as in �gure ��
�

See �gure �� for the feature of a typical spectrum� For an intuitive explanation of

the back ground of ���� it must be referred to the remark on page �	� where the

involved notation is at hand�

Corollary ��� Let � be a CMF� for which ������ holds for all real q� Then D� �

D � dbox�K�� D� � �� and

D� � lim
q��
Dq � �� � Dq � ��� � lim

q���
Dq � D��	

Moreover� Dq is either constant or strictly decreasing and continuously dierentiable�

Proof Write ci � ci��� � log�pi� � � log��i� �i � �� 	 	 	 � r� for short� The ci are

strictly increasing functions of � with zeros log pi� log�i�
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o� First the trivial case� When all zeros of the ci coincide� then pi � �Di where D is

the common zero� NecessarilyD � T ��� � dbox�K� by ��� and corollary ���

From ��� follows T �q� � ���q�D and �� � �� � �� � ��� � �� � �� � D�

Theorem ��� gives F ��� � T �q� � qT ��q� � D for � � D � �T ��q�% ����

is trivial and Dq � D for all q� The grid�regularity as well as F ��� � ��

�� 	� D� follow as in iv� below� In this case there is nothing more to prove�

From now on the case o� is excluded� Equivalently ��  ��� may be assumed�

i� First it will be shown that ���� is solvable exactly if � lies in the range of �T ��

and that it determines F and F �� Assume �rst that ���� q�� solves the system

for some �xed �� and rewrite it as���������
rP

i��
pq�i �

���q�

i � �

rP
i��
pq�i �

���q�

i log pi � �
rP

i��
pq�i �

���q�

i log�i
��������

Consequently T �q�� � �� � �q�� � � �T ��q�� and with theorem ��� F ��� �

T �q�� � q�T
��q�� � �� and F ���� � q� is obtained� Thus the solution is even

unique� On the other hand� it is now easy to see that� if � � �T ��q��� then

�T �q�� � �q�� q�� provides a solution of �����

ii� Now let us determine the range of �T �� Instead of using the implicit formula

arising from ���� which is troublesome to handle� it will be shown that ����

is solvable exactly for � 
���� ����� Consider the second equation ����b��

For �xed � the function q �� P
cie
ciq�i

 is strictly increasing� For � � ��

�� � ����� however� it is strictly negative �positive�� since case o� is excluded�

Hence ����b� has then no solution� From now on �x � 
���� ����� Then

ci  �  cj for some i and j� and a unique solution q��� of ����b� exists�

By the implicit function theorem q��� depends continuously di�erentiable on

� since
P

c�i e
ciq�
i 	� �� Now turn to ����a� and consider the strictly positive

function h��� �
P

eciq�
��
i 	 Its derivate satis�es

h���� �
rX

i��
eciq�
��
i log��i� �

rX
i��

eciq�
��
i ciq
���� � log� � h���  ��

since the second term vanishes by de�nition of q���� So� h is strictly decreasing

and the mean value theorem of calculus implies for �  D�

h���� h�D� � �D � ����h��x
�� � log����� � �D � ��h�D�	

Thus h����� �� � ���� On the other hand�

h�D� �
rX

i��
eciq�D��Di �

rX
i��

eci���Di � �

because q��� minimizes by its de�nition the strictly convex function q ��P
eciq�
i �� �xed�� Summarizing there is a unique � with h��� � � and exis�

tence and uniqueness of the solution of ���� is established� Moreover� � � D�

hence F ��� � D�

��
� SPECTRUM OF SELF�SIMILAR MULTIFRACTALS ��

iii� As a consequence of i� and ii� the range of �T � is exactly ���� ����� By

implicit di�erentiation of ��� it is easy to derive the strict convexity of T �

As a consequence Dq is strictly decreasing� which is a generalization of the

same result for positive q in �HP�� Furthermore�

lim
q���
Dq � lim

q���
�T ��q� � a��	

Concerning di�erentiability of Dq at q � �� Proposition ���� applies and

D� � �T ���� � ��� For q 	� �

d
dq
Dq �
��� q�T ��q� � T �q�

��� q��

� ��� q����F ���� ��j���T ��q�

which converges to �T ������ as q � �� Since Dq is continuous at �� it is hence

also continuously di�erentiable there� The last equation reveals in addition

that the touching of F and the inner bisector of the axis is of order two�

provided q is taken as the curve parameter�

iv� Turning to the spectrum proposition ���� and iii� show that F ��� � Fm��� �

infq T �q� � �q � �� for � outside ���� ����� The concavity and di�er�

entiability follow from theorem ��� and the implicit function theorem� The

grid�regularity is a consequence of theorem ��� Regarding i� the maximum of

F is discovered by noting that ��� q� � �D� �� solves ���� for � � ���

v� So� it remains only to compute the values F �a���� But by theorem ��� F ��� is

continuous in ���� ����� So the behaviour of the solutions of ���� has to be

studied near a��� For an easy presentation of the proof assume without loss

of generality that
�� �
log pi

log�i

� i 
 f�� 	 	 	 � tg

for some t  r� We will consider arbitrarily � 
���� �� � 
� where 
 � �

is chosen small enough to guarantee the existence of c�� � c� � � such that

c� � �ci��� � c�� �i � t � �� 	 	 	 � r� and ck��� � � �k � �� 	 	 	 � t�� Denote the

solution of ���� by �F ���� q����� Since F ��� � � ����b� implies

tX
k��

�
F ���

k ck���e
ck���q��� �

rX
i�t��

�
F ���

i ��ci����eci���q��� � rc�� � e�c��q���	

The terms in the �rst sum are all positive� F ��� � D� and q����� �� � ���

by iii�� Thus

� � ck���q��� � const � q���e�c��q���e�ck���q��� � � �� � ��� �k � �� 	 	 	 � t�	

On the other hand� ci���q��� � �� �� � ��� �i � � � t� 	 	 	 � r� is trivial�

Moreover� for reasons of continuity� F ���� F ���� and with ����a�

� �

tX
k��

�
F ���

k eck���q��� �

rX
i�t��

�
F ���

i eci���q��� �
tX

k��
�
F ����

k 	

From this F ���� � ��� A similar argument shows F ����� � ��� �
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��� Examples and Counterexamples

The title of this section speaks for itself� Among other things we treat some easy

cases and contribute to the interpretation of F ��� as the dimension of subsets ofK �

supp��� with �local H�older exponent ��� The counterexamples prove the necessity

of the preconditions of some of our theorems and show that the spectrum F need

not be concave�

����� Homogeneous Multifractals

In this subsection only SMFs � � ��p� � hh��� 	 	 	 � �r% p�� 	 	 	 � prii are considered�

where the involved similarities wi are regarded as �xed and p � �p�� 	 	 	 � pr� as

variable�

No matter how p is chosen� K � supp��� � hw�� 	 	 	 � wri remains the same self�

similar set with dbox�K� � D determined by ������ But�assuming that ���

holds�the spectrum varies with p getting more and more narrow as D� � D���

Thus the coincidence D� � D�� is a special case� which occurs exactly for

pi � p�i �� �Di 	

In particular Dq is in this case constant and any multifractal with Dq � D� is

called homogeneous or uniform �HP� HJKPS�� The choice of probabilities p � p�

may be considered to be inappropriate since ��p�� reveals no structure of K� But

homogeneous multifractals possess some extremal properties and are� therefore� of

theoretical interest� To state the mentioned properties of ��p�� and also for further

use in this section the following de�nitions are needed� the capacity of a multifractal

� �Y� page �����
dC��� �� sup

��
inffdbox�E� � E � K� ��E� � �� �g�

the ��dimensional Hausdor measure m� �for details see �Falc�� Rog���

m�
� �E� �� inf f

�X
i��
�diam�Si��
� � E �
�

i��
Si� diam�Si� � 
 �i 
 IINg

m��E� �� lim
���
m�
� �E� � sup

��
m�
� �E��

the Hausdor dimension dHD�E� of a set E�

dHD�E� �� inff� � � � m��E� � �g � supf� � � � m��E� ��g

and �nally the Hausdor� dimension of a multifractal �Y� page �����

dHD��� �� inffdHD�E� � E � K� ��E� � �g	

Note that dHD�E� exists� since m
�

� �E� � 
���m�
� �E� whenever � � �� and thus

m��E� � m��E� � � and m��E� � � m��E� ���

���� EXAMPLES AND COUNTEREXAMPLES ��

Example ��� Maximality of the Hausdor� Dimension of �p��� A result

of Geronimo et Hardin �GH�� page �� reads in our situation as follows�

Assume that � is a SMF and that wi�K� � wj�K� � � for all i 	� j� Then

dHD���p�� � dC���p�� � D� �

rP
i��
pi log pi

rP
i��
pi log�i

	 ����

The geometric properties of F �theorem �	� imply D� � D� with equality if and

only if p � p�� As a consequence dHD���p�� is maximal for p � p�� �

Example ��� Maximality of the Lyapunov Dimension of �p��� Massopust

�Ma�� pages � and �� proves� that p� maximizes the Lyapunov dimension '���p�� of

the canonical dynamical system $ associated with ��p�� $ � K � ��� ��� K� ��� ��

where

$�x� y� �� �wi�x��
y � yi��

pi

� for y 
 �yi��� yi�

with y� �� � and yi � p� � 	 	 	� pi �see also �GH���� Massopust obtains

'���p��� � � � dbox�K�	

�

Finally note that

��p�� � c �mD� jK

for some normalization constant c� To see this� just check the invariance �����

of mD� jK using mD��wi�K� � wj�K�� � � �i 	� j� �Hut� page ���� and note that

mD��K� 
 ������

In the context of this subsection we would like to mention another special choice of

probabilities pi� which works for any IFS with a�ne maps wi�

pj ��

det�wj�

rP
i��
det�wi�

	

The associated multifractal is sometimes called geometrical multifractal �T�el�� Grow�

ing structures with an underlying self�similar process �TV� may serve us as a �rst

example� using only the number of particles in the various stages of the growth� one

may determine �mass�indices� � and corresponding �fractal dimensions� f���� This

function equals exactly the multifractal spectrum F of the underlying SMF endowed

with �geometrical� probabilities pj� The important aspect is the fact� that there is

no measure needed to �nd f � Thus� this function characterizes the pure geometry

of the system� As a second example let us consider the case of an IFS� for which the

invariant set K � hw�� 	 	 	 � wri has positive d�dimensional Lebesgue measure �e�g�

a triangle in the plane IR� �GH� page ����� choosing �geometrical� probabilities pj

leaves one with � equal to the normalized Lebesgue measure restricted to K�
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����� Explicit Formulas

Most easily an explicit formula for T �q� arises from ��� provided that all ratio

numbers are equal� i�e� �i � � �i � �� 	 	 	 � r�� By simple calculation

T �q� � � �
log�
log �

rX
i��

pi
q� ��q� � � �

log�
rP

i��
pi
q log � �

pi
�

rP
i��
piq

F ���q�� � � �
log�

�
log �

rX
i��

pi
q� � q
� rP

i��
pi
q log�pi�

rP
i��
piq

�
	

So� the shape of the spectrum is independent of �� Multifractals of this kind are

widely used as simple examples ��HJKPS� HP� Falc��� or as models of phenomena

in nature �V���

An explicit formula for F ��� can be extracted from the equation system �����

provided r � � Considering the variables xi � pi
q�i

�q� and setting ci � log pi �

� log�i one �nds

x� �

c�
c� � c�

and x� �

c�
c� � c�
	

By taking logarithms

F ��� �
c� log��c�� � �c� � c�� log�c� � c��� c� log�c��

log�� log p� � log�� log p�

for �
���� ����� where �� � log p�� log��  log p�� log�� � ��� without loss of

generality�

Formulas free from the parameter q have been presented until now only for special

cases �EM� TV��

����� Atomic Multifractals

In this subsection degenerate probability� or ratio�numbers are considered� i�e� pi � �

or �i � ��

Example ��� Vanishing Probabilities� Let

K �
��

n��


i�In
Vi

be an r�adic Cantor set ���� and take t  r and �p�� 	 	 	 � pr� such that

rX
i��

pi � �� pi � � �i � �� 	 	 	 � t� and pi � � �i � t � �� 	 	 	 � r�	

���� EXAMPLES AND COUNTEREXAMPLES ��

Then the product measure on I� � f�� 	 	 	 � rgIIN associated with �p�� 	 	 	 � pr� has no

longer all of I� as its support� but I �� � f�� 	 	 	 � tgIIN�considered as a subset of I��

Thus

supp��� � K � �
��

n��


i�f������tgn

Vi�

which is in general a proper subset of K� Moreover� � � ���P
�� where P � is the

product measure on I �� associated with �p�� 	 	 	 � pt� and �
� is the restriction of � to

I ��� Note that with the convention �
� �� � theorem �� remains valid� �

Thus� allowing degenerated probability vectors just means to extinguish certain sets

in the construction ���� of K� In particular if p� � �� then � is the Dirac measure

at the point ����� 	 	 	� and hence atomic�

On the other hand� the following condition is su�cient to guarantee that a CMF is

nonatomic� i�e� has no atoms�

Lemma ��� Assume that � is an r�adic CMF� where vanishing probability numbers

are expressively allowed here� Assume� on the other hand� that none of them equals

one� Assume� furthermore� that the �rst two preconditions ������ and ������ of

theorem ��� hold� Then � is nonatomic�

Remark As a consequence� SMFs with r �  are nonatomic�

Proof It is well known that the atoms of Radon measures must be singletons� As

we will see� the preconditions of this lemma imply that singletons are nullsets� Thus

the proof is complete� However� we give the full argument�

i� Assume there is an atom A� i�e� A is measurable� �  ��A�  � and for any

measurable subset E of A either ��E� � � or ��E� � ��A�� An application of

Zorn�s lemma to the set fE � A � E measurable and ��E� � ��A�g endowed

with the inclusion as an ordering yields a minimal measurable subset B of A

with the same measure as A� By its minimality and the properties of A every

measurable subset E of B must be a null set�

ii� Every singleton fxg is a Borel set and hence measurable� Moreover� it is a ��

nullset� To see this note �rst that ����x� is a �nite set� Take b� from ����

and assume that ����x� contains more than b� in�nite words� say i�k�� �k �

�� 	 	 	 � b��� For su�ciently large m the initial segments �i�k�� jm� are distinct�

Now take � small enough to guarantee jjj � m for all j 
 J�� Since J� is

secure and tight� there is for every k � �� 	 	 	 � b� a �unique� number nk s�t�

j�k� �� �i�k�� jnk� lies in J�� But the corresponding b� � � sets Vj�k� contain x�

i�e� intersect the ��box containing x� in contradiction to ����� Thus ����x�

is indeed �nite and hence a P �nullset due to pi  � for all i�

iii� Finally� the fact that every singleton fxg is a null set contradicts the minimality

of B� taking away a point from B yields a smaller� measurable set with the

same measure� Thus there is no atom� �
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Less trivial is the case where one allows vanishing ratio numbers� Generalizations

of the short example below are immediate�

Example ��� Vanishing Ratios� Consider the IFS w��x� � x�� w��x� � � and

an arbitrary probability vector �p�� p��� The support of the resulting CMF � is

K � f�g � f�n � n 
 IIN�g�

and � itself is a linear combination of Dirac measures concentrated at the points

�n�

� �
�X

n��
p�p
n

� � �f��ng	

So� this is another atomic measure arising from an IFS�

To calculate T �q� it is convenient to use the admissible sequence �n � �n� By direct

computation of the measures ���B���

S�n�q� � p�
nq � p�
�n���q � �p�
np� � p�
n��p��
q �
n��X

k��
�p�
kp��
q

� c � p�nq � p�
q��� p�
q���

with some c � �� and
T �q� �

�
q � log p�� log  if q  ��

� otherwise�

In this example the formula ��� holds exactly for q � �� Thus� �i 	� � is a

necessary precondition in corollary ��� since O ���� � is a basic open set for the

above IFS� Note that theorem �� does not apply since ����� and ����� cannot be

satis�ed� But still K may be constructed starting with Vnil � ��� �� and using the

IFS as usual� Thus � is contractive with �� � �� and �� 
��� �� arbitrary� and

corollaries �� and � apply� Indeed T ��� � � is the box dimension of K� T is

continuous and Dq is bounded by � log p�� log �

For later use we note that F equals the Legendre transform of T � i�e�

F ��� � Fm��� �
�

� if � � � � � log p�� log �

�� otherwise�

Proof� due to proposition ���� F���� and F���� only take the values �� and �

with the discontinuities at D� � � resp� at D�� � � log p�� log � Since F � Fm�

it remains only to show that F ��� � � for � 
�D�� D���� Fix such an � and take

an arbitrary � � �� Choose the sequence �n � �p�p�
n������ and take n large enough

to ensure �n  ����� ������n �note that p�  ���� Now there is a unique box Bn

in G�n which contains the point 
�n� By the choice of n the enlarged interval �Bn��

does not contain any other point of the form �m� Thus ���Bn��� � p�p�
n � �n
��

which proves the claim� �

���� EXAMPLES AND COUNTEREXAMPLES ��

����� Subsets of Given Local H�older Exponent

The de�nition of the spectrum F gives credit to the intuition that F ��� is the

dimension of a certain subset K� of K� This set is roughly described by the property

that the measure of a ball with center in K� and diameter � scales as �
� for � � ��

So far we are not aware of either a general proof justifying this intuition nor of a

counterexample� But since this view of things helps to understand what kind of

information about K is provided by the spectrum F � we feel obliged to report on a

few cases where the above interpretation is valid�

A �rst� almost trivial example is the following subset of the support K of a SMF ��

C� �� hw�� 	 	 	 � wti�

where the similarities wi are ordered in a way to assure log p�� log�� � 	 	 	 �

log pt� log�t  log pi� log�i for all i � t � �� C� is the set of the �most proba�

ble� points �see �T�el� HJKPS��� It is self�similar and has by ����� and theorem �	

the dimension

dbox�C�� � dHD�C�� � F �D��	

Note that this interpretation of F �D�� is less immediate for self�a�ne multifractals

�see Ex� ����� The two trivial cases are t � � �C� is a singleton� and t � r �C� � K�

� is homogeneous�� In a similar fashion� the set of the �most rare�ed� points C�� can

be de�ned� Provided ��� holds for negative q� the dimension of C�� is F �D����

Example ���
 Subsets of Local H�older Exponent �� Disjoint Case��

Reporting shortly on �CM� we de�ne for a given SMF � � hh��� 	 	 	 � �r% p�� 	 	 	 � prii

(K� �� fi� 
 I� � lim
n��

log p�i
�

jn�

log��i
�

jn�
� �g K� �� �� (K��	

De�ning ��q� as the unique solution � of ����� for each q� the authors of �CM� are

able to prove that

dHD�K��q�� � ��q� � q��q�

for all q� where ��q� � �� ��q�� This result is a convincing example for the power of

an approach �tailored to multiplicative cascades� and the use of symbolic dynamics�

For a geometric relevance� however� the following characterization of K� in terms

of the local behaviour of the measure � is essential� Provided the sets wi�K� are

pairwise disjoint

K� � fx 
 K � lim
���

log��U�x� ���

log �

� �g	

�This is an almost immediate consequence of the fact that the 
�neighbourhood of

K satis�es the OSC for su�ciently small 
� However� a proof is also contained in

�CM��� Consequently K� is just the set of all points with local H�older exponent �

�EM�� With corollary �� this can be summarized as follows�
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Proposition ��� Cawley�Mauldin� Let � be a SMF� Provided the sets wi�K�

are mutually disjoint�
dHD�fx 
 K � lim

���
log��U�x� ���

log �

� �g� � F ���

for all � 
�D�� D���� Moreover� ��K�� � � ��CM� p ���� remark �������

�

The next example shows� that disjointness is not necessary to achieve similar results�

Example ���� Subsets of Local H�older Exponent �� One Dimensional

Case�� A result of Collet et al �CLP� will be adopted to �t our purpose� Take a

self�similar set K � hw�� 	 	 	 � wri on IR with the following two properties�

a� an interval O satis�es the OSC� and

b� the map

g � x �� w��
i �x� for x 
 wi�O� � Vi

is continuous on K� � �i�������rwi�O��

As an example take w��x� � x��� w��x� � �x�� � �� and w��x� � x�� � �� with

K � ��� ��� Now supplement K to a SMF � � hw�� 	 	 	 � wr% p�� 	 	 	 � pri with arbitrary

probability vector� It is easily veri�ed that � satis�es the hypothesis of �CLP��

Trying to avoid the di�culties arising in the calculation of the singularity exponents

��q� for negative q� the authors of �CLP� introduce certain partition sums Zn�q�

related to the �n�grid� A closer look at the sophisticated construction reveals

inequalities between Zn�q� and S��q�� which are of the same kind as used in the

proof of proposition ���� Consequently� T �q� � limn�� logZn�q�� log 
n� So� �CLP�

theorem ���� and our corollary �� yield�

Proposition ��� Collet et al�� Let � be as above� Then

dHD
�

fx 
 K � lim
jEj��

x�int�E�
log��E�

log jEj � �g
�

� F ���

for � 	� �� from �D�� D���� Thereby jEj denotes the length of the interval E�
�

For reasons of completeness we point to further results in this �eld obtained by

Lopes �Lop� for Julia sets of hyperbolic rational maps in the plane� by Schmeling et

Siegmund�Schultze �S� for self�a�ne measures and by Rand �R� for certain CMF�

There is more to say about the measures � occurring in examples ��� and ����

Since SMFs are nonatomic �lemma ���� a famous theorem of Young �Y� p� ���

allows the following reasoning� taking any � as in example ��� and any � with

���� EXAMPLES AND COUNTEREXAMPLES ��

��K�� � �� �Y� implies dHD�K�� � � and hence F ��� � � � �� � D�� On the

other hand� dHD�K�� � F ���  D� for all � 	� ��� Thus

��K�� � � �� 	� ��� mD��K�� � � �� 	� ���� ����

The same holds for � as in example ����

From ���� the di�erence between the invariant measure and the D��dimensional

Hausdor� measure �restricted to K and normalized� becomes apparent� Moreover�

considering these measures as probability measures on the embedding space� the

local H�older exponent takes the value ��� respectively ��� with probability one�

The �rst equation in ���� supports the imagination that the measure � concen�

trates in the ��boxes with ��B� � �D�� Compare also page �� ���� and proposi�

tion ���

Example ���� Concentration of �� Assume that � is a multifractal and &� � �

such that for any h � � there is a � � � with F���� � ��� for all � 	
 �&��h� &��h��

Take e�g� a SMF � and choose &� � D��

Then the calculation of Falconer �Falc�� p� 	�� is valid� since f��� � f���� �

F����� It shows that for G��h� �� fB 
 G� � �
���h � ��B� � � ���hg�

��


B�G��h�

B�� � �� � �� for any h � �	

Thus � is concentrated in the boxes with ��B� � � ��� But note that these boxes do

not necessarily form a decreasing sequence of compact sets as � � �� �

Finally we give the example of a SMF � and a subset E of its support K with

dHD�E� � D� and draw the connection to ���� and to the examples ��� and ���

Example ���� Subset of Exact Dimension D�� The following result is due

to Eggleston �Eggl��

Let �po� 	 	 	 � pr��� be a probability vector and denote by N�x� n� k� the number of

times� the digit k occurs amongst the �rst n digits of the r�adic decimal expansion

of x 
 ��� ��� Then the Hausdor dimension of

E � fx 
 ��� �� � lim
n��

�
n
N�x� n� i� � pi� i � �� 	 	 	 � r � �g

satis�es

dHD�E� �
r��P

i��
pi log pi

� log r
	

�Note that only countable many points x have more than one decimal represen�

tation� Concerning matters of dimension greater than zero� enumerable sets are

negligible��
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Eggleston�s result may be regarded from the point of view of multifractal formalism�

Choose � � hwo� 	 	 	 � wr��% po� 	 	 	 � pr��i with wi�x� � �i�x��r� Of course K � ��� ��

and E is a subset of K� Since countable sets are P �null sets�

��i�� 
 E � �k � �� 	 	 	 � r � � lim
n��

�
n
"fl � n � il � kg � pk�

for P �almost every in�nite word i�� By the Strong Law of Large Numbers the last

condition holds P �almost sure� Thus ��E� � �� By corollary �� and by Eggleston�s

result dHD�E� � D�� which by ���� may be expected to equal dHD����

Finally� E can be related to the examples above� For ��almost every x 
 E there

is exactly one i� 
 ����fxg�� Then� letting �n � r�n� there is a unique Bn 
 G�n

which contains x� Moreover� the closure of Bn is V�i
�

jn� and

��Bn� � p�i
�

jn� �
r��Y

i��
pi
N�x�n�i��

leading to
log��Bn�

log �n

�
log p�i

�

jn�

log��i
�

jn�
�

�
n

r��P
i��
N�x� n� i� log pi

� log r

�
r��P

i��
pi log pi

� log r

� D�

as n � �� The connection to example �� is immediate� Furthermore� E � KD�

up to a ��nullset� But there is no rigorous argument showing that E is the set of

local H�older exponent D�� �

See also example ��� for a self�a�ne multifractal and an explicit subset K � of �strict

local H�older exponent� D��

����� Counterexamples

This subsection provides four multifractals with unusual spectrum�

� A so�called left�sided spectrum �MEH�� which means that T �q� � � for all

negative q� Consequently �� � � and here even T ��� 	� supF����� For

further examples of this kind see �MEH� ME� CJVP��

� Nonconcave spectra�

� Non grid�regular singularity exponents and spectrum�

Example ���� A Multifractal � with F��� � dboxK���

In contrast with example �� the extraordinary behaviour of F� does not arise

from an inherent inability of the multifractal formalism but re�ects the strong in�

homogeneity of the measure � and the existence of arbitrarily large local H�older

exponents�

���� EXAMPLES AND COUNTEREXAMPLES 	�

Let K be the middle third Cantor set as constructed in example ���� Unlike the

construction of CMFs the product measure P � on its codespace f�� gIIN is chosen

according to the more and more one�sided measures

f�g �� p
�n�

� � ��n
� fg �� p
�n�

� � �� ��n
�

on the n�th factor f�� g� This is not a multiplicative cascade any more�

Let � �� ��P
�� The calculation of F� is carried out using the admissible sequence

�n � ��n� Singletons are ��nullsets� So for any �n�box B

��B� �
�

p
���

i� � 	 	 	 � p�n�in � ���B��� if B � Vi and i 
 In

� otherwise�

Note �rst that p
���

i� � 	 	 	 � p�n�in � p
�n�

� � �n
n for all i 
 In with in � �� Now �x �� For

any integer n � �
n � "In � M�n��� � "fi 
 In � in � �g � n��	

Together with ������
F���� � lim

n��
logM�n���

� log �n

�
log 

log �
� dbox�K��

as it was claimed� In addition

S�n�q� �
nY

k��
�

��k
�q � ��� ��k
�

�q
�

� c�n��
nY

k�n�
�

��k
�q � ��� ��k
�

�q
�

	

For q � � and 
 � � choose n� large enough to ensure

��k
�q � 
��� ��k
�

�q and �  � �k
�

log��� ��k
�

� � ��


for k � n�	

Straightforward estimates give

�q
�n

�
�
�n� n� � �� � logS�n�q�� log c�n�� � �n� n� � ��� log�� � 
�� q

 � �n� �	

Dividing �rst by � log �n� and letting then n��� then n� �� and �nally 
� �

shows that T �q� vanishes and is grid�regular� For q � � direct computation yields

S�n��� � n and T ��� � dbox�K�� For q  �� proposition ���� and lemma ���	 yield

the grid�regular value T �q� ���

Finally� F���� � � for all positive � due to F���� � T �q�� q�� On the other hand

theorem ��� and ����� give F ��� � F����� � �� �A straightforward calculation

yields even F ��� � � for all � � ��� By monotonicity F���� � � for all strictly

positive �� So it has the looks of the positive semispectrum of a Dirac measure�

This re�ects the fact that the measure � is concentrated at the point �� Only F�

and T reveal some more information about ��

Summarizing� this multifractal exhibits the following features�
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� The singularity exponents are not even semicontinuous at zero�

T �q� �
���

��
� if q  �

log � log � if q � �

� otherwise�

� The multifractal is left�sided� hence �� ��� Moreover�

F ��� � F���� � � �� � �� and F���� � dbox�K� �� 
 IR�	

� T ��� � supF ��� � supFm��� � ��

�

Lemma ���
 Let ��� 	 	 	 � �t be multifractals with mutually disjoint supports and let

�c�� 	 	 	 � ct� be a probability vector� Then
� ��

tX
i��

ci�i

is again a multifractal� Moreover� using a selfexplanatory notation�

F ��� � max

i�������t
�Fi���� F����� � max

i�������t
�F�
i �����

T �q� � max

i�������t
�T i�q�� T �q� � max

i�������t
�T i�q��	

and grid�regularity of the maximal Fi��� resp� Ti�q� carries over to F ��� resp� T �q��

Remark Example �� shows that the conclusions are wrong for in�nite sums of

multifractals� �All Dirac measures possess the same trivial function T �q� � �� An

in�nite linear combination of them� however� may not��

Proof Throughout the proof it will be assumed that �  �
p

d��  dist�Ki� Kj� for all

distinct i and j� Thus� if B 
 G�� there is a unique i such that ���B��� � ci�i��B����

First the proof is given for F ���� Fix � and take 
 � � arbitrarily� Choose �� � �

such that ��
� � ci � ��
�� for i � �� 	 	 	 � t� With a selfexplanatory notation it follows

that
N���� 
��N���� 
� �

tX
i��

N
�i�

� ��� 
��N
�i�

� ��� 
� � N���� �
��N���� �
�

whenever �  �  ��� This implies immediately the claim� The assertion for the

semispectra follows similarly from

N��� � 
� �
tX

i��
N
�i�

� ��� 
� � N���� �
�	

To treat T �q� and T �q� note that min�cqi � � S�k�
� �q� � S��q� � max�cqi � �
P

S
�i�

� �q�	 �

���� EXAMPLES AND COUNTEREXAMPLES 	�

Example ���	 Nonconcave Spectrum� Take

w��x� �
x

�

w��x� �
 � x

�

t��x� �
� � x

�

t��x� �
	 � x

�

and set �� � hw�� w�% ��� ���i� �� � ht�� t�% ���� ���i and � �� ����� � ����

Since �� and �� are symmetric biadic SMFs �i�e� r �  and Lip�w���Lip�w���� their

spectra are symmetric with respect to the corresponding extrema� say ��
� and ��
���

Moreover� their extremal values are both equal to log � log � � dbox�K�� � dbox�K���

By lemma ��� � has the spectrum shown in �gure ��� Note that F is grid�regular

and that it equals Fm exactly for � outside ���
�� ��
���� �

Figure ��� The nonconcave spectrum of � � ��������� as given in example ����

The dashed parts show the internal bisector of the axes and the spectra of �� and

���
Example ���� Another Nonconcave Spectrum� Take

w��x� �
x

�

w��x� �
 � x

�

t��x� �
�	 � x

�

t��x� �
� � x

�

and set �� � hw�� w�% ��� ���i� �� � ht�� t�% ���� ���i and � �� ����� � ���� By

lemma ��� the spectrum of � is as shown in �gure �	� Moreover� it is grid�regular

and equals Fm in the union of two disjoint intervals� �

Figure �	� The nonconcave spectrum �on the left� of another multifractal � �

����� � ��� and its positive semispectrum F�� See Ex� ����� The dashed parts

show the internal bisector of the axes and the spectra of �� and ���

The last two examples allow several conclusions�
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� First of all� a spectrum F is not necessarily concave� Moreover� it is not

necessarily di�erentiable�

� Secondly� neither F nor Fm must everywhere equal the Legendre transform of

T � This violates the duality between F and T � the latter equals always the

transform of Fm �except maybe at �� and is hence convex� This asymmetry

is also re�ected in the fact that taking the maximum of functions conserves

convexity but not concavity� To say it in a di�erent way� T is more regular

than F since it depends on the values ���B��� through a sum or �average�� On

the other hand� T provides a coarser way of measuring the singularities of �

and carries less information than F �

� As a third point consider lemma ����� F may well be strictly monotonous in

an open interval and nevertheless equal neither F� nor F�� Thus a �dual�

version of the mentioned lemma does not hold� Furthermore� F����  F����

is not enough to imply F ��� � F�����

� Finally� the touching point of F with the internal bisector of the axes is not

necessarily unique� and T is not necessarily di�erentiable at q � �� Conse�

quently� the limq��Dq may not exist�

Example ���� Non Grid�Regular Exponents� A biadic CMF on IR with

T �q�  T �q� �q 	� �� will be constructed� Choose two strictly increasing sequences

of integers �nk�k�IIN and �mk�k�IIN such that

nk

nk �mk��
� �

nk

nk �mk
� � �k ���	

Let l�n� denote the number of members of �nk�k�IIN less or equal to n� The sets Vi

involved in the construction are of the form

Vi � �ai�
�M � �ai � ����M �

for some integer ai� where M �M�n� �� n�ml�n� and n � jij� To be more precise�

set Vnil � ��� �� and m� �� �� Assuming that Vi is constructed and of the form as

above� let ai�� and ai�� by de�ned through

ai�� � ��M�n��� � ai�
�M�n�

ai�� � ��M�n��� � ai�
�M�n� �  � ��M�n���	

Since the function n �� M�n� increases by mk �mk�� � � when n � nk� and by �

otherwise� this choice of Vi actually means the following� the well known construction

of the middle third Cantor set is carried out until a stagenumber n � nk is reached�

Then the left boundary points ai of the Vi are chosen as usual� but the length

extremely small relative to the length of the preceding intervals� It is immediate

that the Vi�k are subsets of Vi�

���� EXAMPLES AND COUNTEREXAMPLES 	�

Thus the construction ofK is complete� Let � � h�% p�� p�i where � is the coordinate

map of K and �p�� p�� an arbitrary probability vector� For the sake of de�niteness

assume p� � p��

Take an arbitrary integer t and set �t � ��t� There is a unique integer N � N�t�

de�ned by

M�N � �� � � � t � M�N�	

Every set Vj with jjj � N � � belongs to the ��M�N����grid and its middle third

interval with length ��M�N����� separates its two �daughter intervals� Vj�� and Vj���

By induction each set Vi with jij � N is contained in a ��t�box� just because

��M�N� � ��t% furthermore� since ��t � ��M�N������ every two distinct Vi with

jij � N are separated by a ��t�box which does not meet K� Consequently� for any

�t�box B either ��B� � � or ���B��� � ��B� � ��Vi� � pi for the unique i 
 IN for

which Vi is contained in B� This yields

logS�t�q�

� log �t
�

log
� P

jij�N�t�
pi
q
�

t log �

�
N�t�

t
log �p�
q � p�
q�

log �

	

Taking �rst tk � nk � mk�� results in N�tk� � nk and N�tk��tk � � �k � ���

Taking t�k � nk �mk implies again N�t�k� � nk� but N�t
�

k��t
�

k � � �k ���� Since

� � N�t��t � � for all integers t� this results in

T �q� � max
� log �p�q � p�
q�

log �

� �
�

T �q� � min
� log �p�q � p�
q�

log �

� �
�

�q 
 IR�	

Figure ��� A CMF with T �q�  T �q� �q 	� �� �Ex� ���� with p� � 	��� p� � 	����

Finally� applying the arguments given in the proof of theorem �� to the sequences

��tk�k�IIN and ��tk ��k�IIN shows that

F���� � lim inf

���

logM����

� log �

� �� for �  �  � log p�� log �

F���� � lim inf

���

logN����

� log �

�

�
� for � � � log p�� log �

�� for �  �  � log p�� log ��

�



Chapter �

Self�A�ne Multifractals

Having treated the self�similar case� one way to go further is to consider a�nities� In

fact an intensive study of self�a�ne sets has led to important results �Falc�� Falc��

K� U� Z� GL� and applications� the latter mostly in the �eld of fractal interpolation

�BEHM� GH� Ma� Bed��� It is� therefore� natural to consider self�a�ne measures�

In doing so we will restrict our investigation to a particular kind of a�nities and

denote the obtained self�a�ne multifractals by SAMF� It is almost evident that the

characteristic values of the involved a�nities will partly determine the singularity

exponents T �q�� like in the self�similar case� Carrying the analogy even further� one

may expect implicit equations to hold for T �q�� from which the box dimension is

recovered for q � �� This indeed turns out to be the case� However� a completely

new feature appears� the singularity exponents T �q� of a SAMF are obtained as

the maximum of the solutions of two equations� This is a consequence of the fact

that the a�ne maps under consideration stretch with di�erent ratios in two �xed

invariant subspaces�

In the �rst section the de�nition of SAMFs is given and it is shown how the asymp�

totic behaviour of S��q��and thus T �q��is governed by the probability numbers

and the characteristic values of the involved maps� Section two is devoted to limit

theorems needed in section three� where the singularity exponents T �q� are computed

and grid�regularity and di�erentiability are discussed� Falconer gave the �almost

sure� dimension of self�a�ne sets� Section four provides this value in the context of

this chapter and compares it with the actual box dimension D� � T ���� In section

�ve examples are developed and relations are drawn to recent publications�

��� Geometric Properties

In the �rst half of this section the particular geometrical situation of the self�a�ne

measures under consideration is introduced� Then� after drawing �rst consequences�

an intuitive understanding of the asymptotic behaviour of S��q� is provided on

	�
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page �� In the second half of the section this intuitive argument is made rigor�

ous step by step�

For i � �� 	 	 	 � r let wi be a diagonal a
ne contraction of IR�� i�e�

wi � �x
���� x���� �� ��i�ix
��� � ui� �i�ix
��� � vi� �����

where �i and �i are from f�����g� ui and vi from IR� and where

� �� maxf��� 	 	 	 � �r� ��� 	 	 	 � �rg  ��

� �� minf��� 	 	 	 � �r� ��� 	 	 	 � �rg � �	

����

Similarly as for SMFs it is required to have a nonempty� bounded� connected open

set O such that

wi�O� � O �i � �� 	 	 	 � r� and wi�O� � wj�O� � � �i 	� j�	 �����

In order to treat a�nities rather than similarities one more regularity condition is

needed� denote by R the smallest closed rectangle with sides parallel to the axes�

which contains O� For the sake of simplicity R � ��� ��� will be assumed� This

choice is not really a restriction as far as multifractal formalism is concerned� any

rectangle can be transformed to ��� ��� by a diagonal a�ne map $� Moreover� $�K�

is invariant under $ �wi �$��� which possess the same characteristical values as wi�

The additional hypothesis on O is� there is a � � � and x�� x�� y�� y� from ��� ��

such that

�x�� t�� �x�� �� t�� �t� y�� and ��� t� y�� �����

belong to O for all t 
��� ��� Loosely speaking� O touches each boundary part of R

�perpendicularly�� Any set O with the above properties is called round open set�

De�nition ��� Let �p�� 	 	 	 � pr� be a probability vector and let �w�� 	 	 	 � wr� be a set

of diagonal a
ne contractions with a round open set� Then

� �� hw�� 	 	 	 � wr% p�� 	 	 	 � pri

is called Self�a�ne Multifractal� for short SAMF� The characteristic values of wi

will always be denoted by �i and �i�

In order to compare G� with a suitable system of sets Vi the de�nition of J� ����

given in section �� has to be modi�ed� For any �nite word i � i� 	 	 	 in let

�i �� �i� � 	 	 	 � �in �i �� �i� � 	 	 	 � �in

as usually and de�ne

��i� �� min��i� �i� � ��i� 	 	 	 in��� � ��in� � ��i�� � 	 	 	 � ��in�	

Since � is only sub�multiplicative we prefer the slightly di�erent notation and will

not write �i� Trivially ��i� � ���i� 	 	 	 in���� thus ��i� � � �jij � �� and the


��� GEOMETRIC PROPERTIES 	�

construction ���� of J� on page �� works with ��i�� replacing �i� For �  �  ��

the set J� is thus uniquely determined by

J� � fi � i� 	 	 	 in 
 I � ��i� � �  ��i� 	 	 	 in���g	 �����

Moreover� J� is tight and secure �see ���� and ��	�� and

�� � ��i� � � for all i 
 J�	

Note that this de�nition of J� coincides with the one of section �� when �i � �i

�i � �� 	 	 	 � r��

The aim of this section is now to prove that it is enough to consider Vi �i 
 J��

in order to determine T �q�� This is the essential step towards �symbolic dynamics��

First� an estimate analogous to ���� is required� saying that a ��box is not inter�

sected by too many sets Vi with i 
 J�� It is only here� where the �roundness� of O

is actually needed�

Lemma ��� Given two numbers �� � �� � �� there is a number b depending only

on the a
nities w�� 	 	 	 � wr such that

"J���B� �� "fi 
 J�� � Vi � �B�� 	� �g � b

for all � � � and �� � � with �� � ���� � �� and for all B 
 G��

For reasons of simplicity the Cartesian product of two intervals of length u and v

will be called a u�v�rectangle� It is not important whether a rectangle contains some

parts of its boundary or not�

Proof Take i 
 J���B�� The �i��i�rectangle Ri �� wi�R� contains Vi� thus it must

meet �B���

i� Assume �rst that �i � �i� Since O is connected and bounded� there is a path

within O joining ��� y�� with ��� y��� which consists of �nite many straight

line segments g�� 	 	 	 � gN � each one parallel to one of the axes� Choose �
� � �

such that U���� Q� is contained in O for all endpoints Q of the gi� except

��� y�� and ��� y��� The path g� 	 	 	 gN is by wi mapped onto a path which

crosses Ri parallel to the axes and which joins wi��� y�� with wi��� y��� Since

�i � ��i� � �� � ��� and since �B�� meets the �i��i�rectangle Ri� there is l

such that B� �� �B����� intersects a part hi �� wi�gl�� which is parallel to the

x����axis �see Fig� ����� By the �roundness� of O at least one endpoint of hi

must lie in wi�O�� the interior of Vi� This point is denoted by Qi�

i�a� Assume �rst that Qi lies in B
� �see the set Ri in �gure ����� Then at least

one quarter of the ball U����i� Qi� is contained in B
�� Moreover� this ball

is a subset of the ellipse wi�U��
�� Q� and hence contained in wi�O�� Now

the question is� how many such words exist� Since wi�O� and wj�O� do
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V
h

B

B’ V h

R

R
i

ii

j
j

j

Figure ���� Though the sets Ri do not have to be disjoint� they cannot overlap too

much due to the horizontal paths hi�

not intersect for i 	� j �J�� is tight ������ the just constructed balls U are

disjoint� Comparing volumes� there are at the most

b� ��
�

�
�� � ��

�����
��

words of this kind in J�� �

i�b� When Qi lies outside B
� �see the set Rj in Fig� ����� then hi must meet

�B� in one of its two vertical parts� Denote this intersection point by Si�

Take two di�erent words i and j satisfying case i�b� such that Si and Sj

lie on the same straight part of �B�� Then� the ball U����i� Qi� is disjoint

with Vj and hence with hj� and vice versa� Thus� Si and Sj are at least

at distance ���i � ����� � ������ of each other� Comparing the length of

�B� with this minimal distance proves that at the most

b� �� 
� � ��

�����

words of this kind are in J�� �

ii� When �i  �i� the same argumentation holds� showing that b �� �b� � b�� is

enough� �

Remark From the proof it is immediate that O can be allowed to have a �nite

number of connected components which all satisfy the �roundness��condition� The

constant b has then to be multiplied by the number of components�

As a consequence of the lemma�

Corollary ��� SAMFs are nonatomic�
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Proof The proof works exactly as the proof of lemma �� except that ���� has

to be replaced by lemma ��� �

We continue with elementary properties of �� Denote the projection of IR� onto the

x�k��axis by ��k� and set

w���
i �x���� �� �i�ix

��� � ui� w���
i �x���� �� �i�ix

��� � vi�

and

K�k� �� ��k��K�� ��k� �� ��k���	

Then� ��k� is a multifractal on IR� Its singularity exponents and the other values

relevant in the multifractal formalism will be marked with a ��k��� i�e�

T �k��q� � �q � ��Dq
�k� � lim sup

���

log �S
�k�

� �q��

� log �

and so on�

Lemma ���

��k� � hw�k�
� � 	 	 	 � w�k�
r % p�� 	 	 	 � pri

K�k� � hw�k�
� � 	 	 	 � w�k�
r i � supp���k��	

Proof

i� We show that K�k� � hw�k�
� � 	 	 	 � w�k�
r i for k � �� If x 
 K���� then there is y

with �x� y� 
 K� By the invariance of K ���� there is an i 
 f�� 	 	 	 � rg and

�x�� y�� 
 K such that �x� y� � wi�x
�� y��� In particular x � w
���

i �x�� since wi is

diagonal� Thus

K��� �
r

i��
w
���

i �K����	

On the other hand� if x � w
���

i �x�� with x� 
 K���� then there is y� such that

�x�� y�� 
 K and x � �����wi�x
�� y��� � �����K� � K���� Since K��� is compact

this proves the claim�

ii� The diagonality of wi implies �
�k� � wi � w
�k�

i � ��k�� From this

��k� � ��k��� �
rX

i��
pi�
�k�

��wi��� �
rX

i��
piw
�k�

i ���
�k�

��� �
rX

i��
piw
�k�

i ��
�k��

and ��k� is the unique invariant measure with support K�k� �see section ���

�

After these preliminaries let us turn to S��q�� Let

��q� a� b� �� J� ��
X

i�J�
pi
q�i
a�i

�a �
X

i�J�
pi
q�i
b�i

�b ���	�
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for any �nite set J of �nite words� where

J� �� fi 
 J � �i � �ig J� �� fi 
 J � �i � �ig	 �����

This sum � will approximate S��q� � �
 for J � J�� a � T ����q� and b � T ����q�

intuitively in the following way� consider

S���
� �q� �
X

k
������k
� �k � ��
��q �
X

k
���k
� �k � ��
����� ���q � 
�T

����q�	 �����

For i 
 J�
� and 
 � �i��i � �� the strips �k
� �k � ��
����� �� are by wi transformed

into squares of side �i � �� covering Vi� The measure of such a square is roughly

pi � ������k
� �k � ��
��� Doing similarly for i 
 J�
� and considering the obtained

squares as an approximation of the ��boxes forming G�� ����� leads to

S��q� � X
i�J�
�

X
k

�
pi � ������k
� �k � ��
��
�q

�
X

i�J�
�

X
k

�
pi � ������k
� �k � ��
��
�q

�

X
i�J�
�
pi
qS���

� �q� �
X

i�J�
�

pi
qS���

� �q�

�

X
i�J�
�
pi
q��i��i�
�T ����q� �
X

i�J�
�

pi
q��i��i�
�T ����q�	

This partition sum will tend to zero for q � � and to � for q  �� To detect the

power rate with respect to � it is convenient to investigate

S��q� � �
 � X
i�J�
�
pi
q��i��i�
�T ����q� � �i
 �
X

i�J�
�

pi
q��i��i�
�T ����q� � �i


� ��q� T ����q�� T ����q�� �� J��	

Step by step the above approximation will be made rigorous� The asymptotic be�

haviour of � is investigated in section ���

Lemma ��� For any q 
 IR� k 
 f�� �g and any � � T �k��q�� �  T �k��q� there is a

number c such that for all � 
��� ��

�
c
S
�k�

� �q��
 � � � c � S�k�
� �q��


Proof

i� Remember that ��  T �k��q� in general and that T �k��q�  � since the mea�

sures ��k� are contractive CMFs� Obviously there is a �� � � such that the

assertion holds for �  ��� Thus it is enough to prove that S
�k�

� �q� is bounded

from above and away from zero for � 
 ���� ��� For the remainder let � be from

this interval�
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ii� Take q � � �rst� Then ��k���B���
q � � and S
�k�

� �q� � "G�
�k� � ��� � ����� On

the other hand� there is a B with ��k���B��� � ��k��B� � ��"G�
�k� � ��� thus

S
�k�

� �q� � ��
q� Here G�
�k� denotes the set of all ��boxes on the x�k��axis with

nonvanishing ��k��measure�

iii� Given q � � it is obvious that S
�k�

� �q� � �� For the upper bound note that

��k� is a CMF arising from an IFS�but not necessarily with a basic open set�

However� n can be chosen large enough to ensure �n � ��� Then the diameter

of Vi
�k� �� wi
�k����� ��� is certainly smaller than �� provided jij � n� Given

B 
 G�
�k� there must be a word i of length n such that Vi
�k� meets B �In is

secure�� Thus Vi
�k� is contained in �B�� and ��k���B��� � pi� Every Vi
�k� can

meet at the most two boxes B� This implies S
�k�

� �q� � �pq� � 	 	 	 � pqr�
n� The

independence of n from � completes the proof� �

Lemma ��	 Given q � �� � � � and � 
 IR there are numbers c� and c� such that

for all � � �

c� � ��q� T ����q�� T ����q�� � � �� J�� � S��q� � �
 � c� � ��q� T ����q�� T ����q�� � � �� J��	

Proof Let � � � and q � ��

i� The sets Vi are circumscribed by �i��i�rectangles� most of which are long stretched

and thin� For i 
 J� Vi will be subdivided into sets of diameter � �� Take �rst

the case �i � �i� i�e� i 
 J�
�� Set


i ��
�i

�i
	

Then 
i � �� De�ne
C�k� i� �� ��k � �� � 
i� k � 
i�� ��� �� �����

for k � �� 	 	 	 � d��
ie� where dxe is the smallest integer greater than or equal

to x� The sets D�k� i� �� wi�C�k� i�� constitute a disjoint covering of Vi by


i�i��i�rectangles� which are in fact squares �see Fig� ���� From lemma ���

follows

S�i
����q� �

X
��C�k�i��
��

����������k���
i� �k����
i���q �
X

��C�k�i��
��
���C�k� i����
q�

where �C�k� i��� �� ��k��� �
i� �k � � � 
i����� ��� In the case �i � �i one �nds

of course X
��C�k�i��
��

���C�k� i����
q � S�i
����q�

with the obvious modi�cations�
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Figure ��� The square ��� ��� is subdivided into strips C�k� i� of width 
i� which are

mapped onto squares of side ��i� � ��

ii� Take B 
 G�� Observing that J� is secure and tight� and that the support of �

is contained in O� the invariance of � yields�

���B��� �

X
i�J�

pi�
�

wi
����B�� � Vi�
�

�

X
i�J�

d���ieX
k��

pi�
�

wi
����B�� �D�k� i� � Vi�
�

� X
i�J�

X�
pi��C�k� i��	

Here�
P� runs for �xed i over all k such that �B��� D�k� i� and Vi intersect�

Since the D�k� i� are disjoint and contain squares of side ��� there are for

each i at the most � � ��� such integers k� Moreover� �B�� meets only b sets

Vi �lemma ���� Consequently the last double sum has actually at the most

b� �� b�� � ���� terms� So it is possible to �nd k � k�B� and i � i�B� such

that D�k�B�� i�B�� meets �B�� and such that for C�B� �� C�k�B�� i�B�� the

inequality

� 	� ���B��� � b� � pi�B���C�B��

holds� This leads to

S��q� �
X

B�G�
���B���
q � bq�
X

B�G�
pqi�B��
�

�C�B���
�q

	

Since every �xed D�k� i� is a square of side ��i� � �� it can at the most meet

�	 sets �B�� with B from G�� Thus at the most �	 pairs �k�B�� i�B�� can

coincide and hence
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S��q� � �	b�
q
X

i�J�

X
��C�k�i��
��

pi
q���C�k� i����
q

� �	b�
q
� X

i�J�
�
pi
qS�i
����q� �
X

i�J�
�

pi
qS�i
����q�
�

	

Now choose �k � T �k��q� � � �k � �� �� Setting c� � �	cb�
q with c from

lemma ��� gives
S��q� � c�
� X

i�J�
�
pi
q��i��i�

� �
X

i�J�
�

pi
q��i��i�

�
�

	

Writing a � T ����q�� b � T ����q�� c� � c�max��� ��
� for short and observing

��i� � � � ��i��� yields

S��q��

 � c�
� X

i�J�
�
pi
q�i

��i

�
� �
X

i�J�
�

pi
q�i

��i

�
�
�

� c�
� X

i�J�
�
�i
	 � piq�ia�i
�	�a �
X

i�J�
�

�i
	 � piq�ib�i
�	�b
�

� c���q� a� b� � � �� J��	

The last estimate used �  � ���� and � � ��

iii� The same argumentation as above but with B andD�k� i� interchanged provides

the desired lower bound� So� take i 
 J� and k such that ��C�k� i�� 	� �� The

set D��k� i� �� wi��C�k� i���� � Vi is contained in a rectangle with sides ��i�

and ���i�� Thus there are at most eight boxes from G� meeting D��k� i� and

hence one among them� say B�k� i�� with

��D��k� i�� � � � ��B�k� i��	

Using the invariance of � this allows the estimate

�q���B�k� i����
q � ��D��k� i��
q � pi
q���C�k� i����
q	

On the other hand� any �xed B 
 G� can only meet b sets Vi� And for each

such i the box B can only intersect �� � ���� sets D��k� i�� since wi
���B� has

to intersect �C�k� i���� Thus� at the most b� �� b�� � ���� sets B�k� i� can

coincide with B� This leads to

b��
qS��q� � X

i�J�

X
��C�k�i�� 
��

pi
q���C�k� i����
q

�

X
i�J�
�
pi
qS�i
����q� �
X

i�J�
�

pi
qS�i
����q�	

Now choose �
k
� T �k��q�� � �k � �� �� With c�� � �qcb� lemma ��� gives

c��S��q� �
� X

i�J�
�
pi
q��i��i�



� �
X

i�J�
�

pi
q��i��i�



�
�
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Writing a � T ����q�� b � T ����q�� c� � min��� ��
��c�� for short and observing

��i� � � � ��i��� leads to

S��q��

 � c�
� X

i�J�
�
pi
q�i



��i

�


� �
X

i�J�
�

pi
q�i



��i

�


�
�

� c�
� X

i�J�
�
�i
�	 � piq�ia�i
�	�a �
X

i�J�
�

�i
�	 � piq�ib�i
�	�b
�

� c���q� a� b� � � �� J��	

�

Lemma ��� Given q  �� � � � and � 
 IR there is a number c	 such that for all

� � �

S��q� � �
 � c	 � ��q� T ����q�� T ����q�� � � �� J��	�	

Proof The notation of the proof of lemma ��� is kept in use� Let q  �� � � �

and set �� � ���� Take B 
 G�� Since J�� is secure there is an integer k and a word

i 
 J�� such that for C�B� �� C�k� i�

� 	� ��wi
���B� � C�B�� � ��C�B��	

This implies in particular that B� � wi
����B��� contains �C�B���� considering the

case �i � �i �rst� B
� is a ����i�����i�rectangle with wi
���B� concentric in its middle�

Moreover� ���i � �����i � �
i�
���i � �
i and ���i � �����i � �� Since wi
���B� and

C�B� intersect the claim follows� It is here where the idea of the new formalism

enters� which says to use ���B��� of boxes B with nonvanishing measure� Similar

for �i � �i� As a consequence of the invariance of �

���B��� � pi�
�

wi
����B���
�

� pi�
�

�C�B���
�

	� �	

Since ��  � there are at the most four boxes B with coinciding pair �k� i� and thus

S��q� �
X

B�G�
pqi�B��
�

�C�B���
�q � �
X

i�J��

X
��C�k�i��
��

pi
q�
�

�C�k� i���
�q

	

The rest of the proof is essentially a repetition of the argument at the end of step

ii� in the proof of lemma ���� �

For negative q it is not so easy to derive a lower bound of S��q�� Even more in�

formation is required about the geometry of �� similar as in the self�similar case �

should not concentrate at the boundary of the open set�

To be more precise� an IFS �w�� 	 	 	 � wr� of diagonal a�ne contractions will be called

vertically centered if there is an open set O ��s� t���u� v� such that for any x 
 K���

there is a number l in I� such that x 
 �����Vl� and �
����Vl� ��u� v�� Note that Vl is

a closed set� Mutatis mutandis horizontally centered is de�ned�
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Figure ��� provides a multifractal with centered IFS� For such measures a lower

bound of S��q� can be given also for negative q�

However� it is an important note that the IFS generating a multifractal is not unique�

In applications it can be helpful to change to a coarser construction of the same

invariant set� More precisely speaking� the invariance ���� of K holds for any

secure and tight� �nite set J of words� not only for I�� The resulting codespace

I�� � J IIN can naturally be identi�ed with I� � I IIN� � which motivates the term

coarser IFS� Supplied with the obvious product measure J IIN will produce the same

SAMF �� since the invariance ����� of � holds also with J � Summa summarum the

following de�nition is e�ective�

De�nition ��� A SAMF � � hw�� 	 	 	 � wr% p�� 	 	 	 � pri will be called centered self�

a�ne multifractal� for short C�SAMF� if it possesses two coarser IFS� one centered

vertically and one centered horizontally�

��
��
��
�����

���

������
������
������
������

����
����
����
����

������
������
������

����
����

��
��
��

������
������
������

����
����
����

��
��
��
��

��
��

x

y

Figure ���� On the left the construction of a SAMF	 The unit square O is drawn

as well as its images wi�O�� marked by the shaded regions� The arrows reveal

the induced orientation� Through this data� the IFS is uniquely determined and

obviously it is centered� Moreover� the projections of the invariant set K are even

self�similar� allowing a calculation of the spectrum as described in subsection 
����

On the right the multifractal corresponding to the probabilities p� � p� � p� � p �

p�� � p�� � ���� p	 � p
 � p� � p� � p�� numbering the maps from the left to

the right and from the bottom to the top� The image is composed of ������ points

provided by a random algorithm�

The strong condition �centered� is needed to be sure that the measure � is nowhere

concentrated on the boundary of the open set� This corresponds to the method

of the new formalism using the measures ���B��� of boxes with ��B� 	� �� More

general assumptions become apparent in lemma ��� ii��

In examples� the situation of the lemma below is often encountered�
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Lemma ��� Self�Similar Projections� Let � be a SAMF with round open set

��� ���� Assume that w
�k�

i �O� � w
�k�

j �O� 	� � implies w
�k�

i � w
�k�

j � If for each i

��k��Vi� � f�� �g 	� �  �j 	� i � ��	�k��Vi� � ��	�k��Vj��

then the coarser IFS fwij � ij 
 I�g is centered� and so is �� Moreover� the

projections of the measure ��k� are then self�similar�

To speak in pictures� su�cient for � to be centered are the following three conditions�

� The projections K�k� �lemma ���� are self�similar� �The sets Vi are then ar�

ranged in rows and columns��

� If a column contains only one Vi� then Vi is not allowed to touch the �bottom�

or the �top��

� Similar for rows with only one entry�

See Fig� ��� or �����

Proof Mark the words of the coarser codespace I IIN� �� I�� by a ��

i� In order to establish I�� as vertically centered take x 
 K���� There is y 
 ��� ��

and ij 
 I� with �x� y� 
 Vij� If �
����Vij� contains neither � nor �� then l
� � ij

is a possible choice� Otherwise �����Vj� must intersect f�� �g� By assumption

there is k 	� j with �����Vk� � �����Vj�� Consider the set Vik� It has the

same �����projection as Vij �see Fig� ���� and hence contains x� Furthermore�

�����Vij� 	� �����Vik� � �����Vi� implies that its �
����projection contains neither

� nor �� So it is enough to choose l� � ik�

ii� The case y 
 K��� is treated the same way� The self�similarity of ��k� is shown

in subsection ������ �

Lemma ��� For any C�SAMF �� any q  �� � � � and � 
 IR there are numbers

c
� c� and ) � � such that for all � � � and �� � c� � �

S��q��

�	 � c
��q� T
����q�� T ����q�� �� J���	

Proof

i� Take i from J�
�� � By assumption there is a vertically centered� coarser IFS of

� with codespace I�� � J IIN and round open set O� ��s� t���u� v�� Since J

is secure� the �xpoints of w�� 	 	 	 � wr must lie inside O�� and therefore� O�

satis�es the OSC also for the basic IFS w�� 	 	 	 � wr� For reasons which will

become transparent only in iv�� we choose O � O�� This means that not only

the codespaces I� and I�� can naturally be identi�ed but also the construction

of � by cylindrical sets� due to Vi � wi�O��� Similar as in ����� set

C�k� i� �� ��k � �� � 
i� k � 
i�� �u� v�
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with the k�range ds�
ie��� 	 	 	 � dt�
ie� Take an integer k with ��C�k� i�� 	� ��

The idea is to estimate ���C�k� i���� from below in the following manner�

pi���C�k� i���� � pi��wi
����B���� �
X

j�J�
pj��wj
����B���� � ���B����

where B is from G�� Therefore� wi
����B��� is required to be a subset of

�C�k� i��� and �B�� to be contained in int�Vi�� Once such a box B is found� it

is immediate that it can at the most belong to three di�erent C�k� i�� B lies

in int�Vi�� which are mutually disjoint for di�erent i from J�� � and wi
����B���

is a subset of �C�k� i���� With �
�
� T ����q�� � this results in

�S��q� �
X

i�J�
��

X
��C�k�i��
��

pi
q���C�k� i����
q �
X

i�J�
��

pi
qS�i
����q�

and with lemma ���

S��q� � c�� � X
i�J�

��
pi
q��i��i�



�	

Note that this last relation is completely independent of the choice of O� The

same procedure applied to words i 
 J��� � with possibly di�erent codespace I
��

�

and round open set O � O��� yields

 � S��q� � �c�� � c���� �
� X

i�J�
��

pi
q��i��i�



� �
X

i�J�
��

pi
q��i��i�



�
�

	

Then the rest of the proof will follow the lines of lemma ��� iii��

ii� It remains only to �nd B� To keep ideas clear� �x i 
 J�
�� and k with ��C�k� i�� 	�

� for the rest of the proof� The arguments given will be symmetric in order to

cover the case i 
 J��� as well� The remaining task is of purely geometric nature�

It concerns only the position of a certain box B� In particular using now the

codespace I�� will not a�ect step i�� The various codespaces are distinguished

by asterisks ����

Remember that I�� is vertically and I��� horizontally centered� As an immediate

consequence it is possible to choose ) � � such that

x 
 K���  �l� � x 
 �����V �
l�� and �����V �
l�� ��u�)� v � )�

y 
 K���  �m�� � y 
 �����V ��
m��� and �����V ��
m��� ��s�)� t� )�

This means that � is nowhere concentrated at the boundary of O� To be more

precise� every strip �x� x��� IR with nonvanishing measure meets the support

K certainly at distance at least ) from the �upper� and the �lower� boundary

of O �see Fig� ����� This is what is actually needed for the proof�
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Figure ���� A SAMF with r � � to which lemma 
�� applies	 consider the second

iterates� To every set Vij touching the �bottom� of O there is a Vik in the same

column at distance greater or equal ) from the bottom as well as from the top�

Thus this SAMF is centered and concentrates nowhere on the boundary of O� �See

step ii� in the proof of lemma 
����

iii� Finally� some control in the direction complementary to ii� is required� Without

loss of generality and after eventually choosing a smaller )� there is a letter

m� from I�� such that

�����V �
m�� ��s �)� t�)�

and similar for I��� � For� if there were no such m�� then all �����V �
m�� would

contain either s or t� Then two cases would be possible� First� there could

be m� 	� k� such that �����V �
m�� contained s and �����V �
k�� contained t� Then

at least one of the words m�m�� m�k�� k�m�� k�k� would satisfy the condi�

tion above� and the still centered IFS corresponding to �I�� �
IIN could be used�

Otherwise� � would equal a translate of ���� and could be considered as a self�

similar multifractal� This case will not be treated here since it is trivial� An

easy check shows that the conclusions drawn from this lemma �theorem ����

hold certainly also in this case�

iv� At last B will be constructed� For didactical reasons the de�nition of c� is

postponed� Since ��C�k� i�� 	� �� there is V �
l� which meets C�k� i� in a point�

say �x� y�� of K� Without loss of generality �����V �
l�� � �u�)� v � )� by ii��

Now consider a code k�� of �x� y� starting with l�� In particular �x� y� � ���k���

and k�� � l�� Then there is a unique n with

��k�� ���k�n � 
i � ��  �k�� ���k�n��	

Thereby � denotes the minimum of the �� ���� of the two centered IFS in�

volved� The factor �� is needed to cover the case 
i � �� which may well

occur� Choose a word m� from I�� according to iii� such that �
����V �

m�� is con�

tained in �s � )� t � )�� Let k� �� k�� 	 	 	 k
�

n and j� �� k� �m�� Then the set

V �
k� meets C�k� i� in �x� y� and is suitably small to be still in �the middle� of

�C�k� i���� Moreover� its subset V
�

j� is at a convenient distance of the border

of O � O�� it must lie in �s � ��k�)� t� ��k�)� � �u � )� v � )� since it is the


��� GEOMETRIC PROPERTIES ��

image of V �
m� under w�
k� and since it is a subset of V
�

l� �see Fig� �����

Now consider B� � wi
���B�� where B varies over all ��boxes� Since the sets B�

Vl

Vk

Vk
Vj

Vj 

C(k,i)(C(k,i))1

εi

Θ≤

 
 

 

 

Figure ���� This picture shows the lower part of C�k� i� for k � � and reveals the

construction of Vj for two di�erent points �x� y� of K �the black dots�� Note that Vj

must lie at �great� distance from the boundaries of �C�k� i��� and of O� in order to

know that B�
��which meets Vj�is indeed a subset of the latter two� �See the proof

of lemma 
����

cover the plane there is one with nonvanishing measure which meets V �
j�� The

special choice O � O� in step i� implies� as will be shown straight away� that

B�
� � wi
����B��� is contained in �C�k� i��� as well as in O� With this proven

one concludes immediately B � �B�� � int�Vi�� thus ��B� � pi��B
�� 	� � and

B belongs indeed to G� and is the box desired in i��

First note that B�
� is a �����i�����i��rectangle concentric to B�� Choosing

�nally c� � 	�)����� gives

��
�i
�
)�����

�i
� )��


�i

�i
� )
��
i


 min ���k�)� 
i��	

Moreover� dist������B�
��� x� � diam������V �
k��� � ��k� � 
i� and thus �

����B�
��

is a subset of ������C�k� i���� �which is not necessarily contained in �s� t��� On

the other hand� dist������V �
j��� fs� tg� � ��k�) and so �����B�
�� lies in �s� t��

Secondly�

��
�i
�
)�����

�i

� )��

 )�

and dist������V �
j��� fu� vg� � )� Thus �����B�
�� is contained in �u� v�� Summa�

rizing� B�
� is indeed a subset of �C�k� i��� and of O� �
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��� Limit Theorems

This section is devoted to the asymptotic behaviour of ��q� a� b� �� J�� for � � � with

focus in its dependence on �� This is purely a question of convergence�

First we consider two trivial cases�

Lemma ���
 Let J be an arbitrary set of words� Then

��q� a� b� �� J� �
����

���
X

i�J
pi
q�i
a�i

�a if �i � �i �i � �� 	 	 	 � r� �

P
i�J
pi
q�i
b�i

�b if �i � �i �i � �� 	 	 	 � r� �

Proof Obviously �i � �i implies �i
a�i

�a � �i

 � �i
b�i

�b� �

Assume for the moment that �i � �i �i � �� 	 	 	 � r� and that � is chosen such that

rX
i��

pi
q�i
a�i

�a � �	

Then ��q� a� b� �� J�� � � for all � � �� since J� is secure and tight� and the asymp�

totics are indeed trivial�

If one of the cases of lemma ���� applies� we call the corresponding SAMF ordered�

For the remainder of this section ordered SAMFs will be excluded� i�e� the assump�

tion

c�  �  cr ������

is in force� where ci �� log�i � log �i� Still� whenever ������ is used as a necessary

condition� it will be mentioned�

The complexity of the investigation of unordered SAMFs is founded in the fact that

J�
� and J�
� are tight but not secure� First a relation to the somewhat simpler sets

In is established�

Lemma ���� Let �n � �n� k� � dlog �� log �e and m� � d log �� log�e� Then

J� �
m�k�

n�k�
In

IM �
m�M

n�M
J�n

for all � � � and all integers M �

Proof

i� Let � � � and take i from J�� Set n � jij� Then

�n � ��i� � �  ��i� 	 	 	 in��� � �n��

and hence n � k� and n � �log �� log ���log �� log�� � � � m�k�� This proves

the �rst inclusion�


��� LIMIT THEOREMS ��

ii� LetM 
 IIN and take i with jij �M � There is a unique n with �n  ��i� 	 	 	 iM���

� �n��� From this ��i� � � � ��i� 	 	 	 iM��� � �n and consequently i is an

element of J�n� Moreover�

�M � ��i� � �n � �n  ��i� 	 	 	 iM��� � �M���

thus n � M � � and n � �log �� log��M � m�M � �

As a consequence of lemma ���� we consider �rst the function

�n�a� b� �� �� ��q� a� b� �� In� �
X

i�I�n
pi
q�i
a�i

�a

� �z �
��n �a�
�

�
X

i�I�n
pi
q�i
b�i

�b

� �z �
��n �b�
�

������

where q is regarded as a constant rather than as a variable� Since the asymptotic

behaviour of �n�a� b� �� in n is of interest� the two terms ��n and ��n have to be

studied separately� They are both positive and strictly decreasing in �� We will

concentrate our study on ��n � But note that �
�

n has exactly the same �looks� with

only one di�erence� the words i with �i � �i contribute to �
�

n � not to �
�

n � However�

the proofs will be formulated in a manner to be correct also if it were just the other

way round� So they will�mutatis mutandis�also be valid for ��n �

As lemma ���� might suggest� the asymptotic behaviour of ��n is governed by the

properties of the following �characteristic function��

��a� �� ��
rX

i��
pi
q�i
a�i

�a	 �����

In order to apply limit theorems from probability theory consider the probability

space �I��B� P�� where I� is endowed with the product topology� B is the ��algebra

of its Borel sets and P� is the product measure on B induced by the measures

fig �� pi
q�i
a�i

�a

��a� ��

on the factors f�� 	 	 	 � rg of I�� Note that P� depends on a and �� Consequently

they must be kept �xed when applying theorems from probability theory� The

random variables

Xn � I� � IR i� �� cin

are independent �by the property of the product measure� and identically dis�

tributed� i�e�

P��Xn � x� �

�
��a� ��

X
i� ci�x

pi
q�i
a�i

�a	

Their common expectation amounts

E�Xn� �

�
��a� ��

rX
i��

cipi
q�i
a�i

�a �
����a� ��

��a� ��
	 ������
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Here the partial derivate of � with respect to the k�th variable is denoted by ��k�

The connection between Xn and ��n is provided by the random variable

Zn ��
nX

k��
Xk

through the following lemma�

Lemma ���� For �xed a and �

��n �a� �� �
X

i�I�n
pi
q�i
a�i

�a � �n�a� �� � P��Zn � ��	

Proof Let c��� 	 	 	 � c
�

t denote the t di�erent values of c�� 	 	 	 � cr� For short� denote byP� the sum over all j � j� 	 	 	 jn 
 f�� 	 	 	 � tgn such that c�j� � 	 	 	� c�jn � �� Then

P��Zn � �� �

X�
P��X� � c�j� � 	 	 	 � Xn � c�jn�

�

X�
P�
h

fi� 
 I� � cik � c�jk �k � �� 	 	 	 � n�g
i

� P�
h

fi� 
 I� � ci� � 	 	 	� cin � �g
i

� ��n�a� ����n �a� ��	
�

To do the same with ��n just interchange �i and �i� The characteristic function is

��b� �� ��
rX

i��
pi
q�i
b�i

�b	 ������

The corresponding random variables are given through

P��Yn � x� �

�
��b� ��

X
i� di�x

pi
q�i
b�i

�b�

where di � log �i� log�i � �ci� and

��n �b� �� �
X

i�I�n
pi
q�i
b�i

�b � �n�b� �� � P��Y� � 	 	 	� Yn � �� ������

for �xed b and ��

Turning back to ��n we keep a and � �xed and consider �rst the case E�Xn� � �� The

Central Limit Theorem then tells us that P��Zn � �� is bounded away from zero�

i�e� asymptotically greater than ��� Consequently ��n roughly scales exponentially

with base ��a� ��� De�ning �� � ���a� to be the unique real number satisfying

��a� ��� �
rX

i��
pi
q�i
a�i

��a � � ����	�


��� LIMIT THEOREMS ��

it is immediate that ��n �a� �� is bounded if � � �� and tends exponentially to � if

� � �� resp� to � if �  ��� Here the strict monotonicity of ��a� �� in � was used�

Now assume that E�Xn�  �� i�e� ����a� ��  �� Then P��Zn � �� tends to zero

exponentially with some base � which is explicitly given by Cherno��s theorem

�Bill� p ����� Of course � depends on � and on a and so the question whether

� � ��a� �� is greater� equal or less than � arises� In order to give the value of � the

moment generating function of the random variable Xn is required�

M�t� �� E�etXn � �

X
x
etx � P��Xn � x� � ���a� �����

rX
i��
��i��i�
tpi
q�i
a�i

�a

�

��a� t� ��

��a� ��

� ���a� �����
rX

i��
pi
q�i

eci�t�a�	

M�t� is a strictly convex function of t with a unique minimum t�� due to �������

This t� � t��a� �� is determined by M ��t�� � �� or equivalently

����a� t�� �� �
rX

i��
cipi
q�i

eci�t
��a� � �	 ������

By Cherno��s theorem � is just the minimal value ofM � thus M�t��� The following

lemma answers the question concerning � � ��

Lemma ���� Given a and provided c�  �  cr� the function

h��� �� ��a� ��M�t��a� ��� � ��a� t��a� ��� ��

is strictly decreasing� and there is a unique �� such that h���� � �� In particular the

equation system ��������
��a � t� �� �

rP
i��
pi
q�
i e
ci�t�a� � �

����a� t� �� �

rP
i��
cipi
q�
i e
ci�t�a� � �

�������� ������

in the variables � and t has a unique solution which is ���� t
��a� ����� Moreover� ��

does not depend on a and satis�es the inequality �� � ���a��

Proof Due to ������ t� is uniquely determined by the second equation of �������

which is actually ������� Moreover� t� depends continuously di�erentiable on � since

���� 	� �� The monotonicity of h follows then readily�

h���� � ��� � �
�

t� � ��� �

rX
i��
log �i � piq�i
eci�a�t�� � log� � h���  ��

since ��� vanishes by de�nition of t
�� An application of the mean value theorem as

in theorem �	 ii� shows that h����� �� � ���� On the other hand�

h��� �
rX

i��
pi
q�
i e
ci�t��a� �
rX

i��
pi
q�
i � � �� ����
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because t� minimizes by its de�nition the strictly convex function t �� P
pi
q�
i e
ci�t�a�

for �xed a and �� This establishes the existence and the uniqueness of �� and hence

the solvability of �������

Regarding the equation system� the independence of �� from a is immediate� Finally

note that M�t�� � M��� � � for all �� Hence h����a�� � ��a� ���a�� � � � h����

and �� � ���a�� �

Remark As the close relation to the proof of theorem �	 may suggest� it is indeed

possible to calculate the spectrum F of a SMF directly� i�e� not as the Legendre

transform of T but rather by using the methods introduced in this section� Without

going into details we sketch the interesting fact� how the Legendre relation between

F and T is hidden in Cherno��s theorem� The
P

�i

 over all words i 
 J� satisfying

pi � �i
� approximates N���� � �
� and hence determines F���� as the one � for

which this sum is asymptotically bounded� As lemma ���� suggests it is enough to

consider the sum over all i 
 In with the same property� The random variables Xn�

which attain the values log�pi��
�

i � with probability �



i �
P

�
i � provide the connection

to probability theory� A sophisticated study reveals that Cherno��s theorem applies

exactly for �  ��� leading to

�
n
log
X

jij�n

pi��i
�

�i

 �
�

n
log �

rX
i��

�
i �
nP �X� � 	 	 	�Xn � ��� log
� rX

i��
�
i � inft M�t�
�

	

Thereby M�t� � E�etXn� � �
P

�
i �
��P�
i �pi��
�

i �
t� Consequently� F���� is the one

� for which inft
P

�
i �pi��
�

i �
t � �� This is exactly what ���� expresses� On the

other hand� these equations just say that F� is the Legendre transform of T � In the

case �i � � it reads most explicitly as

inf
t

�
�t� � �

log
rP

i��
pti

log ���
�

� �� � inf
t

�
�t� T �t�
�

� �	

�

We are now in the position to give the asymptotic behaviour of ��n �

Lemma ���� Assume c�  �  cr and de�ne

 ��a� ��
�

���a� if ����a� �
��a�� � �

�� otherwise�

Then

lim
n��

�
n
log ��n �a� ��

���
��

 � if � �  ��a��

� � if � �  ��a��

� � if �   ��a��

Proof Fix a 
 IR�


��� LIMIT THEOREMS ��

i� First� � shall be �xed too� In order to obtain the asymptotics of ��n it is enough

to know the one of P��Zn � ��� Assume �rst that the expectation E�Xn� � ��

i�e� ����a� �� � �� The common variance of the Xn is var � E��Xn � E�Xn��
��

and vanishes exactly if c� � 	 	 	 � cr � E�Xn�� a case which is excluded� Thus�

the Central Limit Theorem tells us that

� � P��Zn � �� � P��Zn � �� � P��Zn � nE� � P��
Zn � nE

n
p

var
� ��� �


	

Assume now that E�Xn�  �� Since P��Xn � �� � pr � � by ������� Cherno��s

theorem �Bill� p ���� implies�

lim
n��

�
n
logP��Zn � �� � lim

n��

�
n
logP��Zn � �� � logM�t��a� ���	

Summarizing
lim

n��

�
n
log ��n �a� �� �

�
log��a� �� if ����a� �� � ��

log h��� otherwise�

ii� From now on� � is variable in IR� The base of the exponential growth of ��n is

switching between two functions of � according to i�� However� it is important

to recognize that such a change is impossible in the � interval ���� �
��a���

Assume ����a� �� � � for some � 
 ���� �
��a��� Then� t��a� �� � � and

h��� � ��a� ��� But since h and � are both strictly monotonous decreasing�

and since h���� � � � ��a� ���a��� this implies ���a� � ��� Note in addi�

tion the equivalence of the following four conditions� which is an immediate

consequence of �������

����a� �
��a�� � � ����a� ��� � � t��a� ���a�� � � ���a� � ��	 ������

iii� FromM��� � � follows h��� � ��a� ��� Thus� ��a� �� and h��� are both strictly

greater than � for �  �� resp� strictly less than � for � � ���a�� For these � it

does not matter which case of i� applies� For the remaining � ii� yields� Either

����a� �
�� � � for all � 
 ���� �
��a���  ��a� � ���a� and the investigated limes

is log��a� ��% or ����a� �
��  � for all � 
 ���� �
��a���  ��a� � �� and the limes

is log h���� This proves the claim� �

Turning again to ��n de�ne �� � ���b� to be the unique real number satisfying

��b� ��� �
rX

i��
pi
q�i
b�i

��b � �	 �����

Next� consider the equation system��������
��b� t� �� �

rP
i��
pi
q�
i e
di�t�b� � �

����b� t� �� �

rP
i��
dipi
q�
i e
di�t�b� � �

��������
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Interchanging �i with �i the existence of a unique solution can be deduced from

lemma ����� Moreover� ��b� �� � ��� � b� �� for all b and � and this solution must

be � � ��� t � �t���� � b� ����

Setting

 ��a� ��
�

���b� if ����b� �
��b�� � �

�� otherwise�

with �� from lemma ����� one �nds

lim
n��

�
n
log ��n �b� ��

���
��

 � if � �  ��b��

� � if � �  ��b��

� � if �   ��b��

�����

from ������ and the proof of lemma �����

To get an illuminating picture note that the three relevant values ���a�� ���b� and

�� are found on the level curve � � � in the �a� ���plane �see Fig� ��	�� The curve

Figure ��	� The features of a typical level curve � � � where c�  �  cr� The

curve equals the graph of the function a �� ���a�� The picture illustrates the slow

convergence of numerical methods bound to �nd ���

is the graph of the function a �� ���a�� Moreover� it intersects every straight line

a �� � � a � b� exactly once in the point ����b�� � b�� �
��b���� Finally� it has a

unique minimum due to c�  �  cr and the corresponding minimal value is just ���

This illustrates the independence of �� from a once more�

Now that the behaviour of �n�a� b� �� is known� the conclusions for the sums over

the somewhat more complicated sets J� may be drawn�

Proposition ���	 Assume c�  �  cr and let �n � �n� Then

lim
���

��q� a� b� �� J�� � � if � � max � ��a�� ��b���

lim sup

n��

��q� a� b� �� J�n� � � if �  max � ��a�� ��b��	

Proof

i� Take �rst � � max � ��a�� ��b��� Lemma ���� and ����� give L�  � and

L�  � such that �n�a� b� �� � ��n �a� �� � ��n �b� �� � Ln
� � Ln
� for n large


�
� GENERALIZED DIMENSIONS ��

enough� Lemma ���� implies for su�ciently small � � �

��q� a� b� �� J�� �
m�k�X

n�k�
��q� a� b� �� In� �

m�k�X
n�k�

L�
n � L�
n � m�k��L�
k� � L�
k��	

The �rst part of the theorem then follows from k� �� �� � ���

ii� Take now �  max � ��a�� ��b��� Since ��n and ��n are both positive� ����� and

lemma ���� provide a number L � � such that �n�a� b� �� � Ln for su�ciently

large n� Then

m�MX
n�M

��q� a� b� �� J�n� � �M�a� b� �� � LM

for large M � Since the terms on the left hand side are all positive there must

be an integer n�M� between M and m�M with

��q� a� b� �� J�n�M�
� � �

m�M
LM 	

This completes the proof� �

��� Generalized Dimensions

In this section the geometric properties of SAMFs and the limit proposition ����

are fused in order to estimate the singularity exponents T �q�� The lower and the

upper bound di�er in general� but they coincide provided that T ����q� and T ����q�

are grid�regular� Moreover� as shall be shown� the latter is a su�cient condition for

the grid�regularity of T � Finally the di�erentiability of T will be investigated�

����� Estimate

The notation of section �� has to be adapted� Now the dependence on q has to

be indicated explicitly� On the other hand� the variables a and b will only take

some particular values� Moreover� a formula should be provided which includes

ordered SAMFs� To keep the following de�nitions at reasonable size set a � T ����q��

b � T ����q�� Denote the unique solution �in �� of

rX
i��

pi
q�i
a�i

�a � � resp�

rX
i��

pi
q�i
b�i

�b � �

by ���q�� resp� ���q�� If �i  �i and �j � �j for some i and some j� denote the

unique solution �in �x� ��� of��������

rP
i��
pi
q�i
x�i

�x � �

rP
i��
log��i��i�pi
q�i
x�i

�x � �

��������
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by �a��q�� ���q��� otherwise set ���q� � ��� Finally set

 ��q� ��
��

� ���q� if
rP

i��
log��i��i�pi
q�i
a�i

��q��a � ��

���q� otherwise�

 ��q� ��
��

� ���q� if
rP

i��
log��i��i�pi
q�i
b�i

��q��b � ��

���q� otherwise�

and de�ne

 �q� �� max � ��q�� ��q��	 ����

In order to provide lower bounds� the analog de�nitions have to be carried out with

a � T ����q� and b � T ����q�� The corresponding functions will be denoted by ���q��

���q�� �
�
�q��  ��q��  ��q� and  �q��

Proposition ���� Let � be a SAMF and let q � �� Then

 �q� � T �q� �  �q�	

The upper bound is also valid for negative q� and� provided � is centered� the lower

bound as well� Moreover� for ordered C�SAMFs the left hand side even bounds T �q�

from below�

Proof Let q 
 IR�

i� Take � �  �q� arbitrarily and choose � � � such that � � � �  � Lemma ��� �if

q � �� resp� lemma ��	 �if q  �� and proposition ���� say� that

S��q��

 � const � ��q� T ����q�� T ����q�� � � �� J�� � �

for all su�ciently small � � �� This gives the upper bound�

ii� Take �   �q� arbitrarily and choose � � � such that � � �   � Lemma ��� �if

q � �� resp� lemma ��� �if q  ��� which only applies to C�SAMFs� implies

S��q��

 � const � ��q� T ����q�� T ����q�� � � �� J���

for arbitrary � � � and for a particular multiple �� of �� Since c � �n is an

admissible sequence� proposition ���� gives T �q� � �� but no information

about T �q��

iii� Assume now �i � �i �i � �� 	 	 	 � r�� Note �rst that ���q� �  �q�� either �i � �i

for i � �� 	 	 	 � r and the solutions �� � �� � �
�
coincide� or  � � �� and

 � � �
�
� Take now � � � arbitrarily� Provided � is a C�SAMF lemma ���

and lemma ���� yield
S��q��

�	 � c
��q� a� b� �� J��� � c


for all � � �� Hence T �q� � � � � and the lower bound is also valid for T �q��

A similar argument applies to the case �i � �i �i � �� 	 	 	 � r�� �


�
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����� Grid�Regularity

Of course� the value of T �q� is determined by the proposition above as soon as

T ����q� � T ����q� and T ����q� � T ����q� are given� In the case of ordered SAMFs less

assumptions give even the grid�regularity of T �q��

Corollary ��� Let � be a SAMF with �i � �i �i � �� 	 	 	 � r� and let q be a real

number for which T ����q� is grid�regular� If q  � assume in addition that � is

vertically centered� Then T �q� is grid�regular too and

rX
i��

pi
q��i��i�
T ����q��i
T �q� � �	

For �i � �i �i � �� 	 	 	 � r�� the formula for T �q� reduces to the earlier equation ���

rX
i��

pqi�
T �q�

i � �	

Proof Lemma ��� holds although � is only vertically centered� This is obvious since

J�
� � J�� Moreover� �
��q� �  �q� �  �q� � ���q� and proposition ���	 proves the

claim� �

Also the singularity exponents of an arbitrary SAMF are grid�regular� provided

T ����q� and T ����q� are� Though this may not be surprising� the proof needs a new

idea�

Theorem ��� Let � be an arbitrary SAMF� If q � � is such that T ����q� and T ����q�

are grid�regular� then T �q� is grid�regular too and

T �q� �  �q� 	

The assertion holds also for negative q provided the measure is centered�

Remark The condition T �k��q� � T �k��q� is certainly satis�ed for SAMFs with

self�similar projections�

Proof Take q as in the statement and set a � T ����q�� b � T ����q� for short�

The equality T �  is immediate� To prove the grid�regularity some preparation is

needed�

i� First� let us prove a kind of monotonicity of �� if ��q� a� b� �� I�� � � and � � a�b�

then

��q� a� b� �� J�� � � �����

for all � � �� Recall the recursive construction of J� ���� on page ��� The

proof is by induction on this construction� For J��� � I� ����� is trivial�

Assuming ��q� a� b� �� J�m�� � � the same will be veri�ed for J �� J�m � ���

It is enough to know

��q� a� b� �� J�m�� � ��q� a� b� �� I�� � ��q� a� b� �� J��
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and therefore enough to know� that

�i
a�i

�a � ��q� a� b� �� I�� �
X

i�k�J�
�i�k
a�i�k

�a �

X
i�k�J�

�i�k
b�i�k

�b�

for any i 
 J�m�� and mutatis mutandis for i 
 J�m��� Set j � i�k for short

and pass through the possible cases�

�i � �i� �k � �k � j 
 J�� �j
a�j

�a � ��i
a�i

�a���k
a�k

�a�

�k � �k� �j � �j � j 
 J�� �j
a�j

�a � ��i
a�i

�a���k
b�k

�b�

�j � �j � j 
 J�� �j
b�j

�b � ��i
a�i

�a���k
b�k

�b�

Here ybx
�b � y
�axa for y � x was used� and ����� is proven� Similarly

��q� a� b� �� J�� � �

for all � � � provided ��q� a� b� �� I�� � � and � � a� b�

ii� To get an intuition note that any � satisfying ����� must by proposition ����

resp� lemma ���� be greater or equal to  �q�� However� it will even be proven

 �q� � lim��J��� where ��J�� denotes the unique solution of

��q� a� b� ��J��� J�� � �	

This property of ��J�� will render an estimate of ��q� a� b� �� J�� for all ��

iii� Fix � � � for the moment and assume ��J�� � a � b� Certainly

� �
rX

i��
piwi�� �
X

i�J�
pi � wi�
��

again by the construction of J�� Let s �� "J� and let j � f�� 	 	 	 � sg � J��

l �� j�l� be an enumeration of J�� Furthermore set w
�

l �� wj�l� and p�l �� pj�l��

and denote the relevant values of the associated multifractal

�� �� hw�
�� 	 	 	 � w
�

s % p
�

�� 	 	 	 � p
�

si

by ��� S�
��q�� T � and so on� In particular I�� � f�� 	 	 	 � sg corresponds to

J� and ���q� a� b� �� I�� � � ��q� a� b� �� J��� On the other hand� �� � � by the

above invariance� which means that only a coarser IFS was chosen for the

same multifractal� Thus all geometrical values coincide� e�g� S�
��q� � S��q��

T � � T � T �k�� � T �k� and so on� Now apply ������ lemma ��� and lemma ��	

to the coarser IFS� By de�nition of ��J��

���q� a� b� ��J��� J�
�� � �
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for all 
 � �� Given � � �� S�
��q�

�J���	 is bounded from above independently

of 
 � �� Thus T ��q� � ��J�� � �� Altogether

T �q� � T ��q� � ��J��	

Mutatis mutandis the assumption ��J�� � a � b leads with lemma ��� resp�

lemma ��� to

T �q� � ��J��	

iv� After all these preliminaries let us prove the assertion of the theorem� Take �rst

the case ��I�� � a� b� Then
��q� a� b� ��I��� J�� � �

by ����� and� since � is decreasing in �� ��J�� � ��I�� � a� b� Consequently�

T �q� � �inf �� inf�� ���J��� by iii�� On the other hand�

��q� a� b� �inf� J�� � ��q� a� b� ��J��� J�� � �

for all � � � and by lemma ��� resp� lemma ��� T �q� � �inf� This yields indeed

T �q� � T �q� � inf
��
���J���	

v� If ��I�� � a� b then T �q� � �sup �� sup�����J��� by iii�� With lemma ��� resp�

lemma ��	 and

��q� a� b� �sup� J�� � ��q� a� b� ��J��� J�� � �

for all � � �� which leads to T �q� � �sup and

T �q� � T �q� � sup
��
���J���	

�

����� Di	erentiability

Let us turn to the question of di�erentiability� For ordered SAMFs the answer is

readily given by corollary �� and the implicit function theorem� the regularities of

T ��� resp� T ��� carry over to ���q� resp� ���q� and hence to T itself�

For general SAMFs ���q� has to be taken into account as well� Since �� depends

C� on q� the only di�culty is at values q where  switches from one of the three

candidates ��� �� and �� to another� In this context we can prove at least�

Proposition ���� If T ����q� is dierentiable in a neighbourhood of q�� then  ��q�

has the same property� Similar for T ��� and  ��
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Proof Here� the dependence of � ����� on q has to be expressed explicitly�

��a� �� q� ��
rX

i��
pi
q�i
a�i

�a	

For ordered SAMFs the assertion is obvious� Thus assume without loss of generality

��  �� and �r � �r�

i� The pair of equations ��a� �� q� � �� ����a� �� q� � � is uniquely solved by some

�a�� ��� depending on q� where a� is actually not of interest here� Since

det
�

��� ���

���� ����
�

� �������� � �

at �a� �� � �a�� ���� the solutions a� and �� depend di�erentiably on q� Taking

the implicit derivate of the �rst equation and observing ��� � � yields

d
dq
���q� � ���	�a�� ��� q�

����a�� ��� q�
	 �����

In particular �� 
 C��

ii� From ��T ����q�� ���q�� q� � � and ��� � � follows

d
dq
���q� � ���	�T

���� ��� q� � ����T
���� ��� q��T ������q�

����T ���� ��� q�

�����

So� ���q� is di�erentiable near q��

iii� Since ����T
���� ��� q� is a continuous function of q near q�� a switch from ���q�

to ���q� in the value of  ��q� is only possible at a zero q of ���� But then

���q� � ���q� by ������� Moreover� a��q� � T ����q� is easily veri�ed� and the

derivates of �� and �
� coincide by i� and ii��

iv� The argumentation for  � is similar� �

This proposition has consequences�

� The di�erentiability of T ��� and T ��� carries over to  � max� �� �� except

at points where the maximum causes a wedge� This may only happen when

���q� � ���q��

� With the possibility of wedges a completely new feature appears� which is

not encountered among the singularity exponents of SMFs� This may have

consequences for the search of models�

� There are IFS� i�e� multiplicative cascades� producing nondi�erentiable singu�

larity exponents� not only carefully constructed examples�
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The section closes with an astonishing and satisfying result� At q � � one would

expect a wedge� since ����� � ����� � �� Nevertheless T is always di�erentiable

at q � � and the interesting value D� can be given� provided that T
��� and T ��� are

grid�regular and C� near ��

Corollary ��� For any SAMF � the following implications hold�

If
rP

i��
pi log��i��i� � � and T ��� is grid�regular and C� near �� then

D� �

rP
i��
pi� log pi �D�
��� log��i��i��

rP
i��
pi log �i

�

if
rP

i��
pi log��i��i�  � and T ��� is grid�regular and C� near �� then

D� �

rP
i��
pi� log pi �D�
��� log��i��i��

rP
i��
pi log�i

�

�nally� if
rP

i��
pi log��i��i� � � and T ��� and T ��� are grid�regular and C� near �� then

D� �

rP
i��
pi log pi

rP
i��
pi log�i

�

rP
i��
pi log pi

rP
i��
pi log �i

	

Proof

i� Certainly T ������ � T ������ � �� thus ����� � ����� � �� Consequently� the

conditions in the de�nitions of  � and  � reduce to
P

pi log��i��i� � � andP
pi log��i��i� � �� respectively�

ii� Assume �rst that
P

pi log��i��i� � � and that T ����q� is grid�regular and C�

near �� Then� for continuity reasons�  �q� � ���q� � ���q� �  �q� near q � ��

since �� � ��� With proposition ���� and �����

D� � �T ���� � � d
dq
���q�jq�� �
��	��� �� �� � ������ �� ���T
��������

������ �� ��

	

The case
P

pi log��i��i�  � is obtained by interchanging �i with �i and re�

placing T ����q� by T ����q��

iii� At last assume that
P

pi log��i��i� � � and that T ����q� and T ����q� are grid�

regular and C� near �� Unless �i � �i �i � �� 	 	 	 � r��which is a trivial
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case���  �� and �r � �r can be assumed without loss of generality� Then

����� � ����� � � by ������� which leads with ����� and ii� to

d
dq
���q�jq�� �
d

dq
���q�jq�� � d
dq
���q�jq�� � �

rP
i��
pi log pi

rP
i��
pi log�i

	

So  � and  � have the same derivate and the same value at �� and since they

are continuously di�erentiable near � �Prop� ����� the mean value theorem of

calculus shows that their maximum is di�erentiable at � as well� �

��� Box and Hausdor� Dimension

In this section simple formulas for the special value D� � T ��� � dbox�K� and for

the �almost sure� Hausdor� dimension of K are provided� While only the general

case is treated in this section� most explicit results in a slightly less general case are

spotted in subsection ����� To give some history and also for later use the inspiring

results of Douady et Oesterl�e �DO� and Falconer �Falc�� are stated �rst�

The main result in �Falc�� can be summarized as follows� Given a linear transforma�

tion S on IRd with singular values �� � �� � 	 	 	 � �d� the singular value function

�
 is for positive � de�ned by

�
�S� �
�

�� � �� � 	 	 	 � �m�� � �
���m

m if � � d�

��� � 	 	 	 � �d�
�d otherwise�

where m � d�e� For a family S�� 	 	 	 � Sr of contractive linear transformations on IRd

let ! � !�S�� 	 	 	 � Sr� be the unique ! � � such that

lim
n��

� X
i�In

���Si�
���n

� �	

Theorem ��	 Falconer� Assume that k Si k ��� for i � �� 	 	 	 � r� Then� the

unique nonempty invariant compact set

K �
r

i��
Si�K� � ai � hS���� � a�� 	 	 	 � Sr��� � ari

has the dimension
dHD�K� � dbox�K� � min �d�!�S�� 	 	 	 � Sr��

for almost all �a�� 	 	 	 � ar� 
 IRrd in the sense of rd�dimensional Lebesgue measure�

Remark If k Si k ��� is not satis�ed replace fS�� 	 	 	 � Srg by fSi � jij � ng where

n is chosen so that k Si k ��� for i 
 In� Since !�S�� 	 	 	 � Sr� � !�fSi � jij � ng�


��� BOX AND HAUSDORFF DIMENSION ��

and K is as well invariant under fSi � jij � ng the dimension of K is still given as in

the theorem� but for almost all parameters a 
 IRdrn in the sense of drn�dimensional

Lebesgue measure�

It is quite easy to see that !�S�� 	 	 	 � Sr� is the limes of the sequence !n de�ned

through X
i�In

��n�Si� � �	

Moreover� �Falc�� actually proves that these numbers !n bound dbox�K� from above�

�This was already detected in �DO� in a slightly di�erent context�� A comparable

situation is found in our theorem ��� iii�� where the numbers ��J�� bound T �q�� and

where T �q� � lim��J���

As this relation suggests� the value ! can be computed in a similar way as  � To

this end set

�i��� �
���

��
�i

 if � � � � ��

�i�i

�� if �  � � �

��i�i�

�� if   ��

and �i��� �
���

��
�i

 if � � � � ��

�i�i

�� if �  � � �

��i�i�

�� if   �	

Theorem ��� Value of !� Let Si�x� y� � ��i�ix� �i�iy� �i � �� 	 	 	 � r� be the lin�

ear parts of a set of diagonal a
ne contractions as in ������ Then

!�S�� 	 	 	 � Sr� � max�!��!���

where !� and !� are uniquely de�ned by

rX
i��

�i�!
�� � � resp�

rX
i��

�i�!
�� � �	

In particular� if �i � �i �i � �� 	 	 	 � r�� then ! � !��

Remark For the actual Hausdor� dimension of certain SAMF see ����� on p� ����

Proof We proceed in a similar manner as in section ���

o� First� if !� � � then
P

�i�i � �� !� � !� and
P

i�In �
��
�Si� � � for all n�

Thus assume !�   for the remainder�

i� By de�nition� �
�Si� equals �i��� if �i � �i� resp� �i��� if �i � �i� For �xed �

de�ne a probability space �I��B� P�� where P� is the product measure on B

induced by the measures

fig �� �i���

rP
i��
�i���

on the factors f�� 	 	 	 � rg of I�� Remind ci � log��i��i�� The random variables

Xn � I� � IR i� �� cin

are independent and identically distributed� and their common expectation

amounts
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E
�Xn� �
� rX

i��
�i���
��� rX

i��
ci�i���	

De�ning a product measure P� and random variables Yn the same way but

with � replacing � and di � �ci replacing ci� yields for �xed �X
i�In

�
�Si� �
X

i�I�n
�i��� �
X

i�I�n
�i��� �

� rX
i��

�i���
�n

P��X� � 	 	 	�Xn � �� �
� rX

i��
�i���
�n

P��Y� � 	 	 	� Yn � ��

�compare lemma ����� The way to proceed now is� assume �rst that !� �

!�� Then E���Xn� � � by ii� below� Since the positive function �i��� is

monotonous� one �nds

n
q

P��X� � 	 	 	�Xn � �� � �
X

i�In
��

�
�Si�
���n � n
p

�

thus !� � !�S�� 	 	 	 � Sr� by the Central Limit Theorem� Similar considera�

tions yield !� � !�S�� 	 	 	 � Sr�� provided !
� � !��

ii� Assume E���Xn�  �� The claim is !�  !�� For the proof a �hidden� variable

a has to be introduced� Therefore� modify ����� to

��a� �� �
rX

i��
�i
a�i

�a	

Di�erent cases are considered�

�� �  !� � �� then !� � � may be assumed� By assumption

E���Xn� �
����!
��!��

��!��!��
 �

and by convexity ����a�!
��  � for all a � !�� So

����!�� � ��!��!�� �
rX

i��
��

�
i � � �

rX
i��

��
�

i � ����!��

and !�  !��

� �  !�  � this time the expectation E���Xn� has the same sign as

������!
��� so ����a�!
��  � for all a � �� Assume �rst !� � �� Then

����!�� � ����!�� �
rX

i��
�i�
����

i � � �
rX

i��
��
�

i � ����!��

and !�  !�� which is actually a contradiction� If !� �  there is

nothing to prove� So assume �nally �  !�  � Then

��!� � ��!�� � ����!�� � � �
rX

i��
�i�
����

i � ��!� � ��!��

and again !�  !��


��� BOX AND HAUSDORFF DIMENSION ��

iii� Finally assume �i � �i �i � �� 	 	 	 � r�� Then !� � !� since E
 � � with

equality only when �i � �i �i � �� 	 	 	 � r�� This completes the proof� �

The relevant values !� and !� are quite simpler de�ned than  � and  � ����� The

reason is that� due to implicit properties� the expectations of the random variables

involved have the �good� sign� Therefore� it is not necessary to apply Cherno��s

theorem� Some inherent geometrical properties allow us to simplify the formula

for the box dimension of the support of a SAMF in a similar manner� This will

make it possible to compare the �sure� box dimension D� with the �almost sure�

!�S�� 	 	 	 � Sr��

Theorem ��� Let � be a SAMF with support K and assume that D�k� � dbox�K
�k��

exists for k � �� � Then

dbox�K� � max�d�� d��

where d� and d� are de�ned through

rX
i��

�i
D���
�i
�d��D���� � � resp�

rX
i��

�i
D���
�i
�d��D���� � �

In particular� if �i � �i �i � �� 	 	 	 � r�� then dbox�K� � d��

This formula covers results from �GL� and �Mu�� The following lemma allows an

easier handling of  � For SMFs it is not needed since then �� � �� �  for all q�

Lemma ���� Assume that not all ci � �� i�e� � is not a SMF� For convenience

write a � T ����q�� b � T ����q�� �� � ���q�� �� � ���q� and  �  �q�� Then�

�� � a� b� �� � a� b�  � max���� ����  � a� b	

Proof The functions � and � from section �� will be in use�

i� Assume �rst that ��  a� b� Then

rX
i��

�i
a�i
b 
rX

i��
�i
a�i
�
��a� � �

and hence ��  a � b� Similarly �� � a � b i� �� � a � b� This shows the

�rst equivalence�

ii� Next the easy case �� � �� � a� b is treated� by direct computation ����a� a�

b� � ���b� a� b� and so at least one of them is greater or equal to zero� This

yields�  � � �� or  � � ��� Thus  � a � b� what was to show�
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iii� Now take the case ��  a�b and ��  a�b� As will be shown at once� �� � ��

implies ����a� �
�� � � and so �� �  � �  � The symmetric argument for the

case �� � �� yields indeed  � max���� ��� as desired� The proof is by

contradiction and resembles the one in theorem ��	� assume ����a� �
��  ��

Then ����x� �
��  � for all x � a by convexity and

���� � b� ��� � ��a� ��� � � � ��b� ��� � ���� � b� ���	

The monotonicity of � in the variable � yields ��  ���

iv� Next take the case �� � a � b and �� � a � b� Now the aim is to show that  

cannot equal max���� ���� �This is not true for SMFs�� The idea is to prove

that �� � �� implies ����a� �
��  �� and so  � � ��  �� by ������� So

assume ����a� �
�� � �� Strict convexity implies ����x� �
�� � � for all x � a�

���� � b� ��� � ��a� ��� � � � ���� � b� ��� and indeed ��  ��� This

means in particular that if �� � �� then  � ���

v� It remains to show� that �� � a � b� ����a� �
��  � and ����b� �
��  � imply

�� � a�b� Assume the contrary� i�e� �� � a�b  min���� ���� By lemma ����

ii� ����a� �� and ����b� �� have no zero in ����min���� ����� Hence � � ����a� a�

b� � ���b� a � b� � � which is impossible� �

Proof of the Theorem In the case of a SFM it is enough to refer to ������ For a

SAMF corollary �� and theorem ��� imply dbox�K� � T ��� �  ���� Of course d� �

����� � d� � ������ By lemma ���� it is enough to show T ��� � T �������T ������� i�e�

dbox�K� � D��� �D���� But this is immediate since K is a subset of K����K���� For

general q� however� there is no a�priori inequality between T �q� and T ����q��T ����q�

�see Ex� ���� Finally use corollary ��� �

The theorems ���� ��	 and ��� fuse to the following considerations concerning the box

dimension of self�a�ne sets� let wi�x� y� � Si�x� y� � �ui� vi� be diagonal a�ne con�

tractions ����� and K their invariant compact set� For simplicity assume in addition

that k Si k ���� The projections K�k� are invariant under the IFS �w�
���� 	 	 	 � wr
����

by lemma ��� and Falconer�s theorem can be applied�

� When
P

�i � � then dHD�K
���� � !� for almost all �u�� 	 	 	 � ur� 
 IRr� If

the latter holds then !� � d�� If� in addition� !� � !�� e�g� if �i � �i

�i � �� 	 	 	 � r�� it may be concluded with no further assumption that

dHD�K� � dbox�K� � !�S�� 	 	 	 � Sr� � dHD�K
����

since dHD�K� � dHD�K
�k�� and dbox�K� � !�

� If
P

�i � � and
P

�i � � then dHD�K
�k�� � � for almost all �u�� 	 	 	 � ur� 
 IRr

and almost all �v�� 	 	 	 � vr� 
 IRr� As before !� � d� and !� � d�� and

assuming the existence of a round open set one �nds

dbox�K� � !�S�� 	 	 	 � Sr�	
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Thus� the condition in proposition � in �Falc�� can considerably be weakened in

the case of diagonal a�nities� This is of course a consequence of the common

invariant subspaces of the maps wi�

Finally� two recent results should be mentioned� First� Falconer �Falc�� provides a

lower bound d� of the Hausdor� dimension of self�a�ne sets� Using the notation in

theorem ��� this bound holds for all �a�� 	 	 	 � ar� 
 IRrd such that the images wi�K�

are mutually disjoint� As examples show� d� can be quite close to the upper bound

! of the box dimension� On the other hand� since d� as well as ! do not depend

on the translations ai� they must cover the worst cases and cannot be expected

to be equal� A tedious but straightforward analysis of diagonal a�nities gives an

explicit formula for d� and reveals indeed� that d�  ! unless all �i � �i� Secondly�

Gatzouras et Lalley �GL� give explicit formulas for the exact Hausdor� and box

dimensions of certain self�a�ne sets in the plane� which form a class of supports of

SAMFs� Their result on the box dimension agrees with ours�

��� Centered Self�A	ne Multifractals

Almost all of the SAMFs considered in this section are centered with self�similar pro�

jections� Consequently the formula for the particular singularity exponents provided

by theorem ��� can be solved explicitly or can at least be treated on a computer�

Many examples will be discussed such as the Sierpi�nski carpets and products of

measures� Furthermore� theorem ��� is related to recent results� emphasizing its

relevance in contemporary research�

����� Numerical Calculation

Provided the projections ���� and ���� of � are self�similar� their singularity exponents

are grid�regular and can be determined by solving implicit equations� Consequently�

the exponents of a C�SAMF can be calculated and plotted by a computer�

For the moment assume only that w
�k�

i �O� � w
�k�

j �O� 	� � implies w
�k�

i � w
�k�

j

�k � �� �� Denote by s resp� t the number of distinct maps w
���

i resp� w
���

i � Let

fw�
� � 	 	 	 � w
�

s g be an enumeration of fw���
� � 	 	 	 � w���
r g and let fw�
� � 	 	 	 � w
�

t g be the

same for fw���
� � 	 	 	 � w���
r g� Furthermore� set

p�i ��

X
j �w
���

j �w�
i

pj� ��i �� Lip�w�
i � �i � �� 	 	 	 � s�

and

p�i ��

X
j �w
���

j �w�i
pj� ��i �� Lip�w�
i � �i � �� 	 	 	 � t�	
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With lemma ���

���� �
rX

j��
pjw
���

j �
� �

sX
i��

� X
j �w
���

j �w�
i

pj
�

w�
i ��

what can be expressed as
���� � hw�
� � 	 	 	 � w

�
s % p

�
� � 	 	 	 � p

�
s i	 ���	�

By assumption the interval ��� �� is a basic open set for �w�
� � 	 	 	 � w
�

s � as well as for

�w�
� � 	 	 	 � w
�

t � on the respective axis� Thus the projections of the measure are in fact

self�similar� Corollary �� with d � � yields the grid�regular T �k��q��

sX
i��
�p�i �
q���i �
T ����q� � � and

tX
i��
�p�i �
q���i �
T ����q� � �	 �����

In particular� theorem ��� applies for all q� The three candidates ��� �� and �� can�

therefore� be numerically determined as well as the relevant conditions� to obtain

 � To this end some remarks� it may be helpful to use the variable e

�

rather than

��� translating the transcendent equation into a polynomial one� Moreover� the

calculation of �� as well as some tests to determine  
� can often be avoided due to

lemma �����

1/5

4/15

2/5 2/15

Figure ���� A general self�a�ne multifractal with self�similar projections �Ex� 
����

Its construction is revealed on the left� Though lemma 
�� cannot be applied� the

SAMF can be recognized as centered by considering the coarser construction by

wij���� ��
��� On the right an image composed of 
����� points obtained from a

random algorithm�

Finally� if it comes to compute ��� note for good �rst approximations of the solution

�a�� ��� of ������ that

T ����q� � a� � �� � T ����q� and T ����q� � T ����q� � �� � min���� ����

provided ����T
����q�� ��� q�  � and �����
��T ����q�� ��� q� � �� The �rst statement

is a simple geometric fact� compare with �gure ��	� where the positions of �� and

�� have to be interchanged due to the respective signs of ���� The second statement

follows from lemma �����
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Example ��� A General C�SAMF� Take

w��x� y� � �x� � ���� y�	� w��x� y� � ��x�� � ���� y�� � ��	�

w	�x� y� � �x� � ���� y�� � ��� w
�x� y� � �x�	 � ��	� y�� � ���	

with the round open set ��� ��� �see Fig� ����� The projections K�k� are then self�

similar� To establish a corresponding SAMF as centered� one has to consider the

coarser IFS wij with ij 
 f�� 	 	 	 � �g� and to observe that w� reverses the orientation

on the x����axis�

Choose �rst the probabilities p� � ���� p� � ����� p	 � �� and p
 � ���� Then�

a numerical evaluation shows that  � �� for all q� D� � �	��	� D� � �	����

D� � �	��� D�� � �		�	 and F �D�� � F �D��� � � �see Fig� �����

Figure ���� Example 
�� with p� � ���� p� � ����� p	 � �� and p
 � ���	

Generalized dimensions and spectrum� the latter obtained as a parametric plot ������

with ��� � q � ��� Note the slow convergence of Dq to D� � �	��	� in particular

compare D	� � �	��� with �T ����� � �	����

Figure ���� On the left the generalized dimensions and on the right the spectrum of

example 
�� with p� � p� � p	 � p
 � ���� Note how the concavity of the spectrum

is disturbed but not distroyed�

Choosing then the probabilities all equal to ��� results in  � �� for q  �	���

and  � �� otherwise� in particular  �  � on all of IR� Furthermore� D� � ��

D� � �	��� D�� � �	��� F �D�� � �� and F �D��� � � �see Fig� �����

Thus� T is in both cases continuously di�erentiable� and consequently the spectrum
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is in fact grid�regular� Note how in the second choice of pi the change of  from ��

to �� disturbs the concavity of F � but does not distroy it� �

����� Carpets and Subsets of Given Local H�older Exponent

To present a �rst special kind of SAMFs consider a ��xed� IFS of diagonal a�ne

contractions having the following three properties� K��� is self�similar� �i � �i for

i � �� 	 	 	 � r� and ��� ��� is a basic open set� Denote by ��p� the corresponding SAMF

with probability vector p� Then� the invariant set K � supp���p�� does not depend

on p and the information dimension D��p� of ��p� is provided by corollaries ���

and ���

Theorem ��� Gatzouras� Lalley �GL�� With the notation from above�

dHD���p�� � D��p�

dHD�K� � maxfD��p� � p is a probability vectorg �����

Moreover�

� � dHD�K� � dbox�K�� �  m��K� �� X
j �w
���

j �w�
i

���D�
���

j � � �i � �� 	 	 	 � s�

Our contribution are the singularity exponents� in particular dbox�K� which agrees

with the value found in �GL� �see theorem ����� Explicit formulas for T �q� are

obtained under almost the same conditions as above� i�e� provided the underlying

IFS has the following two properties� K��� is self�similar and �i � � � � � �i

�i � �� 	 	 	 � r�� For convenience we will address the corresponding multifractals as

carpets�

Corollary ��� Carpets� Let � be a carpet� If q  � assume in addition that � is

vertically centered� Then T �q� is grid�regular and� with the notation of �������

T �q� �
� �

log �
� �

log�
�

log
� sX

i��
�p�i �
q
�

� �
log �
log
� rX

i��
pi
q
�

	

Proof Apply corollary �� and use that ���� is self�similar ���	�� �

There is a number of notable values of Dq� With ���	�� the box dimension of a

carpet is

D� � dbox�K� �

log s

log�����
�
log�r�s�

log�����
	 �����

This formula was already found by McMullen �Mu� and Bedford �Bed�� for a special

kind of carpets� the so�called generalized Sierpi�nski carpets�
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Furthermore� we take the chance having explicit formulas for a study of the �most

probable� resp� �most rare�ed� points� By straightforward calculation ��i � ���

D� �

� �
log�
� �

log �
�

log
�

max�p�� � 	 	 	 � p
�

s �
�

�

�
log �
log
�

max�p�� 	 	 	 � pr�
�

D�� �

� �
log�
� �

log �
�

log
�

min�p�� � 	 	 	 � p
�

s �
�

�

�
log �
log
�

min�p�� 	 	 	 � pr�
�

�

and

F �D�� �

� �
log �
� �

log�
�

log�u��� �
log �
log�u�

F �D��� �

� �
log �
� �

log�
�

log�v��� �
log �
log�v��

where u��� resp� v��� denote the number of maximal resp� minimal p
���

i �

In order to give a heuristic argument consider a cylindrical set Vi �i 
 J�n�� This is

essentially a �i��i�rectangle and can be subdivided into squares of side �n � �i� The

k�th square� counting according to the orientation induced by wi� has the measure

pi � �������k� ���i��i� k�i��i��� But �
��� is a SMF� thus D�
��� � min�log p�i � log�
�

i �

and the �����measure of an 
�box on IR amounts at the most 
D�
���

� i�e� when the

box coincides with some wj
������� ���� where log p�jk� log�
�

jk
� D�
��� for all letters jk

of j�

Choosing 
 � �i��i it can be seen that the measure of a �n�square B contained in

Vi amounts at the most

��B� � pi � ��i��i�D�
���

	

The number of such squares is approximately ��i��i�
F
���

� where F ���
� �� F ����D�
�����

Thus� taking the squares for �n�boxes� ��B� � �n
D� is only possible if

pi � �i
D����
�i
D��D����

������

holds� where i passes through all letters ik of i� �Otherwise� i�e� if ������ would not

hold for all ik� there had to exist a letter l with pl greater than the right�hand side

of ������� Considering the squares in Vi for i � l � 	 	 	 l reveals that D� would not

be the smallest H�older exponent in contradiction to theorem ��� Consequently

lim
n��

log"fB 
 G�n � ��B� � �n
D�g

� log �n

� � ������

where X
�i
F
���

� �i

�F
���

� � �� �����
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the sum being taken over all i satisfying ������� Though the argumentation is not

rigorous in general� it is certainly exact for carpets with log �i� log�i � const 
 Q�

choosing �n to be a convenient power of �� Similar for ���

Often � � F �D�� is the solution of ������ Although ������ gives then a satisfactory

interpretation of F �D��� it is important to note the following�

� The assumption that the measure is ordered was essentially used to derive a

simple formula for �� For an ordered C�SAMFs see examples ��� and ��	�

� The equation ������ describes merely a fact concerning numbers of boxes with

particular properties� It says nothing about the dimension of a set whatsoever�

Compare with example ����

Now let us check the formulas for carpets� Straightforward calculation yields D�
���

� log�max�p�i ��� log� and F
���

� � � logu�� log�� and thus indeed

�i
D����
�i
D��D����
� max�pi�

and

�i
F
���

� �i
F �D���F
���

� �
�

u�
� u

�
u
� ��u

for all i� So ������ chooses all maximal probabilities pi and ����� is indeed satis�ed

by � � F �D��� Provided the umaps wil with the maximal probabilities are arranged

in the u� columns corresponding to the maximal p�i � then their invariant set K
� �

hwi� � 	 	 	 � wiui may fairly be called the set of most probable points� Moreover� its

box dimension is just F �D�� due to ������ The similar holds replacing� by ���

However� if the maps are arranged in a di�erent manner it is not as simple to give the

�dense� parts of �� So the interpretation of F ��� as the dimension of subsets K� with

�local H�older exponent �� �compare Ex� ���� has to be carried out cautiously� On

the other hand� it has to be referred to �S�� There it is proven that under restricted

circumstances F ��� equals indeed the Hausdor� dimension of K� �almost surely� in

the sense of theorem ����

Example ��� Three Carpets� Take

wi�x� y� � �x��� y��� � �ui� vi� �i � �� 	 	 	 � 	�

with the following entries �ui� vi� in rising order

��� �� ���� ���� ��� ��� ���� ��� ��� ���� ���� ����	

The IFS is centered with respect to the open set O� �� � ��� ������� �� �see

Fig� ������ Choosing p� � p� � ���� p	 � 	 	 	 � p� � ��� gives p�i � ��� p�i � ����

Dq
��� � log 

log �

Dq
��� � �
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Figure ����� The construction of the three carpets of example 
��� The IFS on the

left is centered with respect to the round open set �� ��� ���� ��� ��� the others as

usual with respect to the unit square�

and

T �q� �
� log 

log �
� �


�

��� q� �

�
log �
log
�

��	q � ���q
�

	

Hence�
� Although ���� and ���� are both homogeneous � is not �see Fig� ������

Figure ����� On the left the generalized dimensions and on the right the spectrum

of the �rst carpet appearing in example 
���

A di�erent choice of probabilities pi shows that there is a priori no inequality between

T �q� and T ����q� � T ����q� unless q � � �compare theorem ����� corollary ��� may

be rewritten as

T �q� � T ����q� � T ����q� �
log
�Ps

i���p
�

i �
qPt

i���p
�

i �
q
�

� log
� rP

i��
pi
q
�

log �

	

Taking wi as above but with the following entries �ui� vi� in rising order

����� �� ����� ���� ��� ��� ����� ��� ���� ��� ����� ����

and with p� � ���� p� � ���� p	 � ���� p
 � ���� p� � ����� p� � ��� one

obtains T �q�  T ����q� � T ����q� for large jqj� Finally taking p� � p� � p� � � �i�e�

omitting the corresponding maps� and p	 � ���� p
 � ��� and p� � ��� leads to

T �q� � T ����q� � T ����q� for large jqj� Thus
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Figure ���� Images of the �rst two carpets appearing in example 
��� provided by

a random algorithm�

� The only a priori inequality between T �q� and T ����q� � T ����q� is at q � ��
�

����� Products

The C�SAMFs of the second special type are not necessarily ordered but still possess

a simple expression for their generalized dimensions and their spectrum� the product

of two self�similar multifractals on IR� Such measures are considered in �Z��

Corollary ���
 Product Measures�

Let ����� �� hw����

� � 	 	 	 � w
����

s�t� % p
����

� � 	 	 	 � p
����

s�t� i be two given SMFs on IR� De�ne

w�ij��x� y� �� �w�
i �x�� w
�

j �y�� p�ij� �� p�i p
�

j ������

for all pairs �ij� 
 f�� 	 	 	 � sg � f�� 	 	 	 � tg � f�� 	 	 	 � rg� Then

� �� hw����� 	 	 	 � w�st�% p����� 	 	 	 � p�st�i

is the product measure of �� and ��� Moreover� � is a C�SAMF� ���� � ��� ���� �

���

T �q� � T ����q� � T ����q�� Dq � Dq
��� �Dq
���

and

F ����� � ����� � F ��������� � F ���������

for ��k� � ��T �k����q�� Finally note that T and F are grid�regular�

Remark The relation T �q� � T ����q��T ����q� holds of course for general products

of multifractals� and if �� and �� are CMFs then � is one too� For more information

about the dimension of the product of metric spaces we propose �W� and �Tr��
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Proof Instead of giving the straightforward general proof of the additivity of gener�

alized dimensions theorem ��� shall be applied� for it provides also the grid�regularity�

Certainly w�ij�
��� � w�

i � w�ij�
��� � w�

j and

X
�ij� �w�ij��w
�

k
p�ij� �

tX
j��

p�k p
�

j � p�k 	

Thus ���� � �� by ���	� and lemma ���� Similarly ���� � ��� Almost evidently � is

the product measure of ���� and ���� by construction� Straightforward computation

yields �� � �� � T ��� � T ���� Lemma ���� completes the proof� �

����� A Further Explicit Formula

A third kind of C�SAMFs with explicit formula for T �q� is the following�

Assume that the projections K�k� are self�similar� furthermore� that � � �� and that

�i � � � �i � � �i � �� 	 	 	 � r��

�i � � � �i � � �i � r� � �� 	 	 	 � r�

for some integer r� strictly between � and r� Without loss of generality it is possible

to write

��i � � �i � �� 	 	 	 � s�� ��i � � �i � s� � �� 	 	 	 � s�

��i � � �i � �� 	 	 	 � t�� ��i � � �i � t� � �� 	 	 	 � t�

for some integers s�  s and t�  t� Solving equations of second order gives

�T
���

�
s

�
s�P

i��
�p�i �
q�� � �

sP
i�s���
�p�i �
q � s�P

i��
�p�i �
q



sP
i�s���
�p�i �
q

and similar for T ����q�� Furthermore�

�

�

�
s

�

rP
i�r���
piq�T
����� � �
r�P

i��
piq��T
��� � rP

i�r���
pi
q�T
���


r�P

i��
piq��T
���

Moreover�

�� �

��
log����
log

�
��� r�X

i��
pi
q
�� rX

i�r���
pi
q
��A 	

Finally� the tests whether  � � �� resp�  � � �� reduce to

r�X
i��

pi
q � �	T
���

�

rX
i�r���

pi
q�� resp�

rX
i�r���

pi
q � �	T
���

�
r�X

i��
pi
q��	 ������



��� CHAPTER 
� SELF�AFFINE MULTIFRACTALS

Example ��� A �Circular� Multifractal� Consider the IFS

w��x� y� � �x� � ���� y��� w��x� y� � �x�� � ���� y� � ����

w	�x� y� � �x� � ���� y�� � ���� w
�x� y� � �x��� y� � ����

supplied with p� � 	 	 	 � p
 � ���� It has self�similar projections K�k� with p�i � ��i �

p�i � ��i �i � �� � ��� Thus ���� and ���� are homogeneous SMFs� and lemma ���

applies to show that � is centered �see Fig� ������ Observing dbox�K
�k�� � �� one
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1/4
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Figure ����� The �rst two iterates in the construction of the �circular� multifractal

�see Ex� 
�
��

obtains the �grid�regular� singularity exponents T ����q� � T ����q� � � � q� From

this �� � ��� The particular tests in the de�nition  � and  � coincide and read as

�� � T ��� � T ��� � T ��� by direct computation� or equivalently as � � q�� using

the reduced form ������� All this allows the conclusion

T �q� �
�

�� � �� q � log �
p

� � 
�q � ��� log  if q � �

�� � ��� � ��� q� otherwise	

In particular

� The grid�regular T is C� but not C� �see Fig� ������

�  � �� � �� � T ��� � T ��� � q � � �compare lemma ������

� The �grid�regular� spectrum F comes to a sudden stop at � � D� � D� � ����

This rises the question� where the �most probable points� can be found�

We take the opportunity and calculate explicitly� Let �n � �n and take i 
 J�
�n � i�e�

�i � �i � �n� Due to the special entries of the maps wi the set Vi �ts into the �n�grid�

Subdividing it into squares of side �n yields indeed �n�boxes� On the other hand�

every �n�box with nonvanishing measure lies in some Vj with j 
 J�n � Moreover�

since ���� and ���� are homogeneous and measure just the length in ��� ��� all boxes
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Figure ����� On the left the generalized dimensions and on the right the spectrum

of the circular multifractal �Ex� 
�
��

in Vi have the same measure� Letting m � jij and k � "fl � m � il � � or �g one

�nds m� k � n due to �i � �n and

��B� � pi��i��i� � ��n�k

for every �n�box in Vi� Observing �i � �i this value is found to be maximal for

k � m� � n��� But then �i � �i and Vi is a �n�box by itself� Since i was arbitrary

maxf��B� � B 
 G�ng � ��n�	 � ��n�

�	 � �n
D�	

There are as many �n�boxes of this kind as words i with �i � �i � �n� Observing

m � �n��� Stirling�s formula leads us to

log"fB 
 G�n � ��B� � �n
D�g

� log �n

�
log

�
m

�
m

m��
��

n log �

� log
�

m
q

��m m
�

n log �

�

which converges to ��� � F �D��� This agrees with the intuitive understanding of

F �D��� But the equations ������ and ����� are not satis�ed� To get a better under�

standing where the �most probable� points lie� follow the words i which contribute

to the �heavy boxes� above� at the �rst stage of the construction the C�SAMF seems

to be perfectly symmetric giving no reason for more or less probable parts� Only

when regarding � as the invariant measure hwj% pjijjj�t� di�erences appear and the

equation ������ selects exactly the words j with �j � �j� See �gure ���� for t � �

The equation ����� reads then as

X
�j
F
���

� �j

t�F
���

� � t
�

t
t��

��
�t��
�
t

� �

and �t � F �D�� as above� Moreover� one may consider the invariant sets Lt �t

even� generated by the IFS fwj � jjj � t� �j � �jg� These sets are in fact self�

similar and of dimension �t by ������ The union K � of the increasing sequence of

compact sets Lt has the dimension

dHD�K
�� � sup

t�IIN
dHD�Lt� � F �D��	
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From the considerations above it is fair to call K � the set of the �most probable�

points� Note in addition that the points of K � certainly possess the local H�older

exponent D��

Turning now to D�� the minimal measure of a �n�box is found for k � m � n� i�e�

when i 
 f�� �gn�
minf��B� � B 
 G�ng � �	n � ��n�
	�� � �n
D��	

Applying the symmetric arguments for �i  �i� there are  � n�����n � �n
�� boxes

of this kind� yielding
log"fB 
 G�n � ��B� � �n
D��g

� log �n

� � � F �D���	

On the other hand� these boxes form a decreasing sequence of compact sets converg�

ing to K �� � hw�� w	i� hw�� w
i� Certainly K �� is the set of all points x for which the

unique �n�boxes Bn�x� containing x have exactly the measure �n
D�� for all n� This

is a strict requirement and does not exactly match the de�nition of local H�older

exponent D��� in the limit too strict and in the geometry too loose� As the union

of two self�a�ne �and even self�similar� fractals� K �� has the dimension

dHD�K
��� � dbox�K
��� � ��	

What seems to be a contradiction to the value F �D��� � � is readily explained�

Since K �� is captivated in two line segments most of the boxes appearing in its

construction above do not intersect it at all� Still they have the desired property to

contribute to F �D����

Figure ����� The circular multifractal �Ex� 
�
� provided by a random algorithm�
�

This example gives credit to the intuition that the measure is better concentrated

in squares than in thin rectangles with the same measure and the same area�
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����� Homogeneous Self�A
ne Multifractals

A �rst and simple group of homogeneous SAMFs are the products of two homoge�

neous multifractals on IR� This is immediate from corollary ����� In particular in

this case

pk � �D�
���

k �D�
���

k

for all k� analogous to the self�similar case� However� this condition is not necessary

for a SAMF to be homogeneous� as the next example will show�

Example ��� A Homogeneous SAMF� Take

wi�x� y� � �x��� y��� � �ui� vi� �i � �� 	 	 	 � 	�

with the following entries �ui� vi� in rising order

��� �� ���� �� ��� ��� ����� ��� ���� ��� ����� ����	

This IFS has self�similar projections and lemma ��� applies� Choosing pi � ��	

results in p�i � ���� p�� � ���� p�� � ��� p�	 � ��	�

T ����q� � �� q T ����q� �
log ���q � �q � 	�q�

log �

and the grid�regular

T �q� �
�


��� q�	

�

From this example and an earlier one �����

� A homogeneous SAMF need not be a product measure�

� The projections of a homogeneous SAMF do not have to be homogeneous� On

the other hand� both projections may be homogeneous but � itself not�

����� Applications

Now that our theory has been developed we would like to present contemporary

research which is closely related� We content ourself with a narrative language and

close with an interesting example of our own�

First� �Ma� presents results of the same kind as our theorem ���� The box dimension

of the graph of certain vector valued functions is obtained as the maximum of

numbers �measuring� the graph in di�erent directions� The technics used for the

proof are di�erent from ours� using essentially the connectedness of the invariant

set�
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Further� �Koh� x�� rises the question of di�erentiability and tries to explain irregu�

larities� Our examples and proposition ���� give some answers�

The work of Falconer �Falc�� Falc�� was already mentioned� Here we contribute a

simple formula for the �almost sure� dimension �see theorem ��	��

Furthermore� corollary ��� is related to �Mu� Bed�� GL��

Remember also section �� which embeds the results of chapter  in the �eld of

recent publications�

Finally our theorem ��� covers parts of recent results� i�e� it provides the box di�

mension of investigated invariant sets� which are in many cases special kinds of

C�SAMFs�

One such family arises from fractal interpolation� in �Bar� a new kind of interpolation

functions was introduced� given N �� data points �xi� yi� one may consider a set of

a�ne maps

wi�x� y� ��
�

ai �

bi ci
��

x
y

�
�

�
di

ei
�

i � � 	 	 	N

with wi�x�� y�� � �xi��� yi��� and wi�xN � yN� � �xi� yi�� The compact invariant set

G of this IFS is then the graph of a continuous function which interpolates the

data� Referring to section � an illuminating picture is provided by considering the

straight line segment joining �x�� y�� with �xN � yN� and its iterated images under the

set map W � Only four entries of wi are determined by the condition above� Usually

ci is considered as a parameter controlling the dimension of G �BEHM��

If
NP

i��
jcij � � and the interpolation points do not lie on a straight line� then dbox�G�

is the unique solution D of

NX
i��
jcijaiD�� � ��

otherwise dbox�G� � ��

However� if yN 	� y� and jyi � yi��j  jyN � y�j one may choose bi � �� freezing the

ci� Then the a�nities are diagonal and the IFS is vertically centered� Moreover�

D�
��� � D�
��� � � and hence d� � D and d� � �� In this situation

dbox�G� � !�w�� 	 	 	 � wN� � max��� D�

without any further assumptions on the geometrical situation� in agreement with

theorem ����

While we are able to give the generalized dimensions of G� many authors relate

dbox�G� to other constants describing the geometry ofG� such as the H�older exponent

�Bed��� the Hausdor� dimension �BU� K� U� GM� or the topological pressure �Bed��

Bed�� Some among them con�ne the diversity of wi to C�SAMFs by setting bi � �

�GM� GH�� Ma�� Ma� Ma�� BU��
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Example ��	 Bold Play� This example is a particular self�a�ne interpolation

function appearing in probability theory �

Imagine a game where the chance to double the stake is p and the probability

to loose it is � � p� Then M�x� represents the probability to win the amount �

starting with the capital x and observing the following strategy� if the momentary

stake is x  ��� then the player wagers all� if x � �� he wagers � � x� What

makes M�x� interesting is its comparison with the probability to win with �timid

play�� which means to wager the same small amount 
 each time� While the latter

promises a rather long stay at the casino� the chance to leave the place with the

desired amount of money is incredibly larger when applying the �rst one �Fed� p

����� betting �black� in ordinary American roulette� p is given as ������ Trying to

reach the goal of *����� with an initial capital of *��� by wagering *� each time�

the probability of success is approximately � �������� wagering less �timidly� *�� each

time increases the chance to ������still completely negligible� But the chance to

win with �bold play� is �	���+

However� the function M satis�es

M�x� �
�

p �M�x� if x  ���

p� ��� p� �M�x � �� if x � ���

and its graphG is invariant under the two diagonal contractions w��x� y� ��x�� p�y��

w��x� y� � �x� � ��� �� � p�y � p�� The IFS is centered vertically as well as

horizontally with respect to the open sets ��� ������� �� and ���� ������ ��� Supplying

the IFS with the �natural� probabilities p� � p� p� � �� p leads to

�� � T ����q� � log
�

pq � ��� p�q
�

� log 

�� � T ����q� � �� q

Thus �� � T ����q��T ����q� i� T ����q� � �� hence i� q � �� Furthermore� �� � ��

Figure ���	� On the left the generalized dimensions and on the right the spectrum

of the graph of the �bold play��function with p � ��� �see Ex� 
���

i� q 
 ��� ��� The test concerning  � reduces to p log p����p� log���p��log  � ��

which is true independently of q� So lemma ���� gives

T �q� �
�

max���� ��� if q � ��

min���� ��� if q � ��
�

�
�

�� if q � ��

�� if q � ��
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Since T is not di�erentiable at zero there is a gap in the ��interval where the

spectrum is not determined by T �

The invariant set G is the graph of the continuous functionM and of total length �

Moreover� M is almost everywhere di�erentiable with slope zero �Fed� p� ����� For

p � �� the spectrum reduces to a point and M to a linear function� In this sense

F ��� reveals the �nondi�erentiability� of the invariant function M � This is due to

the choice pi � �i� interweaving geometry and measure� �

The last example provides an ordered SAMF for which T �q� can explicitly be cal�

culated for q � �� although its projections are not self�similar�

Example ��� Rosette�

Consider the maps

w��x� y� � �x�� ��� y��� w��x� y� � �x�� y�� ���

w	�x� y� � �x� � ��� y��� w
�x� y� � �x�� y� � ���

with the round set O � f�x� y� � jxj � jyj  �g� Choose p� � p	 � ���� p� � p and

p
 � ��� p�
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Figure ����� The construction of the rosette �see Ex� 
����

First ���� is investigated� Since w�
��� and w

��� coincide lemma ��� implies

���� � hw�
���� w�
���� w	
���% p�� p� � p
� p	i � hx� �


�
x


�
x� �


% ���� ��� ���i	

This allows the calculation of T ��� although the construction of ���� is overlapping�

Denoting the normalized Lebesgue measure of IR� restricted to O by �� ���� is

recognized as the projection ������ of �� just note that � is invariant under wi�x� y� �

�x�� y��� �ui� vi� with entries �ui� vi� � ����� ��� �������� ���� ��� ��� ��� and
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Figure ����� The rosette as de�ned in example 
�� on the left� To emphasize the

concentration of this measure near the horizontal parts� a multifractal is provided

on the right� which is based on the same IFS but with probabilities pi according to

the Jacobians of the maps �i�e� p� � p	 � ��	� p� � p
 � ����� This results in a

�homogeneous� distribution�

with probabilities pi � ���� Consequently the singularity exponents of ���� are

identical with the one of �����

Let �n � �n and take B � �k � �n� �k� ���n� with an integer k 
 f�n� 	 	 	 � n � �g�

These sets B are the �n�boxes with nonvanishing �
����measure� For �  k  n � �

������B��� � ����k����n� �k���n��IR� � ��n �����k�����n� � ��n
��n�k�����

for k � �� ������B��� � ��n
��n � ��� and for k � n � �� ������B��� � �n
�� For

negative k replace k by jkj� First we observe that �n�  ������B��� � ��n
�� Thus the

semispectra are trivial for � outside ��� �� Omitting the three boxes corresponding

to k � �n� �� n � � will not a�ect the rest of this calculation� For � 
��� � one

�nds

������B���  �n
� � n � n�������� ��  jkj  n � �

which is satis�ed by  � bn�������� c integers k� Thus

�F �������� � lim
n��

logM�n���

� log �n
� � �	

Similar ������B��� � �n
� is satis�ed by approximately n � n������� integers k

leading to

�F �������� � lim
n��

logN�n���

� log �n
� �	

Proposition ���� implies

F ������ � lim
���
lim

���
log�N ���
��� � 
��N ���
���� 
��

� log �

�
�

� � if � 
 ��� ��

�� otherwise�
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Figure ����� The generalized dimensions and the spectrum of ���� of the �rosette�

multifractal �see Ex� 
����

By lemma ���	 T ��� is grid�regular satisfying

T ����q� �
�

�� q if q � ���

�q otherwise�

The spectrum of ���� is not strictly concave and so T ����q� carries not all the infor�

mation about the singularities of ���� �see Fig� ������

Now let us turn to � itself� Straightforward calculation yields

�� �
��

� �� �q � log
�q

h��q� � 
�	q � h�q�
�

� log���� if q � ���

� �q � log
�q

h��q� � 	�
q � h�q�
�

� log���� otherwise�

where h�q� � pq � ��� � p�q for short� Since � is an ordered SAMF corollary ��

and proposition ���	 yield

T �q� � �� �q � ��� T �q� � �� �q  ��

and T is at least grid�regular for q � �� Theorem ��� gives the increasing part of

the spectrum F ��� including the maximal value �see Fig� �����

Figure ���� On the left the function  �q���� � q� and on the right its Legendre

transform for the �rosette� with p � ���� They equal the generalized dimensions for

positive q resp� the spectrum in the rising part�


��� CONCLUSIONS� OUTLOOK� ���

Finally note that ������ selects the maps w� and w	 and that ����� holds� Indeed w�

and w	 press the measure towards the x
����axis� which has dimension � � F �D���

On the other hand� the construction of the invariant set K �� � hw�� w
i is certainly

performed only by boxes with ��B� � ��� Since we expect them to be the only ones

of this kind we conjecture F �D��� � �� This value is considerably smaller than �	���

obtained from the Legendre transform of  �q���� � q�� Thus� when F �D��� � �

were indeed true� the upper bound  of T had to be strict for some negative q� and

�centered� would be a necessary precondition in theorem ���� �

��
 Conclusions� Outlook�

Our conclusions are summarized in a short survey�

� The generalized dimensions dq introduced and applied in �Falc�� Gr�� HJKPS�

HP� usually take the irrelevant value� for negative q �see Ex� ����� Since cer�

tain multifractals develop interesting generalized dimensions only for negative

q �Ex� ����� it is important to have a new method of measuring the singularities

of a multifractal�

� One essential relation in multifractal formalism is the connection of spectrum

and generalized dimensions through the Legendre transformation� However�

the formalism in �Falc�� requires the existence of the double limes f��� for

all �� Even with the most simple multifractal �Ex� ���� this double limes

fails to exist for large �� To solve this problem we introduce the semispectra�

they are easy to handle and have almost the same properties as the spectrum

itself �Prop� ���� ���� and ������ Moreover� it is possible to obtain the spectrum

from the singularity exponents without assuming anything about it in advance

�theorems ��� and ����

� As is demonstrated with most of the examples� the semispectra as well as

the singularity exponents very often allow to compute the whole spectrum

F � In particular examples� however� F may carry more detailed information

�Ex� ��� and ��	��

� The new formalism allows to give a rigorous proof for the well known formula

for the singularity exponents of self�similar measures� including negative q�

� The self�a�ne multifractals presented under the name C�SAMF reveal fea�

tures of multifractal spectra di�erent from the ones of self�similar measures�

Hence they provide a greater diversity as models for objects found in nature�

Moreover� we consider C�SAMFs to be important� since they allow the study

of several topics such as the product of self�similar measures� local H�older

exponents and other features� See section ����



�� CHAPTER 
� SELF�AFFINE MULTIFRACTALS

� We provide multifractals with atypical spectra� They show that F need not

be concave and that it may possess wedges or linear parts� Furthermore� T �q�

is not necessarily di�erentiable� or can be once but not twice continuously

di�erentiable �Ex� ���� ��	� ���� ���� ��� and ��	�� Finally� in�nite singularity

exponents are found for all negative q with the left�sided spectra �Ex� �����

For further constructed examples of this kind as well as for observations in

nature see �MEH� ME� CJVP�� Exponential dimensions �GA�� carefully de�ned

in order not to re�ect wrong measurement �Ex� ���� may turn out to be the

rightly chosen formalism here�

� The interpretation of F ��� as the dimension of the set �with H�older exponent

�� is valid for certain self�similar measures �Ex� ��� and ����� For general

multifractals� however� this matter is far from trivial� At least we are able

to provide evidence especially for the �most rare�ed� and the �most probable�

points �section �����

� As a straightforward generalization of the present work we mention the IFS

consisting of contractive a�nities in IRd� which leave two given� complementary

subspaces invariant and which reduce to similarities therein� Such IFS are

applied to obtain fractal interpolation surfaces �GH� BEHM��

� Finally� the present work may in�uence the investigations of randomly gener�

ated measures �A� Falc� Z� Graf� and of Recurrent IFS �B� BEH� Bed� GH��

Curriculum vitae

��� Juni ��	� geboren in St�Gallen

���� � ���� Besuch des humanistischen Gymnasiums an der

Kantonsschule St�Gallen

September ���� Maturit�at Typus B

���� � ���� Industriepraktikum und Milit�ardienst

���� � ���	 Studium an der Abteilung IX f�ur Mathematik und Physik

an der ETH Z�urich

Oktober ���	 Diplom in Mathematik

���	 � ���� Praktikum in einer Lebensversicherungs�Gesellschaft

seit April ���� Assistent am Departement f�ur Mathematik der ETH Z�urich und

Doktorand in fraktaler Geometrie

M�arz � August ���� Aufenthalt in den U�S�A� und in Asien

��



Dank

Eine Arbeit dieses Ausmasses ist gar nicht denkbar ohne Anregungen� ohne eine

funktionierende Infrastruktur und ohne ein gesundes menschliches Umfeld�

Vielleicht w�are alles ganz anders gekommen� w�are nicht Claudia gewesen� die mir

auf ihre ureigenste resolute Art den Mut f�ur ein Studium der Mathematik ein��osste�

Bereits mit der Diplomarbeit f�uhrte mich mein sp�aterer Doktorvater Prof� Blatter

in die faszinierende� im Entstehen begri�ene Geometrie der Fraktale ein� Im Ver�

laufe des vertieften Studiums zeigten sich vor allem die inspirierenden Arbeiten von

Doudady et Oesterle� Falconer� Barnsley und Bedford als wegweisend� Durch die

lange Zeit der Suche leitete mich Prof� Blatter mit einem Blick f�ur das Wesentliche

und von ihm stammt auch das sch�one und lehrreiche Beispiel der Rosette� Erst

gegen Ende dieser Arbeit fand ich die Gelegenheit zum Besuch eines internationalen

Seminars� welches mir eine erste Feuerprobe f�ur meine Ideen und vielerlei Einsichten

in andere multifraktale Ans�atze bescherte� In diesem Zusammenhang bin ich der

SMG f�ur ihre grossz�ugige Unterst�utzung zu Dank verp�ichtet� sowie Matthias A��

der mich auf die Arbeit von Schief hingewiesen hat� Letztendlich mein herzlicher

Dank an Silvia f�ur die sorgsame Durchsicht des Manuskripts�

Es scheint mir auch am Platz zu sein� hier der ETH Z�urich zu danken� Die Anstellung

als Assistent und die gutausgebaute Infrastruktur sind nicht wegzudenkende Voraus�

setzungen f�ur die vorliegende Forschungsarbeit� Von all den vielen Kommenden und

Gehenden in der Gruppe� zu der ich mich nun mittlerweile seit manchen Jahren

zugeh�orig f�uhlen darf� m�ochte ich zwei besonders erw�ahnen� Da ist zum einen N�obi�

eine Art Naturkonstante in unserer Gruppe� wandelndes Orakel und Bronstein in

einem� Zum anderen w�are die Arbeit mit den verschiedenen elektronischen Hilfs�

mitteln undenkbar ohne Beat� den Fachmann f�ur alle Arten von �bugs�� An sie

zwei� stellvertretend f�ur die ganze Gruppe� richte ich meinen herzlichen Dank f�ur

das wohltuende Klima im G ���

So viele sind St�ucke des Weges mit mir gegangen� Besonders am Herzen liegt mir

Marie�Claire� meine Begleiterin durch viele Jahre� Mein tiefster Dank aber geh�ort

Oliver� Sein stets waches Interesse an meiner Arbeit und sein ungebrochener Op�

timismus gereichten mir zu Ansporn und einem gesunden Mass Selbstkritik� dieses

unabdingbare Paar Beine� auf dem jede Arbeit fortschreitet�

��



Bibliography

�A� Matthias Arbeiter Random recursive construction of self�similar fractal

measures� The noncompact case� Probab� Th� Rel� Fields� �� ������ pp

���
���

�BP� R� Badii et A� Politi Statistical Description of Chaotic Attractors� The

Dimension Function J� Stat� Phys�� �
 ������ pp ��
����

�B� Christoph Bandt Self�Similar Sets �� Constructions with So�c Systems

Monatsh� Math�� �
� ������ pp ��
���

�BG� Christoph Bandt et Siegfried Graf Self�Similar Sets �� A Characteriza�

tion of Self�Similar Fractals with Positive Hausdor Measure Proc� AMS�

��� ����� pp ���
�����

�Bar� Michael F� Barnsley Fractals everywhere San Diego� Academic Press

����

�BEH� M� Barnsley� J� Elton et D� Hardin Recurrent Iterated Function Sys�

tems Constr� Approx�� 	 ������ pp �
���

�BEHM� M� Barnsley� J� Elton� D� Hardin et P�Massopust Hidden Variable

Fractal Interpolation Functions SIAM J� Math� Anal�� �
 ������ pp ���


���

�Bed�� Tim Bedford Ph� D� Thesis Warwick Univ� �UK� ������

�Bed� TimBedford Hausdor dimension and box dimension in self�similar sets

Proc� Conf� Topology and Measure V� Ernst�Moritz�Arndt�Univ� Greif�

swald ������ pp ��
	�

�Bed�� TimBedford H�older Exponents and Box Dimension for Self�A
ne Frac�

tal Functions Constr� Approx�� 	 ������ pp ��
���

�Bed�� Tim Bedford The box dimension of self�a
ne graphs and repellers Non�

linearity� � ������ pp ��
���

�BU� Tim Bedford et Mariusz Urbanski The box and Hausdor dimension

of self�similar sets Report ��
�� Delft Univ� of Technology ������

��



�	 BIBLIOGRAPHY

�BPPV� R� Benzi� G� Paladin� G� Parisi et A� Vulpiani On the multifractal

nature of fully developed turbulence and chaotic systems J� Phys� A� Math�

Gen�� �� ������ pp ���
�����

�Bill� P� Billingsley Probability and Measure New York� Wiley ���� �Wiley

Series in Probability and Statistics�

�BR� Tomas Bohr et David Rand The entropy function for characteristic ex�

ponents Physica D� �	 ������ pp ���
����

�CM� Robert Cawley et R� Daniel Mauldin Multifractal Decompositions of

Moran Fractals Advances Math�� �� ����� pp ��	
�	�

�CLP� P� Collet� J� Lebovitc et A� Porcio The Dimension Spectrum of Some

Dynamical Systems J� Stat� Phys�� �� ������ pp 	��
	���

�CJVP� A� Crisanti� M� H� Jensen� A� Vulpiani et G� Paladin Strongly in�

termittent chaos and scaling in an earthquake model Nordita preprint�

Danmark �����

�DO� Adrien Douady et Joseph Oesterle Dimension de Hausdor des at�

tracteurs C� R� Acad� Sc� Parisi� S�erie A� t� ��
 ��� juin ����� pp ����


�����

�Eggl� H� G� Eggleston The fractional dimension of a set de�ned by decimal

properties Quart� J� of Math� �Oxford�� �
 ������ pp ��
�	�

�Ell� Richard Ellis Large Deviations for a general Class of Random Vectors

Ann� Prob�� �� ������ pp �
��

�EM� C� J� G� Evertsz et B� B�MandelbrotMultifractal Measures Appendix

B in� �Chaos and Fractals� by H��O� Peitgen� H� J�urgens and D� Saupe�

Springer New York ����� pp ���
����

�Falc�� Kenneth J� Falconer Geometry of Fractal sets Cambridge Univ� Press

������

�Falc� Kenneth J� Falconer Random fractals Math� Proc� Cambr� Phil� Soc��

�

 ����	� pp ���
���

�Falc�� Kenneth J� Falconer The Hausdor dimension of self�a
ne fractals

Math� Proc� Cambr� Phil� Soc�� �
� ������ pp ���
����

�Falc�� Kenneth J� Falconer Fractal Geometry� Mathematical Foundations and

Applications John Wiley and Sons� New York ������

�Falc�� Kenneth J� Falconer The dimension of self�a
ne fractals II Math� Proc�

Cambr� Phil� Soc�� ��� ����� pp �	�
����

�FM� Kenneth J� Falconer et D� T� Marsh Classi�cation of quasi�circles by

Hausdor dimension Nonlinearity� � ������ pp ���
����

BIBLIOGRAPHY ��

�Fed� Jens Feder Fractals New York� Plenum Press ������

�GL� Dimitrios Gatzouras et Steven Lalley Hausdor and Box dimensions

of Certain Self�A
ne Fractals Indiana Univ� Math� J�� �� ����� pp ���


�	��

�GH�� J� Geronimo et D� Hardin An Exact Formula for the Measure Dimen�

sions Associated with a Class of Piecewise Linear Maps Constr� Approx��

	 ������ pp ��
���

�GH� J� Geronimo et D� Hardin Fractal Interpolation Surfaces and a related

��D Multiresolution Analysis To appear in J� Math� Anal� Appl�

�GM� Steve Gilbert et Peter Massopust The exact Hausdor Dimension for

a Class of Fractal Functions to appear J� Math� Anal� and Appl� ����f�

�Graf� Siegfried Graf Statistically Self�Similar Fractals Probab� Th� Rel� Fields�

�� ������ pp ���
���

�Gr�� Peter Grassberger Generalized Dimensions of strange attractors Phys�

Lett� A� �� ������ pp �
���

�Gr� PeterGrassbergerGeneralizations of the Hausdor Dimension of Frac�

tal Measures Phys� Lett� A� �
� ������ pp ���
����

�GP�� P� Grassberger et I� Procaccia Characterization of strange attractors

Phys� Rev� Lett�� 	
 ������ pp ��	
����

�GP� P� Grassberger et I� Procaccia Measuring the strangeness of strange

attractors Physica D� � ������ pp ���
���

�GA� Neelima Gupte et R� E� Amritkar New dimensions in multifractals�

The exponential dimension Physical Review A� �� ������ pp ��		
��	��

�GS� R� Gutfraind et M� Sheintuch Fractal and multifractal analysis of the

sensitivity of catalytic reactions to catalyst structure J� Chem� Phys�� �	

������ pp 	���
	����

�HR� Jan Hakansson et Gunnar Russberg Finite size eects on the charac�

terization of fractal sets� f��� construction via box counting on a �nite

two�scaled Cantor set Phys� Rev� A� �� ������ pp ����
��	��

�HJKPS� T� Halsey� M� Jensen� L� Kadanoff� I� Procaccia et B� Shraiman

Fractal measures and their singularities� The characterization of strange

sets Phys� Rev� A� �� ����	� pp ����
�����

�HP� H� Hentschel , I� Procaccia The In�nite number of Generalized Di�

mensions of Fractals and Strange Attractors Physica D� � ������ pp ���


����



�� BIBLIOGRAPHY

�Hut� John Hutchinson Fractals and Self Similarity Indiana Univ� Math� J��

�
 ������ pp ���
����

�JKL� M� Jensen� L� Kadanoff et A� Libchaber Global Universality at the

Onset of Chaos� � � � Phys� Rev� Lett�� 		 ������ pp ���
����

�JKP� M� Jensen� L� Kadanoff et I� Procaccia Scaling structure and ther�

modynamics of strange sets Phys� Rev� A� �� ������ pp ����
����

�Koh� Mahito Kohmoto Singularities in the Thermodynamic Formalism of

Multifractals J� Phys� Soc� Japan� �
 ������ pp ��	
����

�K� Norio Kono On Self�A
ne Functions Japan J� Appl� Math�� � ����	� pp

��
	��

�Lan� Oscar E� Lanford III Entropy and Equilibrium States in Classical Sta�

tistical Mechanics in� Statistical Mechanics and Mathematical Problems�

Springer Lecture Notes in Physics� �
 ����	� pp �
����

�L� Larry Liebovitch et Tibor Toth A fast algorithm to determine fractal

dimensions by box counting Physics Letters A� ��� ���� pp ��	
����

�Lop� Artur Lopes The Dimension Spectrum of the Maximal Measure SIAM J�

Math� Anal�� �
 ���� pp ���
����

�MEH� B� B� Mandelbrot� C� J� G� Evertsz et Y� Hayakawa Exactly self�

similar left�sided multifractal measures Physical Review A� �� � ������

pp ���
���	�

�ME� B� B� Mandelbrot et C� J� G� Evertsz Exactly self�similar multifrac�

tals with left�sided f��� To appear in� Fractals and Disordered Systems�

Editors A� Bunde and S� Havlin

�Ma�� Peter Massopust Space Curves generated by Iterated Function Systems

Thesis� Georgia Institute of Technology July ���	�

�Ma� PeterMassopust Vector�Valued Fractal Interpolation functions and their

Box dimension to appear Aequat� Math� ����f�

�Ma�� Peter Massopust The Box Dimension for a Class of Vector�Valued Hid�

den Variable Fractal Functions Preprint Vanderbilt Univ�� Nashville� Ten�

nessee ������

�Mor� P� A� P� Moran Additive Functions of intervals and Hausdor Measure

Proc� Cambr� Phil� Soc�� �� ����	� pp ��
��

�Mu� CurtMcMullen The Hausdor Dimension of general Sierpi�nski Carpets

Nagoya Math� J�� �� ������ pp �
��

BIBLIOGRAPHY ��

�OWY� E� Ott� W� Withers et J� Yorke Is the Dimension of Chaotic Attrac�

tors invariant under Coordinate Changes� J� Stat� Phys�� �� ������ pp

	��
	���

�Pth� K� R� Parthasarathy Probability Measures on Metric Spaces in� Prob�

ability and Math� Statistics� Academic Press New York ��	�

�R� D� A� Rand The singularity spectrum for hyperbolic Cantor sets and at�

tractors Preprint Warwick Univ� ����	�

�Rog� C� A� Rogers Hausdor Measures Cambridge Univ� Press ������

�Sa� Enn Saar et Veikko Saar Large�scale Patterns Manuscript �Cambridge�

Institute of Astronomy�

�Sch� Andreas Schief SOSC and OSC are Equivalent Preprint Department of

Mathematics Ludwig�Maximilians�Universit�at Munich

�S� J�org Schmeling et Rainer Siegmund�Schultze The singularity spec�

trum of self�a
ne fractals with a Bernoulli measure Manuscript �Berlin�

�T�el� Tam�as Tel Fractals� Multifractals and Thermodynamics Z� Naturforsch�

A� �� ������ pp ����
�����

�TV� Tam�as Tel et Tam�as Vicsek Geometrical multifractality of growing

structures J� Phys� A� Math� Gen�� �
 ������ L���
L����

�Tr� Claude Tricot Two de�nitions of fractal dimension Math� Proc� Cambr�

Phil� Soc�� �� ����� pp ��
���

�U� MariuszUrbanski The Probability Distribution and Hausdor Dimension

of Self�a
ne Functions Probab� Th� Rel� Fields� �� ������ pp ���
����

�V�� Tam�as Vicsek Fractal Growth Phenomena World Scienti�c� Singapore�

����

�V� Tam�asVicsek Fractal models for diusion controlled aggregation J� Phys�

A� Math� Gen�� �� ������ L	��
L	��

�W� HelmutWegmann Die Hausdor Dimension von kartesischen Produkten

metrischer R�aume J� Reine u� Angewandte Math�� ��� ���	�� pp �	
���

�Y� Lai�Sang Young Dimension� Entropy and Lyapunov Exponents Ergod�

Th� , Dynam� Sys�� � ����� pp ���
���

�Z� U� Zaehle Self�similar Random Measures II� A Generalization to Self�

a
ne Measures� Math� Nachr�� ��� ������ pp ��
���



Index

Notions

adic� r�adic� ��

admissible� �

atom� ��

basic open set� ��

bi�Lipschitz� �

box dimension� 

box� ��box� 

C�SAMF� ��

Cantor Multifractal� ��

capacity� �

carpet� ���

cascade� �

CMF� ��

coarser IFS� ��

codespace� �

concave� ��

contractive� ��

convex� ��

coordinate map� �

cylindrical sets� ��

degenerate� ��

deterministic algorithm� ��

diagonal� 	�

Dirac measure� ��

dist� ��

empty word� �

generalized dimensions� ��

geometrical multifractal� ��

grid� ��grid� �

grid�regular� �� �

Hausdor� dimension� �

Hausdor� measure� �

Hausdor� metric� ��

homogeneous� �

IFS� ��

Iterated Function System� ��

left�sided spectrum� 	�

Legendre transform� ��

length� ��

Lip� ��

local H�older exponent� � ��

Lyapunov dimension� ��

most probable� ��� ��

most rare�ed� ��

multifractal� 

multiplicative cascade� ��

nonatomic� ��

open set condition� ��

ordered� �

OSC� ��

piecewise linear� �	

probability vector� �

quasi increasing� ��

random algorithm� ��

ratio� ��

rectangle� 	�

round open set� 	�

SAMF� 	�

secure� ��

���

INDEX ���

self�a�ne� 	�

self�similar� ��

Self�similar Multifractal� ��

semispectrum� �

Sierpi�nski carpets� ���

similarity� ��

singularity exponents� �

SMF� ��

SOSC� ��

spectrum� �

strong OSC� ��

symbolic dynamics� ��

tailored� ��

tight� ��

touching point� ��

uniform� �

word� ��

Labels

Ak� ��

b� 	�

�B��� �

ci� �

C�� ��

C��� ��

d� �
dbox�K�� 

dC���� �

di� ��

dHD�E�� �

dHD���� �

d�� ��

d�� ��

D� ��

Dq� ��

Dq
�k�� ��

D�� ��

D�� 	

D��� 	

f���� 

F � �

Fm���� �

f����� �

F�� �

F������ �

f����� �

F�� �

F ���
� � ���

G�� 

G��h�� ��

i� ��
i�� �

i � k� ��

�i�jn�� �

I� ��

In� ��

I�� �

J�� ��� 	�

J��E�� �

J�� �

J�� �

K� �� �

K� ��
K�k�� ��

�k�� ��

Kn� �

K�� ��

(K�� ��

k�� �

log���� 

M�t�� ��

m�� �

m��E�� �

m����� �

M����� �

nil� �

N��K�� 

n����� 

N����� �

O� ��� ��� 	�

P � �

P�� ��� ��



�� INDEX

�p�� 	 	 	 � pr�� �

pi� �

p�i � �

p�i � ���

p�i � ���

r� ��

R� 	�

IR� ��

s� ���

s��q�� �

S��q�� �

S�
�k�� ��

t� ���

ui� 	�

U�a� ��� ��

vi� 	�

V � ��

Vi� ��� ��

wi� ��� 	�

wi� ��

w
�k�

i � ��

w�
i � ���

w�
i � ���

W � ��

x�q�� ��

xi
�

� �

Xn� ��� ��

Yn� ��

Zn� ��

��� ��

��� ��

��� ��

���� ��

��� �

��� ��

��� ��

��� ��

��� ��

���q�� ��

��� ��

���q�� ��

 �q�� ��

 ��a�� �	

 ��q�� ��

 ��a�� ��

 ��q�� ��

�fxg� ��

!�S�� 	 	 	 � Sr�� �	

!�� ��

!�� ��

�� �
��i�� 	�

�� 	�

�i� ��� ��� ��� 	�

�i� ��� 	�

�� �

�� �

'���� ��

�� � �

�� 	�

�i� 	�

�i� 	�

�� �

��q� a� b� �� J�� ��

�n�a� b� ��� ��

��n �a� ��� ��

��n �b� ��� ��

��q�� �

� �q�� �

T �q�� �

T �q�� �

T �k�� ��

�� �
�
 � �	

$� �
��a� ��� ��

��a� �� q�� ��

��k� ��

��b� ��� ��

"� �
i"j� ��

hh��� 	 	 	 � �r% p�� 	 	 	 � prii� ��

h�% p�� 	 	 	 � pri� ��

hw�� 	 	 	 � wr% p�� 	 	 	 � pri� ��

INDEX ���

hw�� 	 	 	 � wri� ��

dxe� ��
�O� �	

��q�� �

Citations

�A�� ��

�BP�� �

�B�� ��

�BG�� ��� �	

�Bar�� ��� ��� ��� ���

�BEH�� ��� ��� ��� ��

�BEHM�� ��� ��� 	�� ���� ��

�Bed��� ���� ���

�Bed�� ��� ���� ��

�Bed��� ��� ��� ���

�Bed��� ��� 	�� ���

�BU�� ���

�BPPV�� �

�Bill�� ��� ��

�BR�� iv� �� ��� ��

�CM�� iv� �� ��� ��� ��� ��

�CLP�� �� �� �� ��

�CJVP�� 	�� ���

�DO�� �	� ��

�Eggl�� ��

�Ell�� �

�EM�� �� ��� ��� ��� ��

�Falc��� ��

�Falc�� ��

�Falc��� viii� x� ��� 	�� �	� ���

�FM�� �

�Falc��� vii� ix� �
�� �� ��� ��� ��� ��

��� ��� ���

�Falc��� 	�� ���� ���

�Fed�� iii� ���

�GL�� 	�� ��� ���� ���� ���

�GH��� �� ��� ��� ���

�GH�� ��� ��� 	�� ��

�GM�� ��� ���

�Graf�� ��

�Gr��� �� ���

�Gr�� �� �

�GP��� �� �

�GP�� �� �� �

�GA�� �� ���

�GS�� iii� ��

�HR�� �

�HJKPS�� v� � �� ��� ��� �� ��� ���

���

�HP�� iv� ��� ��� ��� ��� ��� �� ��� ���

�Hut�� ��� ��� ��
��� ��

�JKL�� � �

�JKP�� �

�Koh�� �� �� ���

�K�� 	�� ���

�Lan�� iv� �� ��

�L�� �

�Lop�� ��

�MEH�� � �� �� 	�� ���

�ME�� �� 	�� ���

�Ma��� ��� ��� ��� ���

�Ma�� ��� ��� 	�� ���� ���

�Ma��� ���

�Mor�� ��

�Mu�� ��� ���� ���� ���

�OWY�� �� �� �

�Pth�� �

�R�� ��

�Rog�� �

�Sa�� iii

�Sch�� ��

�S�� �� ��� ��	

�T�el�� iii� ��� ��� ��

�TV�� iii� ��� ��� ��� ��

�Tr�� ���

�U�� 	�� ���

�V��� iii� ��� ��� ��

�V�� iii

�W�� ���

�Y�� �� ��

�Z�� 	�� ���� ��


