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1 Introduction

One crucial property of high-speed network traffic is the presence of long-range dependence (LRD), which
was demonstrated convincingly in the landmark paper of Willinger et al [1]. This feature is inadequately
described by classical traffic models such as homogeneous Markov or Poisson models, yet has important
performance implications in particular on queuing delays [1, 2, 3, 4, 5].

Among the numerous LRD traffic models, the Gaussian nature and strong scaling properties of
fractional Brownian motion (fBm) have made it most amenable to study large time scale asymptotics
[5, 4] which are of importance for design and management. Being Gaussian in nature, though, fBm-based
models can fail to capture essential traffic properties such as positivity and burstiness in particular on
small time scales (see Figure 1) which are relevant to control and performance evaluation.

Leaving the realm of ‘classical’ linear processes which are additive in kind, [6] proposed multiplicative
cascades to model traffic loads. We feel that this simple class of multifractals is convenient to develop some
of the main differences between additive and multiplicative processes. It constitutes the bridge between
multifractal measures and multifractal processes, has algorithmic advantages and possesses ‘conserva-
tion of mass’ which simplifies estimation procedures. We conclude with an outlook into wider classes
multifractal processes.
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Figure 1: Real data traffic AUCK [7] and two tree-based models that fit the variance on all dyadic scales. On the
left the trace, in the middle the additive WIG model and on the right the multiplicative MWM model (see text)
at 64 msec time resolution.
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Figure 2: (Left) The multiscale tree representation can be computed from data flowing up the tree according
to (2). For synthesis flow down the tree: (Middle) Additive tree-model WIG (see (3)); (Right) Multiplicative
tree-model MWM (see (4)).

2 Stochastic modeling on a tree

LRD can be viewed as a multi-resolution phenomenon. Indeed, a discrete-time, wide-sense stationary
random process {Xk, k ∈ ZZ} is said to exhibit LRD if its auto-covariance rX [k] decays as � k2H−2 with
1/2 < H < 1 and is not sumable, or equivalently, if the variance of the aggregates

X
(m)
k = Xkm−m+1 + · · · + Xkm (1)

behaves as m2H [8]. One example of an LRD process is fractional Gaussian noise G (fGn), the increment
process of fBm for which rG[k] = σ2

2 (|k + 1|2H − 2|k|2H + |k − 1|2H) � k2H−2 and var(X(m)) = σ2m2H .
For the purpose of analysis as well as synthesis a Haar wavelet tree is a most efficient and simple tool

to represent a discrete process on multiple resolutions (see Figure 2): The nodes at the level j of the
binary tree are

Vj,k = X
(2n−j)
k = Vj+1,2k + Vj+1,2k+1. (2)

Clearly, every parent node is the sum of its two children at the next finer scale. The tree structure allows
for fast O(N) pyramidal algorithms to process N data points. More general wavelets could be used to
broaden the class of models [9, 10].

2.1 Additive Synthesis: Gaussian tree models

The additive nature of the multiscale tree (see Figure 2 and (2)) suggests a simple additive multiscale
model for LRD traffic [9, 10]. Starting at the root of the tree V0,0, we model children nodes iteratively
using independent additive random innovations, Zj,k’s, through

Vj+1,2k = (Vj,k + Zj,k)/2, Vj+1,2k+1 = (Vj,k − Zj,k)/2. (3)

Due to the Central Limit Theorem, we expect the distributions of the nodes Vj,k to become Gaussian
as j → ∞. The Zj,k’s must be identically distributed within scale j to provide a first-order stationary
process. We call this model the wavelet-domain independent Gaussian (WIG) model. Choosing V0,0 ∼
N (m2n, σ222nH) and Zj,k ∼ N (0, σ2(22−2H −1)22(n−j)H) provides a Gaussian process with the same tree
statistics, in particular the same var(X(2n−j)), as fGn.

2.2 Multiplicative synthesis: Multifractal Processes

The WIG model is approximately Gaussian by construction. This is in sharp contrast with the fact that
network traffic signals (such as loads and interarrival times) can be highly “spiky” and non-Gaussian
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(recall Figure 1). Retaining the simplicity of a tree-based WIG model, the multifractal wavelet model
(MWM) of [6] achieves a better match using independent multiplicative innovations Mj,k as

Vj+1,2k = Vj,kMj,k, Vj+1,2k+1 = Vj,k(1 − Mj,k). (4)

By choosing Mj,k ∈ (0, 1) and V0,0 to be positive, we ensure positive values at all nodes on the tree.
Requiring that the multipliers Mj,k be symmetric about 1/2 and identically distributed within scale
ensures first-order stationarity of the process at scale j. Beta and even simple discrete distributions for
the multipliers have proven useful in applications [6]. Due to the CLT and the multiplicative scheme, the
process is approximately lognormal at the finer time scales, and spiky as we are about to explain.

2.3 Multifractal properties

In a nutshell, the multifractal formalism relates the frequency of bursts in one realization to the decay of
sample moments. Using Chebyshev’s inequality we have for any q > 0:

Pj

[
Vj,k ≥ 2−ja

]
= Pj

[
V q

j,k ≥ 2−jqa
]
≤ IEj [V

q
j,k]

2−jqa
, (5)

where Pj is the counting measure of k ∈ {0, . . . 2j−1}. Large deviation principles can be used to establish
for which q this upper bound (5) is tight in the limit j → ∞ [11]. We may interpret the left hand side of
(5) as the chance to observe in one realization arrivals which are very large compared to the time scale.
The main term on the right hand side are sample moments. For the MWM, assuming i.i.d. multipliers
Mj,k, we have IE[V q

j,k] = (IE[M q])j and find for (5) an exponential decay rate of infq(qa + log2 IE[M q]), a
convex function of a.

For the WIG with fGn scaling, that is Vj,k ∼ N (0, σ22−2jH), we find IE[V q
j,k] = cq · (2−qH)j and the

exponential rate of (5) infq(qα − qH) degenerates. Indeed, due to a result of Adler X
(m)
k is for fGn

typically at the most of the order of mH for all t of one realization [11]. For real world traffic traces,
however, one finds widely varying burst strength a in any realization, just like the MWM [6].

2.4 Doubly stochastic modeling

In a doubly stochastic approach we model the nodes Vj,k of the multi-resolution tree as noisy observables
with stochastic background parameters, say their means θj,k, which we are really interested in. We
assume that the observations conditioned on knowing the parameters, i.e. Uj,k = Vj,k|θ are independent.
Two cases are of most interest: Gaussian Uj,k ∼ N (θj,k, σ

2
j,k) and Poissonian Uj,k ∼ P(θj,k) observables.

Note first that by additivity of the expected value the parameters θj,k form a tree where again the
parent is the sum of the two children. In the Gaussian case conditional independence determines the
variances: σ2

j,k = σ2
j+1,2k + σ2

j+1,2k+1. For synthesis downstream on the tree we compute easily that

Uj+1,2k|Uj,k =

⎧⎨
⎩

N (1
2Uj,k + θj+1,2k−θj+1,2k+1

2 , 1
2σ2

j,k) in the Gaussian case,
Binom(Uj,k,

θj+1,2k

θj,k
) in the Poisson case.

(6)

This demonstrates impressively that Gaussian resp. Poissonian noise models lead naturally to additive
resp. multiplicative tree models for the mean-process. Thus, we are confirmed that multiplicative models
are more accurate and appropriate on small scales, where individual arrivals are relevant, whereas on
large scales, the high mean from large aggregations makes Poisson and Gaussian distributions very similar
and an additive, Gaussian model becomes as appropriate, and potentially easier to treat analytically.
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Figure 3: Left: Queue tail probabilities obtained from an numerical experiment for a real data trace (AUCK),
in comparison with fitted, synthetic WIG and MWM traces. Shown are also analytical expressions (MSQ) for the
two models. Middle: Model based, adaptive inference of cross traffic over a shared link (see [13]). Right: A sample
path of a Multifractal Product of Processes (see [15]).

2.5 Multiplicative network traffic?

Apart from the LRD match, in which WIG and MWM have the same accuracy, the multiplicative MWM
outperforms its additive competitor WIG as a model of network traffic in terms of multifractal properties
as seen above, in its queuing behavior both in simulation as well as in an analytical approach (see [12]
and Figure 3 left), and allows to adaptively infer volumes of cross traffic that an individual connection
experiences on a router (see [13] and Figure 3 middle). As for the cause of the apparent multiplicative
structure only clues are available at this time, pointing to the transport protocol TCP as the correct
layer to investigate [14].

3 Multifractal Product of Processes

To overcome the inherent non-stationarity of tree-based processes, [15] introduced the multifractal product
of stationary processes (MPSP):

An(t) =
∫ t

0

n∏
j=0

Λ(j) (s) ds. (7)

In the simplest case the multipliers Λ(j)(t/2j) are i.i.d. stationary processes with IEΛ(i)(t) = 1. The
product right hand side of (7) converges only in distributional sense to a meaningful limit, since it will
converge pointwise to zero almost everywhere. In more simple words, a multiplier Λi(t) can be thought
of as a local change in the arrival rate where one is interested actually in the integrated ‘total traffic load’
process An(t). The covariance structure of the Λ(i) determines whether An converges in L2. Note that
this construction guarantees conservation only in the mean, so An is not a coarse scale aggregation of the
limiting process. This makes parameter estimation hard.

It should be noted that the MWM could be formally written in the form (7) except that the multipliers
Λ(i) would not be stationary since they change value exactly at dyadic time instances. A simple example
of an MPSP is then to let the Λ(i) be piecewise constant with independent values which change according
to a Poisson process. In this case, An converges in L2 if var(Λ(i)) < 1 and the multifractal properties is
ruled by higher order moments, i.e. the decay rate of (5) is here [15]

inf
q

(qα + log2 IE[(Λ/2)q]).
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