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Abstract� In this paper� we develop a new multiscale
modeling framework for characterizing positive�valued
data with long�range�dependent correlations ���f noise��
Using the Haar wavelet transform and a special multi�
plicative structure on the wavelet and scaling coe�cients
to ensure positive results� the model provides a rapid O�N�
cascade algorithm for synthesizing N�point data sets� We
study both the second�order and multifractal properties
of the model� the latter after a tutorial overview of mul�
tifractal analysis� We derive a scheme for matching the
model to real data observations and� to demonstrate its
e�ectiveness� apply the model to network tra�c synthe�
sis� The 	exibility and accuracy of the model and 
tting
procedure result in a close 
t to the real data statistics
�variance�time plots and moment scaling� and queuing be�
havior� Although for illustrative purposes we focus on
applications in network tra�c modeling� the multifractal
wavelet model could be useful in a number of other ar�
eas involving positive data� including image processing�

nance� and geophysics�

Index Terms�Long�range dependence� multifractals�

network tra�c positive ��f noise� wavelets�

� Introduction

��� Fractal signal models

The discovery of the fractal� self�similar� or ��f nature of
many phenomena has led to exciting breakthroughs in a va�
riety of scienti�c disciplines� including physics� chemistry� as�
tronomy� biology� meteorology� hydrology� and soil science
��� ��	 In signal and image processing� fractals have been ap�
plied in �elds such as computer graphics� texture modeling�
image compression� and pattern recognition �
� ��	
Fractal models have made a major impact in the area

of communications recently� particularly in the area of com�
puter data networks	 As the work of Leland et al	 ��� and
subsequent studies have demonstrated� network trac loads
exhibit fractal properties such as self�similarity� burstiness�
and long�range dependence �LRD�	 Inadequately modeled by
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classical Poisson or Markov models� these properties strongly
in�uence network performance ���	 For instance� performance
predictions based on classical trac models are often far too
optimistic when compared against actual performance with
real data	 Fractal trac models have provided exciting new
insights into network behavior and promise new algorithms
for network data prediction and control	
The fractional Brownian motion �fBm� B�t� has been the

most broadly applied fractal signal model �����	 Its power
lies in its simplicity� fBm is statistically self�similar�

B�at�
fd
� aHB�t�� ���

Thus� while it has rich statistical properties� it remains
amenable to a tractable analysis	 The fBm is not stationary�
but its increments form the stationary fractional Gaussian
noise �fGn� process	 When the Hurst parameter H � ����
fGn exhibits LRD	

N samples of fGn can be simulated exactly via direct
Cholesky factorization �O�N�� computational complexity�
��� or Levinson�s recursion �O�N�� complexity� ���	 These
costs can become overbearing� especially in networking ap�
plications where often N � ���	 For such large problems�
approximate synthesis techniques �O�N� complexity� based
on wavelets have been developed	
The discrete wavelet transform represents a ��D real signal

X�t� in terms of shifted and dilated versions of a prototype
bandpass wavelet function ��t� and shifted versions of a low�
pass scaling function ��t� ��� ���	 For special choices of the
wavelet and scaling functions� the atoms

�j�k�t� �� �j�� �
�
�jt� k

�
� ���

�j�k�t� �� �j�� �
�
�jt� k

�
� j� k � ZZ �
�

form an orthonormal basis� and we have the signal represen�
tation ��� ���

X�t� �
X
k

UJ��k �J��k�t� �
�X

j�J�

X
k

Wj�k �j�k�t�� ���

with�

Wj�k ��

Z
X�t��j�k�t� dt� ���

Uj�k ��

Z
X�t��j�k�t� dt� ���
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Figure �� �a� The Haar scaling and wavelet functions �j�k�t� and
�j�k�t�� �b� Binary tree of scaling coe�cients from coarse to �ne
scales�

For a wavelet ��t� centered at time zero and frequency
f�� the wavelet coe�cient Wj�k measures the signal content
around time ��jk and frequency �jf�	 The scaling coe��
cient Uj�k measures the local mean around time �

�jk	 In the
wavelet transform� j indexes the scale of analysis� J� indi�
cates the coarsest scale or lowest resolution of analysis� and
larger j correspond to higher resolutions of the analysis	
The Haar scaling and wavelet functions �see Figure ��a��

provide the simplest example of an orthonormal wavelet ba�
sis	 Because of �
�� the supports of the �ne�scale scaling
functions nest inside the supports of those at coarser scales�
this can be neatly represented by the binary tree structure
of Figure ��b�	 Row �scale� j of this scaling coecient tree
contains an approximation to X�t� of resolution ��j 	 Row
j of the complementary wavelet coecient tree �not shown�
contains the details in scale j � � of the scaling coecient
tree that are suppressed in scale j	 In fact� the Uj���k consist
simply of scaled sums and di�erences of the Uj�k and Wj�k	
The wavelet transform closely approximates the

Karhunen�Lo�eve transform for fBm and fGn �����
�	 This
fact has been leveraged into ecient approximate fBm and
fGn models ����� we posit that the wavelet coecients Wj�k

are simply independent� zero�mean Gaussian random vari�
ables with power�law decaying variance var�Wj�k� � ��j� �
with � � �H � � for fBm and � � �H � � for fGn	
Unfortunately� despite their great simplicity� fractal mod�

els such as fBm and fGn have signi�cant limitations for mod�

�The equality is in the sense of �nite�dimensional distributions�
�We consider the signal X�t� to be random and so use capital letters

for all quantities derived from it�

eling certain types of natural and man�made processes	 First�
fBm and fGn are Gaussian models� whereas many LRD pro�
cesses� including network trac� turbulence� �nancial data�
and images� are inherently positive and often spiky	 Both
of these qualities are explicitly nonGaussian	 Second� many
signals exhibit LRD but display short�term correlations and
scaling behavior inconsistent with the strict self�similarity of
���	

��� A Multifractal Wavelet Model �MWM�

In this paper� we develop a new wavelet�based signal model
for positive� stationary� LRD data	 While characterizing pos�
itive data in the wavelet domain is problematic for general
wavelets� for the Haar wavelet� we have the simple condition�
X�t� is positive if and only if jWj�kj � Uj�k for all j� k	
In the multifractal wavelet model �MWM�� we ensure a

positive signal output by modeling the wavelet coecients
as Wj�k � Aj�k Uj�k� with the multipliers Aj�k independent
random variables supported on ���� ��	 For simplicity� we
choose � �beta� and simple point mass distributions for the
multipliers	
The MWM �ows as a multiscale� coarse�to��ne synthe�

sis down the tree in Figure ��b�� Given the approxima�
tion to X�t� at resolution ��j �the Uj�k�� we compute the
wavelet coecients Wj�k � Aj�k Uj�k with random Aj�k	 The
approximation to X�t� at resolution ���j��	 �the Uj���k� is
then obtained from scaled sums and di�erences of the Uj�k
and Wj�k	 This process can be iterated until any desired
resolution�signal�length is reached� the total cost is a meager
O�N� operations for an N �point output	
Like fGn models� the MWM can closely model the power

spectrum� and hence the LRD� of a set of training data if the
variances of the multipliers Aj�k are chosen appropriately	
Unlike fGn models� the MWM can also match positivity and
higher�order statistics due to its multiplicative construction	
For example� Figure � compares real data �Bellcore Eth�

ernet packet interarrival data� August ����� with synthetic
MWM and fGn data� at di�erent aggregation levels	 Both
models match the mean� variance� and correlation decay of
the real data	 Evident from the �gure are the large number
of �unacceptable� negative values of fGn� caused by the real
data having a high standard�deviation�to�mean ratio	 The
MWM data much more closely matches the characteristics
of the real data	 Moreover� a length���
 MWM synthesis re�
quired just eight seconds of workstation run time� in contrast
to eighteen hours for a Levinson fGn synthesis	

��� Cascades and multifractals

The multiplicative construction of the MWM process is rem�
iniscent of the binomial measure� a classical multifractal pro�
cess	 Multifractals were �rst introduced to model dissipation
of energy in turbulence ���� ��� and have proved well�suited
to modeling non�homogeneous phenomena ���� ���	 More re�
cently� the multifractal nature of network trac has been
demonstrated convincingly� �rst in ���� and subsequently
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�a� Bellcore data �b� MWM data �c� fGn data
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Figure �� Interarrival times of groups of packets of �a� Bellcore August ���� pAug data 	
�� �b� one realization of the multifractal
wavelet model �MWM� synthesis� and �c� one realization of fGn synthesis� The top� middle� and bottom plots correspond to interarrivals
of onehundred packets� ten packets� and one packet� respectively� The tenpacket and onepacket plots correspond to the last tenth of
the data from the onehundredpacket and tenpacket plots� respectively� as indicated by the vertical dotted lines� Approximately ���
of the fGn values are negative�

in �������	 The beauty of the multifractal formalism has mo�
tivated considerable research e�ort in mathematics ����
���
however� few multifractal data models have been developed
to date	
In the most simple terms� multifractals possess a local

smoothness Ht that depends on t in an erratic way	 Equiv�
alently� multifractals have moments that scale non�linearly	
By matching the multifractal properties of training data� the
MWM can capture and synthesize rare events in addition
to global behavior	 Random products are �usually� small
but �sometimes� extremely large	 This results in the bursti�
ness seen in Figure ��b�	 Models based on fBm�fGn� on the
other hand� exhibit a non�varying behavior in both Ht and
moments  they are �monofractal	�
With regards to network trac� self�similar� additive

schemes model trac arrivals as a mean rate with super�
imposed fGn �uctuations	 This agrees with the conception
of trac as the superposition of individual components and
is accurate on large time scales	 Multiplicative models� on
the other hand� represent trac arrivals as the product of
random multipliers� which mimicks the partitioning of total
trac throughput into parts	 This point�of�view is appealing

when considering small time scales �

�	

��� Organization

After some background on fractals and wavelets in Section
�� we provide the construction and basic properties of the
MWM in Section 
	 In Section �� we develop the modeling
framework and provide a procedure for �tting the MWM to
actual data measurements	 Section � reviews multiplicative
cascades and reveals the relationship between the MWM and
the binomial cascade	 We give a brief introduction to multi�
fractal analysis �MFA�� relate the MFA to wavelets and LRD�
and perform an MFA of the MWM in Section �	 To illustrate
the e�ectiveness of the MWM� in Section �� we employ it to
generate high�quality synthetic network trac data	 We con�
�rm the accuracy of the synthesis in terms of both statisti�
cal measures and queuing behavior and comment on possible
physical reasons for the presence of multiplicative processes
in network trac	 We close with a discussion and conclusions
in Section �	 In Appendix A� we give a tutorial review of the
MFA	 The proof of the multifractal formalism for the MWM
appears in Appendix B	
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� Fractals� Scaling� and Wavelets

Fractals are geometric objects exhibiting an intricate� highly
irregular appearance on all resolutions �
��	 The fractal di�
mension dim�E� �
�� measures the degree of irregularity or
roughness of a set E	 Here� we are mainly interested in fractal
signals� i	e	 signals having a fractal graph	 Most known frac�
tals are self�similar� if we �zoom� �in or out� of the fractal�
we obtain a picture similar to the original	 In a determin�
istic setting� this imposes strong restrictions on the fractal�
and the easiest way to obtain such an object is to apply a
simple geometrical rule iteratively to obtain details up to in�
�nitely �ne resolution	 Consequently� deterministic fractals
consist of highly repetitive patterns	 Real�world phenomena
can rarely be described using such simple models	 Neverthe�
less� �similarity on all scales� sometimes holds in a statistical
sense� leading to the notion of random fractals	

��� Fractional Brownian motion and fractional
Gaussian noise

For processes� the notion of �similarity on all scales� can be
made precise in various ways	 A very strict one is that of
self�similar with stationary increments� A process Y is H�
sssi if it has stationary increments and for all a � � �cf	 ����

Y �at�
fd
� aHY �t� ���

The pre�eminent random fractal signal model at present
is the fractional Brownian motion �fBm� B�t�	 This pro�
cess is uniquely de�ned through two properties� H�sssi and
Gaussianity ��� 
��	 The Hurst parameter lies in the range
� 	 H 	 �� smaller H corresponds to fBm�s with �wilder� or
rougher�looking local behavior	
Although fBm is useful for theoretical analysis� its incre�

ments process �for �nite increment !t�

G�n� �� B�n!t��B ��n� ��!t� � ���

known as fractional Gaussian noise �fGn�� is often more use�
ful in practice	 While fBm is nonstationary� fGn is stationary	
For fBm� self�similarity ��� is equivalent to its autocor�

relation function rB�t� s� �� IE �B�t�B�s�� having the form

rB�t� s� �

�

�

�
jtj�H � jsj�H � jt� sj�H

�
���

or its �generalized� power spectral density behaving as
"B�f� � jf j���H��	 ����	 It follows from ��� that fGn has
an autocorrelation function

rG�� � �

�

�
j!tj�H

�
j� � �j�H � j� � �j�H � �j� j�H

�
� ����

As with fBm� fGn has a discrete�time power spectrum that
behaves as "G�f� � jf j���H��	 for f near �	 Thus fBm and
fGn are often called ��f noise	

��� Long�range dependence

While the rigid correlation structure of fGn is somewhat re�
strictive for modeling purposes� the tail decay of rG�� � has

proven to be of importance in itself	 In particular� it in�
spires weaker notions of �similarity on all scales� in terms of
second�order statistics only	
It is easy to see that ���� decays like rG�� � � ��H��	 For

��� 	 H 	 �� the correlation is strictly positive and decays
so slowly that it is non�summable	 A process Z with this
property �

P
� rZ �� � ��� is said to exhibit long range depen�

dence �LRD�� since it possesses strong correlations at large
lags	 LRD can be equivalently characterized in terms of the
behavior of the aggregated processes

Z�m	�n� ��
�

m

kmX
i��k��	m��

Z�i�� ����

The fGn with ��� 	 H 	 � has proven useful for signal
modeling� because it has LRD yet permits tractable theoret�
ical analysis due to ���	 In particular� the H�sssi property ���
together with ��� imply that

G�n�
fd
� m��HG�m	�n�� ����

Processes for which var�Z�n�� � m���Hvar�Z�m	�n�� are
termed second�order self�similar processes ���	 For such pro�
cesses� a log�log plot of the variance of Z�m	�n� as a function
ofm the variance�time plot is strictly linear with a slope
of �� �H ���	 The variance�time plot can be used to detect
the self�similarity and LRD of a trace and can be applied to
nonGaussian� non�zero�mean data as well	�

��� Wavelets and ��f processes

The inherent scaling property of the wavelet basis is well�
suited for analyzing self�similar processes	 Wavelets serve
as an approximate Karhunen�Lo�eve transform for ��f pro�
cesses ����� including fBm ���� and fGn ��
�	 These highly
correlated� LRD signals become nearly uncorrelated in the
wavelet domain	 This property has lead to the widespread
use of wavelets for the analysis and synthesis of fractal and
LRD signals ����	
In particular� the energy of the wavelet coecients of a

continuous fBm exhibits a power�law decay with scale ����	
The variance progression of the wavelet transform of sam�
pled fBm and fGn does not follow a strict power�law� but
rather includes scale�dependent factors ���� �
�	 Kaplan and
Kuo ��
� have shown that for the Haar wavelet� the variance
progression of the wavelet transform of fGn satis�es

var�Wj�k� � ��j��H��	� ��
�

Moreover� the wavelet coecients of fGn are typically much
less correlated than those of the underlying sampled fBm
process	 They use these facts to develop a robust wavelet�
based estimator for the H of an fGn submerged in additive
white Gaussian noise	 Similar wavelet�based estimators forH
compare favorably with standard estimation techniques �
��

�Although the Hurst parameter H is sometimes used strictly in the
context of fGn� we will view H as a variance�time plot parameter to
characterize LRD processes in general�
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and have been applied to practical problems such as network
trac analysis ����	
Wavelets can also be used to synthesize approximate ��f

processes with generalized spectra of the form "�f� � jf j�� �
� 	 � 	 �� which includes fBm and fGn	� Playing o�
the Karhunen�Lo�eve property of the wavelet transform� Wor�
nell generates zero�mean� independent Gaussian random vari�
ables Wj�k with power scaling according to ����

var�Wj�k� � ��j� � ����

He then inverts the wavelet transform to obtain the syn�
thesized process	 Even though the mean and variance of
the synthesized signal are stationary� this approach gener�
ally results in a non�stationary Gaussian process with time�
varying correlation function �see Section 
	��	 However�
the time�averaged correlation and spectrum do approximate
that of a ��f process ����	 Though only approximate� this
method�s O�N� computational cost compares favorably with
the O�N�� cost of the Levinson algorithm for exact synthe�
sis ��� and the O�N�� cost of direct Cholesky factorization ���	

��� Moving beyond fBm

Although fBm and fGn are powerful and tractable signal
models� their strict self�similarity is too restrictive to ade�
quately characterize many types of signals ���� 
��	 For in�
stance�
�	 many signals possess signi�cant LRD� but display short�
term correlations and scaling behavior inconsistent with
strict self�similarity�

�	 in many signals� the scaling behavior of moments as the
signal is aggregated is a non�trivial �nonlinear� function
of the moment order� and


	 many signals have increments that are inherently posi�
tive and hence nonGaussian	

Signals with these properties fall naturally into the class of
multifractal processes	 Multifractal signal models are posi�
tive measures or distributions possessing self�similarity but
non�homogeneous scaling	 The goal of this paper is a mul�
tifractal extension of traditional fBm and fGn signal models
suitable for analyzing� characterizing� and synthesizing pos�
itive processes with LRD	 As with fractals� we will �nd the
wavelet transform useful for constructing and analyzing our
model	

� A Multifractal Wavelet Model

The primary goal of this paper is to develop a wavelet�domain
model for a positive� stationary� LRD signal C�t� and its
integral D�t�	 �The integral will be more convenient for the
analysis in Section ��	
In practice� we will work with a discrete�time signal

C�n	�k� that approximates C�t� at resolution ��n	 To re�
�ect this in the wavelet transform� we replace the semi�
in�nite sum in ��� with a sum over the �nite number of scales

�Processes corresponding to a wider range of ��s can also be synthe�
sized� using wavelets with regularity greater than two �����

� � j 	 n� j� n � ZZ�	 Here we also set� without loss of gen�
erality� the coarsest scale J� � �� meaning that the �rst sum
in ��� reduces to the single term U��� ����	 This corresponds
to a single scaling coecient tree approximating C�t� on the
interval ��� ��	 While we will emphasize this case in the se�
quel� in certain cases �as in Section �	� below�� we will �nd it
convenient to employ a forest of R trees rooted at R scaling
coecients U��k� k � �� �� � � � � R��	 In this case� the process
C�t� is assumed to lie in the interval ��� R�	
Using the Haar wavelet� the discrete process C�n	�k� takes

values that correspond to the integral of C�t� in the interval
�k��n� �k�����n�	 Such processes have a natural interpreta�
tion as an increment process�

C�n	�k� �� D
�
�k � ����n

��D
�
k��n

�
�

Z �k��	��n

k��n
C�t� dt � ��n��Un�k ����

for k � �� � � � � ��n � �	 Equation ���� is similar to ��� with
!t � ��n	
To be useful in real applications� our model must be sim�

ple� produce a fast analysis and synthesis� and closely match
the process�s positive� nonGaussian marginals and its LRD	
We will now show how this is possible using a simple Haar
wavelet construction of the increments process C�n	�k�	

��� Positivity through multiplication

Wavelet�domain modeling of positive processes is compli�
cated by the fact that the wavelet coecient constraints
required to ensure a positive output are nontrivial	 Quite
the contrary for the Haar wavelet� however	 For the Haar
wavelet� the scaling and wavelet transform coecients can
be recursively computed using

Uj�k � ������Uj����k � Uj����k��� and ����

Wj�k � ������Uj����k � Uj����k���� ����

Furthermore� in the Haar transform of positive data� we know
that all Uj�k � �� since each Uj�k equals a scaled local mean	
Rearranging ���� and ���� to

Uj����k � ������Uj�k �Wj�k� and

Uj����k�� � ������Uj�k �Wj�k�� ����

we thus �nd a simple constraint to guarantee that the process
is positive�

jWj�kj � Uj�k� ����

Although we have derived ���� as a necessary condition� it is
easy to see that it is also sucient	 For more general wavelet
systems �with longer� overlapping wavelets�� the conditions
are considerably more complex	
We wish to build a statistical model for the Wj�k�s that

automatically incorporates ����	 This leads us to a simple
multiplicative signal model	 Let Aj�k be a random variable
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supported on the interval ���� �� and de�ne the wavelet co�
ecients by

Wj�k � Aj�k Uj�k� ����

In Section 
	�	� we will place some additional constraints on
the Aj�k	
The multifractal wavelet model �MWM� consists of the

Haar wavelet transform and the structure constraint ����	
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Figure 
� �a� More detailed tree structure of scaling coe�cients�
�b� MWM construction� At scale j� we form the wavelet coe�
cient as the product Wj�k � Aj�kUj�k� with Aj�k a random variable
distributed in 	��� ��� Then� at scale j � �� we form the scaling
coe�cients Uj����k and Uj����k�� as sums and di�erences of Uj�k
and Wj�k �normalized by ��

p
���

��� Synthesis procedure

The MWM can be interpreted as a simple coarse�to��ne syn�
thesis running as follows �see Figure 
��

�	 Set j � �	 Fix or compute the coarsest �root� scaling
coecient U��� �modeling of U��� is discussed in Section
�	��	

�	 At scale j� generate the random multipliers Aj�k and
calculate each Wj�k via ���� for k � �� � � � � �

j � �	

	 At scale j� use Uj�k and Wj�k in ���� to calculate Uj����k

and Uj����k��� the scaling coecients at scale j � � for
k � �� � � � � �j � �	

�	 Iterate steps � and 
� replacing j by j�� until the �nest
scale j � n is reached	

Since we generate the scaling coecients simultaneously
with the wavelet coecients� there is no need to invert the

wavelet transform	 The �nest�scale scaling coecients are
in fact the MWM output process� i	e	 C�n	�k� � ��n��Un�k�
k � �� � � � � �n � �	 The total cost for computing N MWM
signal samples is O�N�	
Because of the simple structure of the Haar transform�

Steps � and 
 above can be combined� eliminating the wavelet
coecients altogether�

Uj����k �

�
� �Aj�kp
�

�
Uj�k and

Uj����k�� �

�
��Aj�kp
�

�
Uj�k� ����

��� Closed�form coe	cient expressions

Because of its simplicity� we can easily obtain explicit formu�
las for the MWM�s �ne�scale Haar wavelet and scaling coef�
�cients in terms of the scaling coecients and multipliers at
coarser scales	 We begin by de�ning an indexing scheme to
relate the coarsest�scale scaling coecient U��� to its �descen�
dants� at �ner scales� the scaling coecients Uj�k� j � � �see
Figure 
�a��	 Let kj � j � �� be the variable indexing the pos�
sible shifts of the descendants of U��� at scale j	 We can relate
the shift kj of a scaling coecient to the shift of one of its two
direct descendants �children� kj�� via kj�� � �kj � k�j � with
k�j � � corresponding to the left descendant and k

�
j � � the

right descendant �see Figure 
�a��	 From this we can express
kj as a binary expansion in terms of the k�i �i � �� � � � � j� ���

kj �
j��X
i��

k�i �
j���i� ����

Moreover� kj �
j
kj��

�

k
and k�j � kj�� � �

j
kj��

�

k
� with bxc

the largest integer less than or equal to x	 Note that �xing a
sequence k�i speci�es not only kj� but a �line of descendants�
of Ui�ki �i � �� � � � � j� from U��� down to Uj�kj 	
Using this notation� we can derive closed�form expressions

for the MWM wavelet and scaling coecients	

Proposition � De�ne the wavelet coe�cients of the Haar
wavelet system through ��	
� with the random variables Aj�k

supported on ���� ��� We then have the general relations

Uj�kj � �
�j�� U���

j��Y
i��

h
� � ����k�iAi�ki

i
��
�

and

Wj�kj � �
�j�� Aj�kj U���

j��Y
i��

h
� � ����k�iAi�ki

i
� ����

��� Properties of the MWM

����� Additional constraints on the multipliers

The Haar wavelet coecients of a stationary signal will
be� using ���� identically distributed within each scale with
IE�Wj�k� � �	 To model these properties in the MWM� we
will assume that� within each scale j� we have the following�
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�	 the multipliers Aj�k� k � �� �� � � � � �
j��� are identically

distributed according to some random variable A�j	 �
���� ���

�	 the A�j	 are symmetric about �� and


	 �simplifying assumption� the Aj�k are independent of
both the coarsest scaling coecient U��� and the Al�k

on �ner scales l � j	�

����� Marginal density and stationarity

Under the above assumptions� Proposition � leads us to the
marginal density and stationarity properties of C�n	�k�	 Set�
ting j � n in ���� and ��
�� and setting k � kn in ���� yields�

C�n	�k� � ��n U���

n��Y
i��

�
� � ����k�iAi�ki

�
d
� ��n U���

n��Y
j��

�� �A�j	�� ����

Thus� C�n	�k� is �rst�order stationary and identically dis�
tributed	 Note that without the requirement that A�j	 be

symmetric� the marginal distribution of C�n	�k� would de�
pend on k and ���� would not hold	 Hence� symmetry of the
multipliers is key for modeling stationary processes	
However� C�n	�k� will not be second�order stationary in

general	 Due to the dyadic structure of the wavelet trans�
form� wide�sense stationarity of C�n	�k� is unattainable us�
ing a wavelet�domain model with uncorrelated wavelet co�
ecients �except in the trivial case of white noise�	 In the

MWM� for a �xed shift m� IE
h
C�n	�k �m�C�n	�k�

i
will vary

as a function of k in relation to the size of the smallest subtree
containing both C�n	�k�m� and C�n	�k�	 If the Aj�k multipli�
ers are independent and identically distributed �iid�� then the
smaller the subtree� the stronger the potential correlation	
Given our independence assumptions� the moments of

C�n	�k� are readily calculable from ���� via

IE
h
C�n	�k�q

i
� IE

h
U q
���

i n��Y
j��

IE

��
� �A�j	

�

�q�
� ����

As we increase the number of scales in the wavelet
transform �n 	 ��� an appropriately scaled version of
C�n	�k� converges to a log�normal random variable as long

as IE
h
log�A�j	�

�
i
is bounded for j � �	 This follows from the

application to log�C�n	�k�� of the Berry�Esseen theorem �
���
a Central Limit Theorem for non�identically distributed ran�
dom variables	

����� Wavelet�domain dependency structure

If we assume that the Aj�k�s are independent both between
scales and within scales� then the wavelet coecients will be
dependent� but uncorrelated	 This lack of correlation follows

�Strictly speaking� for our development we need only assume inde�
pendence along �lines of descendants�� That is� multipliers on di�erent
scales can be dependent as long as one is not a descendant of the other�

�The symbol �
d
�� denotes equality in distribution

from the fact that terms of the form IE�Aj�k� factor out of any
correlation calculation� with IE�Aj�k� � �	 However� a higher�
order dependency structure remains� which is of course key
for preserving signal positivity	
While a dependency structure with no correlations be�

tween wavelet coecients may at �rst seem somewhat unnat�
ural� such models are not entirely unrealistic	 Wavelet coef�
�cients of random signals can exhibit minimal second�order
correlations �approximately decorrelated via the Karhunen�
Lo�eve transform�� yet still have strong dependencies in
higher�order moments	 For instance� many real�world data
sets exhibit strong dependencies in the energy of the wavelet
coecients� corresponding to fourth�order cross�moments
���� ���	

��
 Related work

Constructions similar to the MWM were developed earlier
in ���� �
�	 A similar multiplicative model for wavelet co�
ecients has been developed in ���� ���� where it is applied
to wavelet�domain Bayesian estimation of the intensity of
a Poisson process	 There� the Aj�k�s are independent mul�
tipliers that� within each scale� are identically�distributed as
mixtures of � random variables	 The primary di�erence with
this work is that we model the data directly� whereas �������
models a wavelet�domain prior density for the intensity func�
tion of a Poisson process	
In other related work� ���� models the wavelet coe�

cients using a context�based hidden Markov model	 It can
be shown that this model corresponds to ����� again with
the Aj�k�s identically�distributed within each scale� but with
each Aj�k distributed according to a mixture density depen�
dent on the value of Uj�k	 Although this model proves to be
quite �exible and accurate for characterizing positive LRD
data� it requires iterative� maximum�likelihood �expectation�
maximization� training� has numerous parameters� and is dif�
�cult to characterize analytically	

� Data Modeling using the MWM

To complete our model� we now specify probability density
functions �pdfs� for the coarsest scaling coecient U��� and
for the A�j	 multipliers at each scale	 We can use the degrees
of freedom in these pdfs in order to control two key signal
properties	 First� we control the correlations and LRD of
the output signal C�n	�k� through the wavelet energy decay	
Second� we control the higher�order moments and marginal
pdf of C�n	�k� through the scaling coecient moments	

��� Controlling the Wavelet Energy Decay

To approximate the correlation behavior of a target signal�
we vary the wavelet energy decay across scale	 We choose the
pdfs for the A�j	�s to control the wavelet coecients� scaling
behavior via ����	 The fact that this scaling behavior allows
us to model correlations can be explained as follows	
Consider the Karhunen�Lo�eve properties of the wavelet
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transform	 Previous work ���� ��� ��� has demonstrated that
the wavelet transform approximately decorrelates or whitens
a general class of LRD signals� including ��f processes	 If
the decorrelation were exact� then specifying the correct vari�
ances of the wavelet coecients would fully capture the cor�
relation structure of the signal	 Since this decorrelation is
approximate� we can approximately control the correlation
behavior by appropriately setting the second moments �en�
ergies� of the wavelet coecients at each scale	
The simplest way to control energy scaling is to �x the

energy at the coarsest scale �j � �� and then set the ratios of

energy for the other scales with �j ��
var�Wj���k	
var�Wj�k	

� � � j 	 n	

For a stationary ��f process� we see from ��
� that �j �
��H�� is constant	 Using Proposition � we can calculate the
�j �s of the MWM via

�j �
IE
h
W �

j���k

i
IE
h
W �

j�k

i
�

� IE
h
A�
�j��	

i
IE
h
U�
j���k

i
IE
h
A�
�j	

i
IE
h
�� �A�j��	��

i
IE
h
U�
j���k

i
� �

IE
h
A�
�j��	

i
IE
h
A�
�j	

i �
� � IE

h
A�
�j��	

i� � ����

To match a given variance decay� we can recursively

solve ���� for IE
h
A�
�j	

i
in terms of �j and IE

h
A�
�j��	

i
for

j � �� �� � � � � n� �	 We initialize the calculation at the coars�
est scale �j � �� through

IE
h
A�
��	

i
�
IE
h
W �

���

i
IE
h
U�
���

i � ����

��� Controlling the moments of the scaling co�
e	cients

It is easily shown that the moments of the scaling coecients
scale according to

IE
h
U q
j���k

i
IE
h
U q
j�k

i � �q�� IEh�� �A�j��	�
q
i��

� ����

Through ���� we can control the scaling of the higher�order
�and even negative� moments of the scaling coecients  
and thus of C�n	�k�  through the moments of the A�j	�s	

��� Distributions for the multipliers

We will investigate two distributions for the multipliers� the
symmetric � distribution and a symmetric point�mass distri�
bution	 Both of these distributions are compactly supported�
easily shaped� and amenable to closed�form calculations	

����� Symmetric beta distribution

A ��p� p� random variable A� symmetrically distributed over
���� ��� has pdf ����

gA�a� �
�� � a�p����� a�p��

B�p� p� ��p�� � �
��
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Figure �� Examples of the pliable pdf gA�a� of the ��p� p� random
variable A� for di�erent values of p� For p � ���� A resembles a
binomial random variable� and for p � � it has a uniform density�
For p � � the density resembles a truncated Gaussian density� with
the resemblance increasing with p�

Here B�
� 
� is the beta function� and p � � is a shape fac�
tor �see Figure ��	 For large p� the ��p� p� approximates a
Gaussian distribution ����	 The variance is given by

var�A� � IE
h
A�
i
�

�

�p� �
� �
��

Combined with ����� �
�� tells us how to choose the p�s to
obtain the desired scaling behavior as parameterized via �j 	
Denoting by p�j	 the beta parameter at scale j� we �nd that

p�j	 �
�j
�

�
p�j��	 � �

�
� ���� �
��

When we use ��distributed multipliers� we call the model the
� multifractal wavelet model ��MWM�	

����� Point�mass distribution

The point mass distribution we consider is non�zero at three
points

Pr�A � c� � Pr�A � �c� � r

Pr�A � �� � �� �r �

�

with � � r� c � �	 Although seemingly not as rich as the ��
this distribution has two parameters and thus can match an
additional higher�order moment of the signal	
The point�mass distribution has variance var�A� � �rc�	

The higher order moments of
�
��A
�

�
� which are useful for

characterizing the scaling coecient moments �see ������ are
given by

IE

	�
� �A

�

�q 

� ��qr

�
��� c�q � �� � c�q

�
���q��� �r�� �
��

��� Distribution for the root scaling coe	cient

What remains is to model the density of U���� the root of
the tree in Figure 
	 In theory� this distribution should be
strictly positive	 However� if there are enough scales in the
wavelet transform� we can appeal to Central Limit Theorem�
type arguments �although LRD makes precise analysis some�
what cumbersome� that the root scaling coecient is approx�
imately Gaussian� thus characterized only through its mean
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Table �� Asymptotic values for the shape p and variance IE�A�� of the � multipliers Aj�k as a function of H�

H �	�� �	� �	�� �	� �	�� �	� �	�� �	� �	��

p �	��� �	��� �	
�� �	��� �	��� �	�� �	�� �	�� �	��
IE�A�� �	��� �	��� �	��� �	��� �	��� �	
�� �	�
� �	��� �	���

E�U���� and variance var�U����	 Crucial to this assumption
is that the mean greatly outweighs the variance so that the
probability of a negative value is negligible	
Although our development has focused on a single wavelet

tree with a single scaling coecient U���� in certain synthe�
sis applications it is useful for the MWM to employ several
wavelet trees with one root scaling coecient per tree	 For
instance� we may wish to synthesize a trace of length �n� � but
have only enough coarse�scale information to form a model
over n 	 n� scales	 In this case� we can concatenate �n��n

length��n traces� which corresponds to an MWM with �n��n

iid coarsest�scale scaling coecients U��k	 Of course� an iid
assumption for the U��k is suboptimal in that it destroys LRD
over time lags greater than �n	 This problem� along with a
potential solution� is discussed further in Section �	�	

��
 Modeling positive ��f noise

We next investigate how to parameterize the MWM in order
to model a stationary positive�valued ��f increments process
with Hurst parameter H � or spectrum decay � f���H��		 It
is easily seen from ��
� that we should choose �j � �

�H��

independently of scale	 This leads to�

Proposition � Assume that the Aj�k in ��	
 are iid within
each scale j �distributed as A�j	
� supported on ���� ��� sym�
metric about �� and such that

IE
h
A�
�j	

i
�
����H IE

h
A�
�j��	

i
� � IE

h
A�
�j��	

i � �
��

Then the MWM output process C�n	�k� � ��n��Un�k is posi�
tive and exhibits power�law behavior of the wavelet coe�cient
energies ��
 with exponent �H � �� Moreover�

lim
j��

IE
h
A�
�j	

i
� ����H � �� ��� 	 H 	 �� �
��

The �rst part� i	e	 �
��� follows from ����	 By solving �
��
for the �xed�point� we obtain �
��	 A simple analysis of �
��
shows that for ��� 	 H 	 � the iteration is well�de�ned on
all scales� since the variance of A�j	 must lie in ��� �� for all j	
If we use a � distribution for the multipliers� the �xed

point formula for the variance IE�A�� leads to a �xed point
for p of the form

p � lim
j��

p�j	 �
��H�� � �
�� ��H�� � ��� 	 H 	 �� �
��

Table � provides typical �xed�point values for p and the vari�
ance IE�A�� given the desired H 	 There is no such expression

for the point�mass distribution� since even though the vari�
ance converges� an extra degree of freedom remains available
for matching higher�order moments	
We conclude that the MWM can approximate a positive�

valued ��f process with Hurst parameter ��� 	 H 	 � to
in�nitely �ne resolution	

��� Fitting the MWM to data measurements

We now develop a procedure for �tting the MWM to actual
data measurements	 The �rst step in the �tting is a wavelet
analysis� we compute the wavelet coecients of the measure�
ments �a length�N signal� using a Haar wavelet transform
algorithm ��lter bank� etc	 ��� ���� The number of wavelet
scales in the transform� n� is chosen as mentioned below	

We require var�Wj�k�� j � �� � � � � n � � and IE
h
U�
���

i
to

�t the MWM via ���� and ����	 �Values for the higher�order
scaling coecient moments ���� may also be useful if the mul�
tiplier densities have more than one free parameter	� There
exist two reasonable approaches for selecting these values	
We can either plug in the empirical wavelet variances directly�
or we can assume a parametric model for the variances and
use the measured data to �t the model	
If we plug the empirical moments directly into ���� and

����� we must ensure that we have enough data to collect
reliable statistics	 This problem is most pressing for the
coarsest�scale wavelet and scaling coecients� of which we
have the fewest	 In practice� we set the number of levels
n of the Haar transform such that the number bN��nc of
coarsest�scale wavelet and scaling coecients is sucient for

estimating IE
h
W �

���

i
and IE

h
U�
���

i
	

A parametric model for the moment scaling would allow us
to extrapolate the coarse�scale scaling and wavelet coecient
moments that we have diculty measuring due to lack of
data	 It would also render the modeling more robust and
provide a more concise representation of the data�s behavior	
Parametric models for �j as a function of scale are currently
under investigation	
In some cases� it may be impossible to exactly match the

moment scaling of the data using the MWM	 The scaling
of moments of the actual data may be inconsistent with the
possible moments of the Aj�k multipliers	 For instance� the
positive moments of Aj�k are bounded above by those of a
random variable with point masses of weight ��� at�� and at
�	 The moment scaling of certain data may lead to multiplier
moment constraints outside these bounds that cannot be �t
exactly	 This could occur� for example� if the data exhibited
dependencies between the Aj�k and Uj�k	
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Figure �� Iterative construction of the binomial cascade� In the
second image� the products M�

i �M�
� give the area of the respec

tive shaded region� i�e� the increment C
���
i of D over I�i etc� The

height of a rectangle of length ��n is thus �n � C���
i � Relation ����

guarantees that the areas add up in the right way� In particular�
the height of the shaded rectangles is �Mn

k times the height of the
respective �parent rectangle�� This is how �spikiness� is created�
small heights give rise to at least one even smaller child� while large
ones produce at least one even larger child� A more precise state
ment can be found in Appendix A�� from which it can be inferred
that in the limit the spikes will actually be in�nitely large on a
rather large� dense subset of 	�� ���

� Multiplicative Cascades

Multiplicative cascades generalize the self�similarity of fBm
by o�ering greater �exibility and richer scaling properties	
Identifying the MWM algorithm with a multiplicative cas�
cade allows us to bene�t from the accumulated theoretical
and practical knowledge of the �eld of multifractals� includ�
ing a precise understanding of the convergence of the algo�
rithm� properties of the marginal distributions� advantages
over monofractal fGn models� and a range of possible re�
�nements and extensions ���� ��� ���
�� ������	 The theory
of cascades comes with a dedicated set of tools for analysis�
both theoretical and numerical� that we will outline in the
next two sections �see Appendices A and B for more details�	
At this point� our discussion will become decidedly more

technical� mainly because we wish to extend the MWM to
a continuous�time process	 Though indispensable for a true
understanding of multiplicative processes� readers may� at
least at �rst reading� wish to bypass the following two sec�
tions for Section �� where we present an application of the
MWM framework to computer network trac modeling	


�� The MWM is a binomial cascade

The MWM extends the simple� classical multifractal  the
binomial measure  ���� �
� ��� ���  in a natural fashion	
This measure  is most conveniently constructed iteratively
through a so�called cascade structure� whence it is often ad�

dressed as a binomial cascade	 As we will show� its distribu�
tion function Db�t� �� ���� t�� coincides with the integral D
of the MWM signal C�k�	
The iterative cascade construction is illustrated in Fig�

ure �	 Starting from a uniform distribution on the unit inter�
val of total massM�

� � we �redistribute� this mass by splitting
it between the two subintervals of half size in the ratio M�

�

to M�
� � with M

�
� �M�

� � �	 Proceeding iteratively� we ob�
tain after n steps a distribution that is uniform on intervals
Ink �� �k�

�n� �k � ����n� and assigns to these intervals the
mass

C
�n	
b �kn� �� Db��kn � ���

�n��Db��kn��
�n� � �Ink �

� Mn
kn 
Mn��

kn��

 
 
M�

k� 
M�
� � �
��

Here we again use the notation ���� at scale j � n	 The
tree structure of Figure 
 translates easily into the present
situation� the interval Inkn lies within the intervals I

i
ki
�i �

�� � � � � n� �� which form a nested sequence	 If k�i � �� then
Ii��
ki��
is the left subinterval of its parent interval Iiki � if k

�
i � ��

it lies on the right	
To generate a random Db� we choose the various M

i
l to be

random variables	 Their distributions may depend on i and
l and are arbitrary� as long as they are positive and provided
that for all j and kj��

M j
�kj��

�M j
�kj���� � � �
��

almost surely	 This introduces a strong dependency between
�siblings�� i	e	 the multipliers at the two child nodes sharing
the same parent	 We will require for all j and kj that all mul�
tipliers appearing in �
�� are mutually independent	 We will
call this property independence along lines of descendants	 A
compact way of writing this is

if Ink � Ijl � then M
n
k and M

j
l are independent	 ����

As long as the two dependency requirements �
�� and ����
are satis�ed� we are completely free to introduce additional
correlation structure	
Comparison with Proposition � �applied with j � n� or�

more pointedly� with ���� reveals that the MWM is a random
binomial cascade	 Indeed� setting M�

� � Db��� � Db��� ��
U��� and

Mn
kn �

� � ����k�n��An���kn��

�
� ����

the increments C
�n	
b �k� of this binomial distribution function

Db �c	f	 �
��� coincide with the increments C
�n	�k� of integral

D of the MWM signal �c	f	 �����	 Thus� we drop the subscript
�b� in the sequel	


�� Additional properties of the MWM

Since the MWM is a binomial cascade� known results on
cascades transfer immediately	
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����� Ordinary convergence of D	t


In the limit the above iterative construction will converge�
meaning thatD is well de�ned for all t	 This is due essentially
to two simple properties of distribution functions such as D�
they are increasing and continuous from the right	 Thus�
it is enough to de�ne D at all dyadic points� and to take
limits from the right at non�dyadic points	 At stage n� we
de�ne D�k��n� through �
�� with the convention D��� �
�	 At later steps of the construction� these values remain
unchanged due to �
��	 This completes the argument	
Let us note that the increment C�n	�kn� of D between

dyadic points tends to zero as n 	 � due to �
�� and the
fact that the multipliers are less than �	 Consequently� D is
continuous	

����� Distributional convergence of C	t


We have constructed D through its dyadic increments C�n	�k�
and by passing to the limit of in�nitely �ne resolution �n	
��	 Later� we will be mainly interested in the increments
C�n	�k�	 Nevertheless� de�ning D itself is handy� since it is
a continuous�time process and provides a compact represen�
tation of the increment processes ���� and �
�� at various
resolutions n	
Moreover� we cannot de�ne a �process� C�t� with D�t� �R t

� C�s� ds in the usual sense	 Indeed� the approximations
C�k��n� � �nC�n	�kn� �plotted in Figure �� tend either to
� or �	 �c	f	 Appendix A	
�	 In particular� the derivative
D� of D is zero almost everywhere� as follows from ���� in
Appendix A	�	 Thus� the essential growth of D happens �at�
the points where D� does not exist	 This explains the spiky
appearance of the increments C�n	�k� for large n	
The proper way to de�ne C�t� is in the distributional

sense� Z
g�t�C�t� dt �� lim

n��

�n��X
k��

g�k��n�C�n	�k�

� lim
n��

�n��X
k��

g�k��n��Ink �

�

Z
g�t� d�t�� ����

As a particular case� the wavelet and scaling coecients of
C�t� are properly de�ned� and it is an easy task to check that
they are indeed given by ��
� and ����	
To emphasize the fact that C�t� is not a proper func�

tion in the cases of interest here� let us show that the l��
norm of its wavelet coecients is in�nite� at least in expec�
tation	 Indeed� using Proposition � we �nd after a short

calculation that IE
hP

j�k jWj�kj�
i
�
Pn

j��

P
k var�Wj�k� �

IE�U�
����

Pn
j�� IE

h
A�
�j	

iQj��
i�� IE

h
�� �A�i	�

�
i
	 For this expres�

sion to remain �nite as n 	 �� IE
h
A�
�j	

i
would have to

decay to � �as j 	 �� due to IE
h
�� �A�j	�

�
i
� �	 This

requirement� however� leads to processes with uninteresting
�ne scale behavior� and it certainly does not hold in the pres�
ence of LRD �see �
���	

The fact that the MWM algorithm does not furnish an
L��signal in the limit n	� provides a further strong argu�
ment towards leaving the usual framework of wavelets when
performing multiplicative iteration schemes	 Given the decay
of the wavelet coecients �c	f	 Section �	
� we can determine
in which Besov spaces the limiting MWM signal C�t� lives
�see Appendix A	�	��	

����� Marginals of C�n��k�
Our next observation concerns the marginals of the discrete
approximation C�n	�k� to the MWM signal C�t�	 If we as�
sume that the multipliers M appearing in �
�� are mutually
independent with �nite third moments� then the logarithms
of the increments C�n	�k� of D are approximately Gaussian
due to the Law of Large Numbers �LLN�	 A cascade process
has� thus� approximately log�normal marginals C�n	�k�	 Note
that these marginals have �nite moments of the same order
of the multipliers appearing in �
��	
The theory of cascades� which in mathematics are ad�

dressed as T �martingales ���� ���� provides a wealth of pos�
sible generalizations	 Softening the conservation condition
�M� �M� � � almost surely� to �IE�M��M�� � �� �consis�
tency in the mean�� we can use multipliersM with log�normal
distribution	 Then� the marginals of the increment process
are exactly log�normal on all scales	 In this case� convergence
is guaranteed by martingale arguments	
Also of considerable importance is the possibility to go

beyond the binary structure imposed by the Haar wavelet
system and to introduce randomness in the geometry of the
construction ������� and  as a particular case  wide sense
stationarity in the signal	 To describe such systems is� how�
ever� beyond the scope of this paper	

� Multifractal Analysis of the MWM

So far we have noted two attractive properties of cascades�
their increment processes are spiky and have nonGaussian
marginals	 Surprisingly� these two properties are strongly
related� and much e�ort has been expended connecting them
rigorously under various assumptions ��
�
��	 The scaling
of moments� which is captured with the simple and ecient
partition function T �q�� acts as the bridge	 This function can
be viewed as a concise way of describing various features of
cascades and of processes in general	
After introducing the various multifractal spectra f���

�measures of spikiness� and relating them to T �q�� we show
that fBm has a degenerate multifractal structure	 It is� thus�
of limited use for modeling purposes in view of higher�order
moments	 Next� we relate the multifractal analysis �MFA� to
the wavelet transform of a signal and unravel the connection
between MFA and LRD	 We end this section by computing
the multifractal spectrum of the MWM explicitly	
A thorough review of the key features of multifractal anal�

ysis is given in Appendix A	

	Since the Haar transform is orthonormal� the l� norm of the wavelet
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Figure �� The Legendre transform T �� T � in the simple case of a
concave� di�erentiable function such as the spectrum of a �MWM
����� with p � ����� H � ���
�� Set � � T ��q�� then T ���� is
such that the tangent at �q� T �q�� passes through ����T ������ In
other words� �T ���� � q� � T �q� �see �
���� By symmetry� the
tangent at ��� T ����� has slope q and passes through ����T �q���
There are two special values of q� Trivially� T ��� � ��� hence the
maximum of T � is �� In addition� every positive increment process
has T ��� � �� hence T � touches the bisector�

��� Multifractal spectra

���� Spikiness

The strength of growth� also called the degree of H�older con�
tinuity� of an increasing process Y at time t can be charac�
terized by

��t� �� lim
kn��n�t

�nkn � ��
�

with
�nkn �� �

�

n
log�!

n
kn �Y �� ����

!n
kn �Y � ��

��Y ��kn � ����n�� Y �kn�
�n�

�� � ����

and kn � �� � � � � �
n � �	

The smaller the ��t�� the faster Y grows at t	 Considering
only t � ��� �� for simplicity� the frequency of occurrence of
a given strength � at coarse scales can be measured by the
coarse �grained
 multifractal spectrum�

fG��� �� lim
���

lim
n��

�

n
log�#

�
�nkn � ��� �� �� ��


� ����

In this setting� fG takes values between � and � and is often
shaped like a  �concave�	 The smaller fG��� is� the �fewer�
coecients equals the L� norm of the output signal�

points t act like ��t� � �	 If � denotes the value ��t� assumed
by �most� points t� then fG��� � � �c	f	 Appendix A	
�	

���� NonGaussianity and higher�order moments

Like any Gaussian process� fBm is completely determined by
its second�order statistics	 Things are quite the contrary for
cascades such as the MWM	 Being especially interested in
the scaling of moments� we de�ne the partition function

T �q� �� lim
n��

�

�n log� IE
���n��X
kn��

�
!n
kn �Y �

�q�� � ����

Note that T is always concave	 For a typical plot of fG and
T � see Figure �	

���� The multifractal formalism

The multifractal spectrum fG��� and T �q� are closely related�
as the following quick and dirty argument shows	 Omitting
in the sum of ���� all terms but the ones with �nkn � � and
using ����� we obtain

�n��X
kn��

�
!n
kn �Y �

�q �
X
�n��

�
��n�

�q
� �nfG��	��nq�

� ��n�q��fG��		� ����

We conclude that we should �expect� T �q� to be smaller than
q� � fG���� or equivalently fG��� � q� � T �q�	 Since this
holds for all � and q� we �nd

T �q� � fG
��q� �� inf

�
�q�� fG���� ����

and
fG��� � T ���� �� inf

q
�q�� T �q��� ����

This relation is established rigorously in Appendix A	�	
The transform T ���� appearing in ���� is called the Legen�

dre transform	 If T ���q� 	 �� then we �nd by simple calculus
that

T ���� � q�� T �q� and
�T ������ � q at � � T ��q�	

����

We may write this equivalently as the dual formula T �q� �
q� � T ����� T ��q� � � at q � �T ������	 This is illustrated
in Figure �	 Since T is typically di�erentiable and always
concave� ���� is sucient for our purposes	 More details on
the Legendre transform are given in Appendix A	�	
This relation via the Legendre transform is typical in the

theory of Large Deviations ����� which establishes relations
such as equality in ���� under the weakest possible assump�
tions	 In proper terminology� fG is the rate function of a
so�called Large Deviation Principle �LDP�� it measures how
frequently or how likely the observed �nkn deviates from the
�expected value� �	 We will elaborate on this� especially the
use of a theorem of G$artner�Ellis ���� towards an improve�
ment of ���� in Appendix A �c	f	 Theorem � and ��	
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��� Numerical estimation of T �q�

For the MWM� we have !n
k �D� � C�n	�k� � ��n��Un�k� and

the sum in ���� becomes

Sn�q� �
�n��X
kn��

�
!n
kn �D�

�q � �n��X
k��

j��n��Un�kjq� ����

In order to numerically estimate T �q�� we will �rst ignore
the expectation� which is fair for large n under an ergodicity
assumption	 �This procedure is also viable in more general
circumstances� as we show in Appendix A	�	�	� Then� we
seek a relation of the form ���n	T �q	 � Sn�q�� which we obtain
numerically from a linear plot of log� Sj�q� against j �j �
�� � � � � n�	

��� Multifractal analysis and wavelets

Wavelet decompositions contain considerable information on
the singularity behavior of a process Y 	 Indeed� adapting the
argument of ���� p	 ���� and correcting for the L� wavelet
normalization used in this paper� it is easily shown that
jY �s�� Y �t�j � O�js� tj�� implies that

�n��
����Z Y �s���n�kn�s� ds

���� � O
�
��n��t	

�
��
�

if kn is chosen as usual to satisfy kn�
�n � t � �kn � ����n	

This holds for any � � � and any compactly supported
wavelet	 Given knowledge on the decay of the maximum
of the wavelet coecients in the vicinity of t and sucient
wavelet regularity� this relation can be inverted	 For a precise
statement� see ���� and ��� Thm	 �	��	 This suggests that re�
placing the increments in the de�nition ��
� of ��t� by the left
hand side of ��
� would produce an alternative description of
the local behavior of Y 	 In nice cases� we expect the result�
ing scaling exponent to be equal to ��t�	 This could prove
particularly useful for more general classes of processes	
Let us rejoin the MWM	 By construction� we actually

know the wavelet coecients of the MWM signal C� which is
the distributional derivative of the increasing process D	 Fol�
lowing the above recipe we may de�ne� thus� a multifractal
scaling exponent based on wavelets for C�

e��C��t� �� lim
n��

e�nkn �C� as kn��n 	 t	 ����

e�nkn �C� � � �
n
log�

�
�n��jWn�knj

�
�

Since D�t� �
R t
� C�s� ds� we expect e��C��t� to be closely re�

lated to ��t�	 Adapting ���� to ���� results in

eT �C��q� �� limn��

�

�n log� IE
�
�n��X
k��

�nq��jWn�kjq
�
� ����

An analysis using ���� is of particular interest in the context
of Besov spaces� as is explained further in Appendix A	�	�	
All general results on the multifractal formalism hold also

with e� and eT � in particular ���� and Lemma �� Theorem ��
Lemma �� and Corollary � of the Appendix A	 We should
mention that ���� uses this fact in its analysis of cascades	

For the Haar wavelet coecients of an MWM� we have
Wn�k � An�k Un�k	 Provided that the An�k converge in dis�
tribution as n 	 �� they do not contribute to the scal�
ing law eT �C��q�	 For the sum in ����� we have then that

IE
h eSn�q�i � �nq IEhjA�n	jq

i
IE�Sn�q�� using ����	 Hence�eT �C��q� � �q � T �q�� ����

Let us assume in addition that there exists � � � such that
jAn�kj � � for all n� k	 Then� ���n� log�An�kn 	 � for all t�
and using again ��n��Un�k � !

n
k �D� we �nd

e��C��t� � � limn��

�

n
log�

�
�n��jUn�knj

�
� �� � ��t�� ����

This is exactly the relation we expect between the scaling
exponents of a process and its �distributional� derivative� un�
less the process contains more complex oscillatory behavior
such as chirps ����	

Di�erentiating ����� we �nd eT ��C��q� � �� � T ��q�� which
is by Legendre transform ���� in agreement with ����	 From
this it becomes clear that all results on the MFA of the MWM
process D�t� translate directly into a scaling analysis of its
distributional derivative C�t�	 In particular� see Corollary 
�
���� and ���� below� as well as Theorems � and ��� and ���
�	

��� Multifractal scaling of moments and LRD

The multifractal scaling exponent T ��� of a process Y is
closely related to LRD parameter H � since both measure the
power�law behavior of second�order statistics	
 More pre�
cisely� T ��� captures the scaling behavior of the second sam�
ple moments� while H captures the decay of the covariances	
For a process Y with zero�mean increments� this relation

can be made precise	 To this end we use the fact that H
can be measured through a scaling of the sample variance as
derived from ���� ���	 Therefore� let Z�k� � !n

k �Y � denote
the increment process of Y at some given ��nest� resolution
��n	 Following ����� we let then Z�m	�k� be the aggregated
increment process� i	e	 at aggregation level m � �i the pro�
cess mZ�m	�k� � !n�i

k �Y � is the increment of Y at resolution
m��n � �i�n	 According to ���� the variance of Z�m	 scales
as var�Z�m	��var�Z� � m�H�� � �i��H��	 for an LRD pro�

cess Y 	 On the other hand� var�Z�m	� � m�� IE
h
jmZ�m	j�

i
�

���i IE
h
j!n�i

k �Y �j�
i
� ���i ��i�n	���T ��		 according to ����	

Comparing the scaling terms �i� we �nd that �H � � �
�� � �� � T ����� or

H �
T ��� � �

�
����

for zero�mean processes	 For fBm� this is in agreement with
���� below	


While we may de�ne an MFA for an arbitrary process as in ����� the
interpretation in terms of H�older continuity is valid only for increasing
processes with positive increments� Moreover� here we neglect the fact
that T ��� is de�ned through a limit of arbitrary �ne resolutions while
LRD is an asymptotic law for large scales� In other words� we assume
that scaling is perfect on all relevant scales�
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Multifractal measures such as the MWM signal C�n	�k�
are not second�order stationary	 Hence� LRD cannot be de�
�ned through the decay of the auto�covariances	 However�
alternative fractal properties� such as the decay of aggregate
variances ���� or wavelet coecients ��
�  which are equiv�
alent to LRD in the presence of second�order stationarity  
can still be de�ned and calculated	
As a further diculty� processes obtained from cas�

cades have positive increments Z�k�� so that the above ar�
gument using the variances has to be corrected to read

���i ��i�n	���T ��		 � IE
h
jZ�m	j�

i
� var�Z�m	� � IE

h
Z�m	

i� �
var�Z��i��H��	�IE�Z��� noting that IE

h
Z�m	

i
is independent

of the scale m	 Since �H � � 	 � we may� thus� still ex�
pect the same relation ����� at least in the limit of very �ne
resolution �small m and i�	
The variance�time plot method above is known to be

an unreliable �but simple� estimator of LRD behavior ����
while the wavelet method of �
�� is more robust	 Since
we are dealing with increment processes� we need to ap�
ply ��
�� var�Wj�k� � ��j��H��		 Recalling that we can
obtain T ��� through ���� and ����� we �nd by stationarity

var�Wj�k� � �
�j IE

�
�jjWj�kj�

� � ��j ��j��� �T�C���		 � ��jT ��	�
and the same relation ���� follows again in the limit to �ne
resolution j 	�	
Finally� checking the value T ��� predicted by theory in

����� we again �nd agreement with ����	 The same is actually
true for much larger classes of cascade multifractals	

��
 The multifractal spectrum of fBm

We now show that fBm does not possess a rich multifractal
structure	 Stationarity of increments and self�similarity yield
immediately that

IE
�n��X
kn��

�
!n
kn �B�

�q � �nIE �jB���n�jq� � �n�nqHIE�jB���jq� �
����

and thus

fBm� T �q� �

�
qH � � for q � ��
�� for q � ��� ����

T ���� �

�
�� for � 	 H

� �H � � for � � H 	
����

This means that there are no values ��t� 	 H to be
observed	 This is somewhat in agreement with a result of
Adler ���� that states that the degree of H$older continuity�

of fBm is H everywhere in ��� �� with probability one	 The
formula also indicates that ��t� � H will be observed	 This
is due to the fact that the increments of fBm are zero�mean
Gaussian on all scales� hence there is a considerable probabil�
ity of �nding small increments� i	e	 large �nk 	 In other words�
�nkn converges very non�uniformly to ��t� � H 	

Since fBm is a not an increasing process� the notion of H�older regu�
larityHt we introduced in Appendix A�� has to replace ��t�� A wavelet�

based analysis using e� and eS usually re ects Adler�s result more closely�

In conclusion� the T �q� of fBm is linear� i	e	 a degenerate
concave function	 This captures the monofractal structure
of fBm in simple terms	 Real�world signals such as network
trac� however� exhibit truly multifractal behavior� i	e	 they
possess a strictly concave T �q� �see Figure ��	

��� The multifractal spectrum of MWM

We begin by stating a corollary to Theorem �	

Corollary � Consider an MWM as given in ���
 or ���
�
with multipliers Aj�k symmetrical and identically distributed
within scale and independent along any line of descendants
�c�f� ��	

� Assume furthermore that the A�j	 converge in
distribution as j 	 �� Then� we have with probability one
that

fG��� � T ���� ����

on the entire interval f� � T ���� � �g� i�e� on f� � T ��q� �
qT ��q� � T �q�g� which corresponds to the q�interval bounded
by the two values q and q where the tangent at T �q� passes
through the origin�

This result follows as a consequence of the work of
���� ��� ��� 
�� together with ����� under the additional as�
sumption that the A�n	 are all identically distributed	 With
Theorem �� we show in Appendix B how to generalize the
argument of ���� to our case	
Let the assumptions of the Corollary be in force for the

remainder of this section	 Then� the multipliers Mn
k gener�

ating a binomial cascade equivalent to the MWM �c	f	 �����
are independent along lines of descendants ����	 Also� they
are identically distributed within scale due to the symmetry
of A�n	�

Mn
kn

d
�M �n	 ��

� �A�n��	

�
� ��
�

These two facts allow the following calculation� which is
the basic step towards calculating T �q�	 We denote by

P�

the sum over all kn � �� � � � � �
n�� and use again the notation

of ����	 Then�

IE�Sn�q�� �
�X
IE
��
Mn

kn

�q� 
 
 
 IEh�M�
�

�qi
�

�X
IE
h�
M �n	

�qi 
 
 
 IEh�M�
�

�qi
� IE

h�
M�

�

�qi
�n

nY
i��

IE
h�
M �i	

�qi
� ����

Let us add now the fact that the A�n	 �respectively M
�n	�

converge in distribution to a random variable� say A �respec�
tively M � �� �A����	 Then� we �nd

MWM� T �q� � ��� log� IE�M q�

� q � �� log� IE��� �A�q�� ����

As an example� consider the �MWM de�ned in Propo�
sition � with symmetrical � multipliers A�n		 Since the
variance of the multipliers converges by �
��� so does the
only parameter p�n	 and� hence� the whole distribution	 The
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limiting random variable A has the standard symmetrical
� distribution� supported on ��� ��	 Its parameter is p �
���H�� � ������ ��H��� for ��� � H 	 � by �
��	 Using
the well�known formula for the moments of a � distribution
we �nd for q � �p

�MWM� T �q� � ��� log�
"�p� q�"��p�

"��p� q�"�p�
� ����

with T �q� � �� for q � �p	 For the point mass ����
distribution �

� the obvious formula results using �
���

�MWM� T �q� � q � �� log� ���� �r��
r
�
��� c�q � �� � c�q

�i
�

Having now two parameters available provides more �exibil�
ity	 This will be used in Section �	� to match not only the en�
ergy decay� i	e	 T ��� as is done with the �MWM� but also the
�rst negative moment� i	e	 T ����	 Fitting negative moments
results in better matching of small values	 These correspond
to large � ��
�� i	e	 to negative q and the decreasing part of
T � �c	f	 Figure ��	
More generally� in a mixture model the moments are con�

vex combinations of the moments of the mixing distributions	
Thus� T is readily available for such cases using ����	 The
additional parameters introduced in this way allow for even
greater �exibility	
In conclusion� the partition function T �q� displays a di�

verse array of statistical properties of a signal in a concise
way	 The parameters of the MWM� however� should not be
looked for among the T �q� but rather among the parameters
of the underlying distributions of the multipliers	

� Application to Network Tra	c

Let us now turn to a problem of considerable current prac�
tical interest  computer network trac modeling	 Data
trac models are an invaluable asset to the network ana�
lyst	 In network analysis� model parameters are used to cap�
ture and summarize important characteristics of data traf�
�c	 With simple models� the impact of various parameters
on network performance can be studied through analytical
means ��� �
����	 In cases where theoretical analysis is in�
tractable� models are routinely used to synthesize test data
traces for simulation purposes ����	 Here� computational e�
ciency of the synthesis becomes as important as the accuracy	
We begin with some historical remarks	 Although LRD

models have long been known to characterize a variety of
phenomena� only recently has LRD been discovered in data
network trac ���	 This has lead to new insights about traf�
�c and network performance ���� primarily that high levels
of LRD lead to poor network performance and that classical
models like Markov and Poisson processes are too optimistic
in their performance predictions	 As a consequence� incorpo�
rating LRD in trac models for network analysis has lead to
more realistic results� and self�similar models like fGn have
been suggested for modeling LRD trac	

Norros ���� surveys the theoretical bounds for the queu�
ing performance of self�similar trac	 Here� the total trac
arriving up to time t is modeled by

Z�t� � �t�
p
a�BH�t�� ����

where BH is fBm �with Hurst exponent H and var�BH���� �
��� and a and � are constants	 In other words� the incoming
trac Z�t�h��Z�t� is assumed to arrive with a mean rate
� superimposed on a colored Gaussian noise �fGn� process	
The parameter a controls the overall variance	
The successes of self�similar models such as ���� have

lain mainly in their ability to capture LRD while permitting
tractable theoretical analysis	 However� self�similar models
like fBm�fGn have three severe drawbacks� ��� Gaussian
marginals� meaning the process must take negative values�
��� computational ineciency for exact synthesis� �
� degen�
erate multifractal properties	 While the �rst two clearly limit
the use of self�similar models for synthesis� it is the object
of ongoing research to establish the importance of the third
for queuing performance	 The MWM exhibits power spectra�
marginals� and multifractal behavior consistent with actual
trac while providing an O�N� synthesis algorithm for N �
point output traces	
In this section� we synthesize network trac data by train�

ing the MWM on real data	 This data��tting exercise demon�
strates the accuracy of the model not only in statistical terms
�multifractal properties� but also through queuing experi�
ments	 Though we are not claiming to present a physical
model for network trac� the close �t of the multiplicative
process underlying the MWM to the real data provides valu�
able insight into the mechanisms of bu�ering and multiplex�
ing of network trac	
Interesting quantities for simulation include packet inter�

arrival times� packets�per�time� and bytes�per�time	 Packet
interarrival times can be converted directly into packets�per�
time by binning the packet arrivals into time bins of the re�
quired size� whereas bytes�per�time includes the additional
information of packet size	 Here� we train on a set of ��f �
like packet interarrival time data� since interarrival times�
being continuous�valued� are most natural for the MWM	
In addition� analysis of interarrival times avoids the prob�
lem of choosing an appropriate time unit as in packets�per�
time and bytes�per�time	 However� we could as well apply
the MWM to approximate discrete�valued packet�per�time
or bytes�per�time	 For these cases� we could quantize the
MWM�s continuous�valued output into discrete�valued data
or follow the approach of ����	

��� Synthesis via matching

����� Real data

We focus on the August ���� Bellcore Ethernet trace pAug of
��� interarrival times �Figure ��a��� as measured by Leland
et al	 ���	 Although slightly dated� this data set provides
a well�known benchmark useful for examining the fractality
and LRD of network trac	
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First� we analyze the properties of the trace	 Recognizing
its limitations as an LRD estimator� we use the variance�time
plot �Figure �� to obtain a qualitative characterization of the
correlations present in the data	 From the plot� we �nd the
trace exhibits LRD with H � ����	 Since the plot is some�
what �kinked�� the trace most likely does not exhibit a strict
second�order scaling	 As Figure � plainly shows� modeling
pAug as an fGn process with H � ���� and the same mean
and variance leads to nearly 
�% of the synthesized data be�
ing negative	 The culprit is the large standard deviation to
mean ratio of �	� of pAug	 The oft used but ad hoc proce�
dure of setting all negative points to zero would clearly result
in a process with very di�erent statistics to those required	
In general� fGn models are of limited utility for positive data
with small mean and large variance	
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Figure �� Variancetime plot of the Bellcore pAug data ��� and
one realization of the �MWM synthesis ���� Here m denotes the
level of aggregation and Z�m��n�� the aggregated process de�ned
through �����

Moving beyond second�order statistics� we measure the
multifractal properties of pAug	 As discussed in Section �	�
we estimate T �q� as the slope of a linear �t of the log�log plot
of the sample moments Sj�q� at resolution ��j against the
scale j ����	 In Figure ��a� the only noticeable deviation from
linearity is at the very �nest resolution of analysis  a fact
that is enhanced in Figure ��b�� where the increments of the
log�log plot are displayed	 With �� octaves �� decades� of ex�
cellent scaling� we can be con�dent in concluding that pAug

is multifractal	�� The only noticeable deviation from linear�
ity is at the very �nest resolution of analysis	 The linearity of
the log�log plots can be more closely veri�ed in Figure ��b��
which displays the increments of the log�log plot from Figure
��a�	
Extracting T �q� using ���� from Figure � and applying the

Legendre transform ����� we obtain the multifractal spec�
trum fG��� of Figure �	 As indicated by the multifractal
formalism �see Section �	�	
� Corollary 
� and Theorems �
and ��� this function gives the large deviations from the �most

��Since we characterize trac interarrival times� our result does not
con ict with that of ����� which concluded that the bytes�per�time and
packets�per�time of the August ���� Bellcore traces were not multifrac�
tal� Multifractal scaling of similar quality over 	 decades has been re�
ported for several TCP traces in �����
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Figure �� �a� Scaling of logmoments log� �Sj�q�� vs� scale j for
the ��� Bellcore interarrival times pAug with q ranging from ����
to ��� and j ranging from � to ��� with j � �� the �nest scale� �To
compare with Figure �� note log��m� � ��� j�� �b� Increments of
the loglog scaling shown in �a�� The closeness of the linear �ts in
�a�� as indicated by the stable behavior of the increments in �b��
indicates that the interarrival times are indeed multifractal�

frequent� singularity exponent and thus displays valuable in�
formation about the occurrence of rare events such as bursts
�small ��	 Figure � reveals a rich multifractal spectrum	 In
contrast� fBm has a trivial spectrum consisting only of one
point indicating that it has the same �burstiness� ��t� � H

everywhere ����	

����� Synthetic data

Having established the LRD and multifractal characteristics
of the pAug trace� we will next model these properties using
the �MWM	 To train the �MWM� we use the approach out�
lined in Section �	�	 We choose the number of wavelet scales
n � �� to synthesize data sets of ��� points	 This allows
us to collect multiple realizations of the wavelet coecients
and root scaling coecient� and thus form reliable mean and
variance estimates	 For the root scaling coecient� we use
the Gaussian assumption discussed in Section �	�	
With trained �MWM in hand� we synthesize �� length����
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Figure �� Multifractal spectra �
�� of the Bellcore pAug data�
�MWM synthesis� and a hybrid MWM employing beta distribu
tions at coarse scales and point masses at �ne scales� The spectra
were obtained through the Legendre transform of the scaling of the
moments �see Figures � and ���� The close match in the upper left
part� which corresponds to q values ��slopes of tangents to the
spectrum� between � and �� indicates that the �MWM matches
these low �qth� order moments very well� The divergence of the
spectra on the right indicates that the chance of observing large
� in the �MWM data is somewhat too high� This behavior is im
proved signi�cantly by adding point mass multipliers in the �ne
scales�

sub�traces and concatenate them to form a trace of approx�
imately length����� the size of the real data set	 We now
apply the same battery of tests to this trace as we applied to
the actual Bellcore pAug data	 Figure ��b� shows that the
synthesized data captures much of the gross structure of the
Bellcore data at di�erent aggregation levels� including the
one�sided marginal density	 In addition� the variance�time
plots of Figure � depict an excellent match of the correlation
structure	��

We next measure the multifractal properties of the syn�
thetic trace	 &From the linearity of the log�log plots in Figure
���a�� we see that the synthetic trace exhibits a multifractal
scaling� except for q strongly negative and j large	 In convert�
ing these plots into the multifractal spectrum of Figure �� we
see that spectrum of the synthesized data closely matches the
pAug spectrum for � near one	 The close match in the upper
left part� which corresponds to q values ��slopes of tangents
to the spectrum� between � and �� indicates that the �MWM
matches these low �qth� order moments very well	 The diver�
gence of the spectra on the right indicates that the chance of
observing large � in the �MWM data is somewhat too high	
Since large � correspond to fast decay� this means that the
�MWM trace has values that are too small	 In fact� the min�
imum value of the wavelet�synthesized trace is on the order
of ������ whereas the minimum of pAug is on the order of
����	 This is due to the fact that� unlike the coarser�scale �
multipliers Aj�k� the �ne�scale � multipliers have pdfs with
signi�cant mass near ��	 Clearly� from ���� we see that this

��We remind the reader that the variance�time plot must be inter�
preted with care due to the non�stationarity of the wavelet�synthesized
data�

results in small values for the synthesized process C�n	�k�	
This may be indicative of di�erent phenomena in the �ne
scales of the real data as compared to the coarse scales	
Using � distributions in the coarse scales and point mass

distributions in the �ne scales� we can largely correct this
problem� synthesizing data with a minimum value of ����

while preserving the other features of the �MWM �see Fig�
ure ��	 We choose the point mass parameters �see Section
�	
	�� to match both the wavelet energy decay and the scal�
ing of the negative �rst moment of the real data in ����	 We
do not claim that the point mass multipliers are realistic  
using point mass multipliers at all scales results in syntheses
that look somewhat arti�cial	 Here� we simply illustrate the
fact that we can choose the multiplier distributions to better
match higher�order or lower�order moments of the data	
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Figure ��� �a� Loglog moment scaling and �b� incremental scaling
for the �MWM synthesized data� �See Figure � for more descrip
tion�� The synthetic data exhibits a linear multifractal scaling�
with the exception of strongly negative q�s and large j�

��� Queuing behavior

As a �nal test of the accuracy of the match of the �MWM to
the pAug target data� we now compare their queuing behav�
iors	 The queuing behavior of trac is important because
of its in�uence on network management algorithms� such as
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Figure ��� Here we partition the pAug trace into �
 subtraces
of equal number of packets and compare their queuing behavior
with that of �
 synthesized traces of the same length� In �a��
observe that the real subtraces have a wide variation in tail queue
behavior� In �b�� observe that the synthesized traces display a
similar variation in tail queue behavior�

connection admission control� that strive to support certain
quality of service �QoS� demands ���� ���	
The presence of LRD in trac has been shown to signi��

cantly a�ect queuing performance ����	 For stationary trac
with only short�range dependence �SRD�� classical queuing
results for Markov models show that the tail of the distribu�
tion of the queue�length in a single server queue with deter�
ministic service satis�es

Pr�Q � x� � e��x� ����

where the positive constant � depends on the service rate at
the queue and the statistical properties of the arrivals pro�
cess	 Unlike ����� fBm�based models for LRD trac exhibit
Weibull tail distributions of the form

Pr�Q � x� � e��x
���H

� ����

where H is the Hurst exponent ����
��
�	 Clearly� we see from
���� and ���� that the tail queue probability of self�similar
trac decays at a much slower rate than that of SRD trac	
With the LRD of Ethernet trac being established beyond
doubt� it is important for trac models to incorporate LRD�
without which the prediction of queuing performance can
be overly optimistic	 However� as mentioned earlier� fGn�s
Gaussian marginals makes it unsuitable for the pAug data

set� it is meaningless to perform queuing experiments with
the data of Figure ��c�	
In the simulations that follow� we consider the perfor�

mance of an in�nite�length single server queue with a single
trace as input	 We assume a constant service rate of ���
packets�sec	 For simplicity we assume all packets to be of
equal size	
The ideal experiment comparing the queuing behavior of

real world and synthesized traces would be to compute the
average tail queue behavior of several realizations of the real
pAug process as well as several realizations of the �MWM	
Unfortunately� typically only one realization of the real trace
is available	 To circumvent this setback� we partition the real
pAug trace into �� sub�traces each of length ��� packets and
assume that each sub�trace is an independent realization of
the underlying real process	 We compare the queuing perfor�
mance of these pAug sub�traces against �� synthetic traces
obtained from the �MWM in Figure ��	 Note the similarly
widely varying performance of both the real and synthetic
traces	 This result indicates that we should expect such vari�
ations and should be cautious drawing conclusions from the
average tail queue behavior	
We next compare the queuing performance of the entire
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Figure ��� Comparison of the queuing behavior of pAug with ��
fullsize synthesized traces� Displayed are the tail probabilities of
bu�er occupancy vs� bu�er size� In �a� observe the variability of
the queue performance of the synthesized traces� In �b� observe
that the average queue performance of simulated traces and that
of the real trace match closely�
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pAug trace with that of �� traces of approximately the same
length ���� points� generated using the �MWM �see Figure
���	 The simulated traces in Figure ���a� exhibit a wide
variation in tail queue behavior	 The results of the previous
experiment indicate that this is to be expected	 We also
observe that the average tail queue behavior of the simulated
traces matches that of the real trace surprisingly well �see
Figure ���b��	 However� as the previous experiment suggests�
the real data cannot be expected to always exhibit the same
queuing behavior as the average of several simulated traces	
In summary� these queuing experiments demonstrate that

our �MWM synthesized trac traces not only match real
trac in terms of its various statistical properties but also in
its queuing behavior	

��� Physical interpretation

We have argued for the use of the MWM for synthesizing net�
work trac in terms of statistical properties �see Sections �	�
and �	��	 The quality of the matching challenges the current
understanding of networking and performance analysis by
suggesting that some of the mechanisms shaping the trac
�ow might carry an inherent multiplicative structure	 Our
motivation for providing a possible explanation for the pres�
ence of multiplicative mechanisms is twofold	 First� we hope
that multiplicative models will inspire research in network�
ing and trust that they will lead to a deeper understanding
of the forces shaping trac characteristics	 Promising steps
in this direction have already been made in ���� 

� 
��	 Sec�
ond� such an explanation will further support the use of the
MWM network trac synthesizer	
It is generally agreed that today�s network trac is cre�

ated by a large number of independent individual sources	 A
simple but powerful model assumes that these sources switch
between two states� the �ON� state in which they produce
trac at constant rate and the �OFF� state in which they
are silent	 Aggregating these trac loads yields the total
trac load observed at� say� a gateway	 With this model�
heavy�tailed ON periods lead to LRD similar to that ob�
served in actual trac	 Convincing modeling results have
made a strong case for this point�of�view ���� ���	 However�
ON�OFF models are accurate only in the limit of large time
scales �seconds and longer�� and they do not account for the
actual queuing and multiplexing occurring in the network	
A complete description of data network trac requires

understanding of its dynamic nature over not just large but
also small time scales �hundreds of milliseconds and shorter�	
The �ow of packets over �ne time scales is shaped mainly by
the protocols and end�to�end congestion control mechanisms
�e	g	� TCP� that regulate the complex interactions between
the di�erent connections on a network	 Indeed� it is not hard
to see that bu�ering and multiplexing can create bursts� for
instance� when packets arrive at a server at a moderate rate�
rest queued up� and then race o� at the service rate	 Since
the trac rate is strictly positive� this kind of short�term

volatility �spiky nonGaussian behavior� cannot come from
an additive process	
The MWM matches this small�scale behavior of trac	

Rather than modeling the trac rate as an additive super�
position of components� we model it as a multiplicative par�
titioning of the rate of tra�c �ow	 The coarse scaling coe�
cient U��� provides the mean trac rate �or equivalently its
inverse� the mean interarrival time� and the multiplications
by ��Aj�k at each scale �c	f	 ����� provide perturbations in
the arrival rates due to the e�ects of network phenomena at
di�erent time scales� such as speed�ups and delays due to
trac protocols� interference from competing trac� and the
like	
When trained on real network data� the behavior of the

multipliers Aj�k changes with scale� with extremely low vari�
ance at coarse scales and high variance at �ne scales	 Amaz�
ingly� this is consistent with both the small�scale behavior of
actual trac and the large�scale properties of the ON�OFF
model	 At �ne scales� as we have already seen in Sections �	�
and �	�� multiplicative schemes with large variances produce
bursts like those in real data �recall Figure ��	 At coarse
scales� the scaling coecients �which correspond to the ar�
rival times of large amounts of trac� involve only a handful
of low�variance multipliers Aj�k	 From ���� we can write� for
example� at the third�coarsest scale�

U��k
fd
�

U���

�

�
� �A��	

��
� �A��	

�
fd� U���

�

�
� �A��	 �A��	

�
����

Thus� for a �xed U��� at the coarsest scale� to a �rst�order
approximation� the MWM is additive at the coarse scales
provided the random variables A�i	 are small in amplitude	
Moreover� the A�i	 are approximately Gaussian for these
low�variance �high�p� symmetric � multipliers ����	 Hence�
coarse�resolution MWM outputs will exhibit an additive�
Gaussian�like behavior consistent with that of the previously
justi�ed ON�OFF models and notions of client behavior as
a superposition of sources	
Of course� this is not a rigorous physical development of

how and why this multiplicative procedure takes place in
reality	 However� our preliminary results are promising and
suggest where to look for multiplicative cascades� on small
time scales� most likely in the TCP �ow�control layer	


 Conclusions

The multiplicative wavelet model �MWM� combines the
power of multifractals with the eciency of the wavelet trans�
form in a �exible framework natural for characterizing and
synthesizing positive LRD data	 As our numerical experi�
ments have shown� the MWM is particularly suited to the
analysis and synthesis of network trac loads	 In addition�
the MWM could �nd application in areas as diverse as �nan�
cial time�series characterization� geophysics �using ��d and

�d wavelets and quadtrees and octtrees�� and texture mod�
eling	 Several extensions to the model hold promise�
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�	 A parametric characterization of the wavelet�domain en�
ergy decay �rather than the current empirical variance
measurements� would yield a more parsimonious and ro�
bust model	

�	 The choice of ��distributed wavelet multipliers Aj�k is
not essential	 As illustrated by our preliminary work
with point mass distributions� we can use distributions
with more parameters to match both wavelet energy de�
cay and the scaling coecient moments	


	 To model correlations in the wavelet�domain� we can
introduce dependencies between the wavelet multipliers
�for example� in their signs�	

�	 Instead of tackling the increments process directly� we
could use the MWM as a model for an underlying Pois�
son intensity process �analogous to the work of �����	
This could be useful for �tting network trac packets�
or bytes�per�time� which are discrete�valued LRD pro�
cesses	

�	 Insights from the multifractal theory can be leveraged
into more general �e	g	� stationary and non�dyadic� mul�
tiplicative constructions	

Clearly we have not exhausted the possibilities of multiplica�
tive multiscale modeling	

A Key concepts of Multifractal analysis

In this section we will make rigorous the points left vague in
Section �	

A�� Introduction

The erratic behavior of a continuous process Y �t� at a given
time t can be characterized to a �rst approximation by com�
parison with an algebraic function	 The degree of local H�older
regularity Ht is the best �largest� h such that there is a poly�
nomial Pt such that jY �s��Pt�s�j � Cjs�tjh for s suciently
close to t	 If Pt is a constant� i	e	 Pt�s� � Y �t�� as is the case
with cascades� then

Ht � lim inf
���

�

log�����
log� sup

js�tj	�
jY �s�� Y �t�j� ����

Fortunately� we can replace the supremum by Y �t� ���
Y �t��� for processes with positive increments	 Furthermore�
using the notation of ����� i	e	

t � �kn��n� �kn � ����n�� ����

we can then simplify by noting that Y ��kn � ���
�n� �

Y ��kn�����n� � Y �t����Y �t��� � Y
�
�kn�� � ����n��

��
Y
�
�kn�� � ����n��

�
provided n is chosen such that ��n�� �

� 	 ��n��	 In summary���

Ht � lim inf
n��

Hn
kn ��
�

��For general processes this does not hold� A multifractal analysis
�MFA� with this simpli�ed version will result in a di�erent description
of the singularity behavior of the process that can� nevertheless� provide
useful information ���� 
��� If a process has both positive and negative
increments� then the continuous�time supremum in the original version
of Ht �
�� cannot be estimated numerically� In this case� the wavelet
modulus maxima method provides arguably the most accurate informa�

Hn
kn �� � �

n
log� j�!n

kn�� �!
n
kn �!

n
kn����Y �j�

Traditional multifractal analysis �MFA� of multiplicative
cascades aims to describe the singularity structure of pro�
cesses through the simpler but more restrictive�� exponent
��t� from ��
�	
As mentioned earlier� for fBm we �nd Ht � H for all

t almost surely� this process has a degenerate multifractal
structure	 For the binomial measure� on the other hand�
Ht and ��t� will depend crucially  and discontinuously  
on t	 To convince yourself� recall the iterative process of
Section �	� and descend �rst down in the cascade to a point
t by following always the smaller of the two multipliers	 Then
descend by following always the larger one	 The decay rate
of the increment Db �
��� i	e	 ��t�� will di�er drastically in
the two cases	
For a measure constructed using a cascade� i	e	 Y � Db�

the range of ��t� will always be a positive interval containing
the value �	 Values ��t� smaller than � correspond to points
where Db is not di�erentiable	 If ��t� � �� on the other hand�
then D�

b�t� � �� i	e	 Db behaves at t like the function x
� at

x � �	 A typical range of ��t� for a real�world signal might
be ����� �� or ����� ����	
The MFA structure can be given either in geometrical or

statistical terms	 �
�� ���	 Here� we will be mainly interested
in the statistical description	
Before going into details let us note a simple fact about

the occurrence of ��t� for the deterministic binomial Db	 In
this special case� all multipliers Mn

kn
�see Section �	� and

Appendix B	�� are deterministic� i	e	 we assume that there
are two �xed numbers m� and m� that add to � and that
Mn

kn
� mk�n��

almost surely	 Referring to Figure � a step in
the iterative construction amounts now to splitting the area
of a region in the �xed proportions �the m��th part on the
left� the m��th part on the right�	

Db being deterministic� we consider now t to be random
in order to apply a limiting theorem from probability theory	
Recall that ���� uses the binary digits k�i for t �c	f	 �����	
Choosing these digits to be � or � with equal probability
amounts to picking the point t randomly with a uniform dis�
tribution	 The LLN then implies that for almost all t

�nkn � �
�

n

nX
i��

log�mk�
i
	 IEt�� log�mk�

i
�� ����

hence�
��t� � ��

�
�log��m�� � log��m��� � ����

Note that this limiting value is strictly larger than � unless
m� � m� � ���	 Consequently� the deterministic binomial

tion on local H�older regularity �
��� Adapted to detecting singularities
of oscillating functions� on the other hand� wavelets have a disadvantage
in the MFA of positive increment processes� they are not ecient for
detecting large values of � that correspond to more regular parts in the
process� This is why we restrict the discussion to positive increment
processes and the simpli�ed version of Ht�

��As we note later� replacing H�t� by ��t� does not change the out�
come for cascades�
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measure has zero derivative at almost all points t	 This brings
home a point made in Section �	�� the distribution Db�t� �
���� t�� � Pr�x � t� associated with the binomial measure
has no density� for if it had one it would have to equal zero	
Again in other words� we cannot write Db�t� as

R t
� D

�
b�s� ds�

since the latter is zero for all t	
Usually� one is happy with an �almost sure� result such

as ����	 Here� we would like to ask two additional questions�
��� can there be points t with �nkn converging to a number
di�erent from ����� and ��� if so� what can we say about
such points t' Indeed� we �nd immediately that at t � � we
have ���� � log�m�	 Actually� we will �nd the same limit at
all dyadic points t� since their dyadic expansion shows only
�nitely many ��s	 This certainly justi�es our quest	

A�� The Multifractal Spectra

A���� Hausdor� spectrum fH

Ideally� we would like to quantify the values and frequencies
of limiting ��t�	 In other words� we are interested in the
�sizes� of the sets

K� � ft � ��t� � �g� ����

This is the geometrical approach to MFA	 For fBm� replacing
��t� by the more appropriate Ht� K� is either the whole
line �if � � H� or empty	 Consequently� fBm is said to be
�monofractal�� since it has only one fractal scaling exponent	
The concatenation of K fbm�s Y i with Hurst exponent H i

in the interval �i�K� �i � ���K� would form a process with
KHi � �i�K� �i� ���K�	
For more general processes� the sets K� are highly inter�

woven and each of them may lie dense on the line	 Con�
sequently� the right notion of �size� is that of the fractal
Hausdor� dimension� which leads us to de�ning the Haus�
dor� multifractal spectrum�

fH��� �� dim�K��� ����

Unfortunately� Hausdor� dimensions are impossible to cal�
culate numerically in any real�world situation� and we have
to rely on the multifractal formalism �coming up next� �����
and ����� to estimate fH under certain assumptions	
For a de�nition of fractal dimensions� see ����
��
��	 Here�

we only mention that dim�E� is a positive real number� and
the larger it is the �larger� the set E	 We explain this notion
of �largeness� by comparing a plane and a line	 Though a
plane and a line have integer dimensions� our methods can be
generalized to broken� or fractal dimensions	 First� note that
a randomly selected probe line in space will most likely inter�
sect a given plane� but not a given line	 For random fractals
this generalizes to� a random probe fractal will intersect a
second given fractal only if their fractal dimensions add up
at least to the dimension of the embedding space	 Second� a
plane has more degrees of freedom than a line� i	e	 a square
can be segmented into � ��� pieces of size �� an interval only
into � ���	 A fractal will ideally partition into ��� pieces of
size � where � is its fractal dimension	

A���� Large deviation spectrum fG

In practice� measurement of the �burstiness� of a process
has to rely on numerically more accessible methods and no�
tions than fH	 Enter the statistical description of multifractal
structure	 To this end we consider a histogram of the �nkn �s
taken at some �nite level n	 �Recall ���� for a formula of
�nkn for the deterministic binomial measure	� The histogram
will show a non�trivial distribution of values that increasingly
concentrates around the expected value ���� due to the LLN�
values other than the expected one must occur less and less
often	
It is here that Large Deviation Principles �LDP� ���� ���

turn out to be invaluable	 As a generalization of the
Cherno��Cramer bound ���� Thm	 �	
�� which we present
below� LDPs suggest that probabilities of rare events decay
exponentially fast	 For a sequence of iid random variablesWn

with IE�W � 	 a and Pr�W � a� �� �� set Vn ��W�� � � ��Wn	
Then� we �nd for all q � � that

Pr ����n�Vn � a� � Pr
h
�qVn � �nqa

i
� IE��qVn ���nqa �

�
IE��qW ���qa

�n
� ����

Here we have used the Tschebischev inequality and in the
last step the iid property	 It follows that
�

n
log� Pr ����n�Vn � a� � inf

q
�

�
�

n
log� IE��

qVn �� qa

�
� inf

q
�

�
log� IE��

qW �� qa
�
� ����

Theorems on LDPs generalize such results to arbitrary se�
quences Vn and show when the bound is sharp in the limit
n	� ����	 For our purposes� we set

Vn �� log�!
n
kn �Y �� ����

yielding �nkn � Vn�n as desired	 In the special case of the
random binomial or MWM� Vn can indeed be written as a
sum as above with Wn � log�M

n
kn �c	f	 �
�� and �����	

It is important not to confuse the randomness relevant
for the LDP with the randomness in Y 	 Here� we explicitly
�x one realization �or path� of Y 	 Then� we consider the
location t� encoded by kn� as the only randomness relevant
for the LDP	 Since kn can take only �

n di�erent values that we
assume to be equally likely� probabilities in t are calculated by
simple counting	�� As we have just learned� we can expect an
exponential decay of �rare event probabilities� such as ����	
In other words there is reason to hope that the limiting �rate
function� fG we introduced in ���� and called coarse grained
multifractal spectrum will exist�

fG��� � lim
���
lim
n��

�

n
log�Nn��� �� ����

with

Nn��� �� �nPrt
h
�nkn � ��� �� �� ��

i
����

� #f�nkn � ��� �� �� ��g� ��
�

��To avoid confusion� we will write Prt and IEt to designate ran�
domness with respect to the position t and Pr� and IE� to designate
randomness with respect to the process Y �
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�The factor �n is added for convenience	� This rate function
fG is de�ned �provided the limit exists� for every path of Y
and is� hence� random� i	e	� a function of �	
The counting in ��
� relates to the notion of dimension� if

fG��� � �� then all or at least a considerable part of the �
n
kn
�s

are approximatively equal to �	 More precisely� Nn��� � �n	
Such is the case for fBm� with � � H almost surely �see
�
���	 Furthermore� if a certain constant fraction of �nkn �s
equal �� we have fG��� � � almost surely� as is the case for
the concatenation of fBm�s described above �see also �����	
Only if certain values of �nkn are considerably more spu�

rious than others will we observe fG��� 	 �	 To draw again
an analogy� let us assume for a moment that t is a vector in

�d space	 The maximum of fG in this case will be at the
expected ��value with fG � 
	 If the points t where �

n
kn
is

approximately equal to a given � build a surface �spurious in

�d space�� then fG��� � � 	 
	 If they �ll a curve only� then
fG��� � �	 So� there is hope that fG��� relates to dim�K��	
Indeed it can be shown that ���� 
��

fH��� � fG��� ����

for every path	

A���� Legendre transform

In Large Deviations� the transform that appears on the right
side of ���� plays an important r(ole	 Let g�a� be any function
and de�ne its Legendre transform g� by

g��q� �� inf
a�IR
�aq � g�a�� � ����

Let us assume �rst that g is concave at a�� by which we
mean that there is a linear function s�a� � aq�� r such that
g�a� � s�a� with equality in a� �c	f	 Figure ��	 This situation
is particularly well�suited for the Legendre transform and
allows us to compute g��q��	 Note that there might be several
q� meeting the requirements	 We claim that g��q�� � �r	
But this follows from the fact that aq�� g�a� � aq�� s�a� �
�r for all a with equality at a � a�	 Moreover� we actually
found that

g��q�� � a�q� � g�a��� ����

There is some general wisdom to this� given q� the Leg�
endre transform �nds the best linear function s of slope q
that lies above the function g	 The intercept of s with the
ordinate axis is �g��q�	
If we assume now that g is concave and in addition dif�

ferentiable at a�� then there can be only one linear func�
tion s � g with s�a�� � g�a��	 We �nd the value of g

� at
q� � g��a�� to be �c	f	 ������

g��g��a��� � a� g
��a��� g�a��� ����

For example� the function g�a� � �ja��j�� is concave in
all points� but it is not di�erentiable at a � �	 Its Legendre
transform is easily computed� for �� � q � � we may choose
a� � � and obtain g��q� � q � � by ����	 For other q we
�nd g��q� � �� by applying the de�nition	 Remarkably�
the Legendre transform of g� gives g back	 Indeed� infq�qa�

g��q�� � inf��	q	��q�a� �� � �� � g�a�	 More generally� we
will establish that g�� �� �g��� equals g� for every concave
function g	
To prove this� let us show �rst that g� is a concave function

provided g is	 Indeed� g��q� � aq � g�a� for all q and a by
the de�nition of g�	 Now let us �x a� say� at a�	 Then�
s�q� � a�q � g�a�� is a linear function that is larger than
g� and we have� in the notation of ����� s�q�� � g��q��	 We
conclude that g� is concave in q�	 Moreover� we see that
g�a�� � a�q�g��q� �still by the de�nition of g��� with equality
at q�	 But this means nothing more than g

���a�� � g�a��	
Finally� it is not dicult to see that there is an a� �which
may lie at ��� as in ���� for every q� with g��q�� �� ��	
Consequently� g� is concave everywhere	
We continue by noting that g� is always a concave func�

tion	 The reason is simple� there is a concave function g such
that its graph is the concave hull of the graph of g	 Since g
and g have the same Legendre transform� i	e	 g�� the claim
holds	 However� g being concave� the above argument shows
that applying the Legendre transform to g� will bring us back
to g� which is in general di�erent from g	 In summary�

Lemma � The Legendre transform g� of any function g is
concave� Moreover� g�� � g�

Since concave functions are necessarily continuous and al�
most everywhere di�erentiable� we might wonder what the
edges of g� correspond to	 As the example g�a� � �ja��j��
above shows� points of linearity of g �respectively g if g is not
concave�� correspond to points of non�di�erentiability of g�

and vice versa	 While this situation holds quite generally� it is
instructive to verify it assuming that g is C� and strictly con�
cave �g���a�� 	 �� at a�� Using the implicit function theorem�
we �nd indeed that g� is then di�erentiable at q� � g��a��
with �g����q�� � a�	

A���� Legendre spectrum fL

The spectrum fG� though numerically accessible� is hard to
estimate directly on real�world data� in particular because
of the double limit in ����	 Here� the Legendre transform
in combination with ���� proves useful	 Due to the simple
distribution of t as used in the LDP� the moment generating

function IE
h
�qVn

i
reduces to a sample moment	 Thus� let us

set
��q� �� � lim

n��

�

n
log� Sn�q�� ����

where Sn�q� � �
nIEt

h
�qVn

i
� i	e	

Sn�q� ��
�n��X
kn��

�
!n
kn �Y �

�q
� ����

Depending on the context� ��q� is called the partition func�
tion or the free energy ���� ��� ���	 Again� we have added a
factor �n for convenience	
A closer look at ���� reveals that it actually shows that

��q� � fG
�	 As a matter of fact� it is proven in �
�� ��� that
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Lemma � For every path of Y

��q� � fG
���� �� inf

�
�q�� fG����� ����

As an immediate consequence� the function ��q� is concave
and thus continuous and almost everywhere di�erentiable	
It is instructive to see how the quick and dirty argu�

ment ���� can be strengthened to yield a lower bound on
��q�	 Again� our reasoning can be turned into an actual
proof �
��	 This time� we will collect the kn with �nkn ap�
proximately equal to some given value� say l�� for varying
l	 Assuming that the range of ��t� is bounded� we can set
m �� bsup���t����c	 Using ���� and observing that q may be
positive or negative� we obtain

Sn�q� �
mX
l��

X
j�n
kn
�l�j	���

�
!n
kn �Y �

�q
�

mX
l��

X
l�	�n

kn
	�l��	�

��n�l�q�jq���j	

�
mX
l��

�n�fG�l�	��	��n�l�q�jq���j	

� �n���jq���j	
mX
l��

��n�q�l�	�fG�l�		

� �m� �� �n���jq���j	 ��n inf��q��fG��		� ����

This shows that ��q� � fG
��q�� � � jq���j� and since � � �

and � � � can be made arbitrarily small the argument is
complete	��

The partition function ��q� is clearly easier to estimate
than fG� and it depends in a more regular manner on the
data since it involves averages	 Consequently� we introduce
the Legendre multifractal spectrum�

fL��� �� ����� � inf
q�IR
�q�� ��q�� � ����

Recall ���� for the computation of ��	 Unfortunately� fL
may contain less information than fG since the Legendre
back�transform yields only

fG��� � fG
����� � fL���� ��
�

where fG
�� is the concave hull of fG	 Strictly speaking� we

have to establish that the limit fG actually exists before mak�
ing such a statement	 A simple application of the LDP The�
orem of G$artner�Ellis ���� makes this rigorous under some�
what more restrictive assumptions �see the following theorem
which is proven in �
�� ����	 Alternatively� we could replace
the limn�� in the de�nitions of � and fG by the mathemat�
ically more technical lim supn�� as it is done in �
�� ���	

Theorem  Assume that ��q� exists and is di�erentiable for
all real q� Then� the double limit fG��� exists for all �� and�
moreover

fG��� � fL���� ����
��The argument is not rigorous� since � and � are entangled� i�e� �

appears in j�nkn � l�j � ��� twice� once as the approximate location of
� and once as the error made in this approximation�

For fBm we obtain the degenerate case of a concave par�
tition function� ��q� � qH � � as we will see in an in�
stant ����	 It is consistent with fH taking only one value
fH�H� � �	 For the concatenation of fBm�s as above we
�nd ��q� � mink�qHk � ��� which is again consistent with
fH�Hk� � � ����	 Truly concave behavior of ��q�� on the
other hand� is found with real data trac	 As a consequence�
there is an entire range of � values present� not just a few	
In ���� we display estimations of ��q� for fBm obtained by nu�
merical simulations	 Due to errors� the Legendre transforms
cannot perfectly match the predicted spectrum consisting of
only the points �H� �� and ���H� ��	 The accuracy achieved
is nevertheless convincing	

A���� Deterministic envelopes of spectra

Often� we would like to use an analytical approach in order
to gain intuition into or an estimate of what fG can be ex�
pected to look like on a typical path of Y 	 To this end� we
consider now t as well as Y to be random simultaneously as
we apply the LDP	 Fubini leads to the �deterministic parti�
tion function� �c	f	 �����

T �q� �� �� � lim
n��

�

�n log� IE��t��
qVn � ����

� lim
n��

�

�n log� IE� �Sn�q��� ����

It is not hard to show that

Lemma � 	 ����
 For any random process we have� with
probability one�

��q� �� � T �q� for all q with T �q� 	�� ����

This is actually enough to determine ��q� for fBm	 In�
deed� since � is a concave function with ���� � �� � T ����
Lemma � implies that with probability one

fBm� ��q� � qH � � for all q � ��	 ����

Proof� Let us consider �rst any q with �nite T �q�	 Given
� � � choose N such that IE� �Sn�q�� � ��n�T �q	��	 for all
n � N 	 Then� since lim sup an �P

n
N an for positive an�

IE�

	
lim sup
n��

�n�T �q	���	Sn�q�




� IE�

��X
n
N

�n�T �q	���	Sn�q�

��
�

X
n
N

�n�T �q	���	IE��Sn�q��

� ����� ����� ����

by the de�nition of T 	 This allows us to conclude that almost
surely lim supn�� �

n�T �q	���	Sn�q� �� 	 �	 Hence� ��q� �
T �q�� ��	 This is trivial if T �q� � ��	 It is clear that this
estimate holds with probability one simultaneously for all
� � ��m �m � IIN� and some countable� dense set of q values
with T �q� 	 �	 The fact that ��q� is always continuous
completes the argument	 �
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Corollary � With probability one� for all �

fH��� � fG��� � fL��� � T ����� �����

Equality holds for cascades at certain values of � as the
following version of Theorem �� states�

Theorem � �Multifractal formalism for the MWM


Consider the MWM as given in ���
 or ���
� with multipli�
ers Aj�k identically distributed within scale and independent
along lines of descendants �c�f� ��	

� Assume furthermore

that the A�j	 �or equivalently the M
�j	
i � i � �� �
 converge in

distribution as j 	 �� Then� with probability one we have
that

fH��� � fG��� � fL��� � T ���� �����

for any countable set of ��s with T ���� � �� Moreover� since
fL and T � are continuous� they must be equal on the entire
interval f� � T ���� � �g�

Remark� It can be shown that all spectra remain unchanged
if �nkn is replaced by H

n
kn
�
��	

A��� Multifractals and Besov spaces

Besov spaces are also useful for analyzing the regularity of
functions� especially since an elegant description of these reg�
ularity spaces in terms of wavelet coecients has become
available	 In ���� it is shown that the norm of the Besov
space Bs

v�L
u� of a process with wavelet coecients Wj�k is

equivalent to

jU���j �
��X

j

�X
k

�jsu��j
����j��Wj�k

���u�v�u
�A��v

� �����

Roughly speaking� this norm measures the smoothness of or�
der s in Lu� where v is an additional parameter for making
�ner distinctions in smoothness	
Multifractal analysis �using wavelet coecients� can be

viewed as determining in which Besov spaces the analyzed
process lies	 Using a convenient wavelet� de�ne e��q� as in
��q� but with eSn�q� �see ����� replacing Sn�q�	 Then� we
�nd easily that the Bs

v�L
u� norm of a path of the process is

�nite if su 	 e��u� � � and in�nite if su � e��u� � �	
For ����� to hold� s must be smaller than the regularity

r of the wavelet� i	e	 we need r vanishing moments as well
as r continuous derivatives	 Given this� Besov norms do not
depend on the choice of the wavelet basis	 Since the multi�
fractal analysis using wavelets determines the Besov spaces
that contain the signal� we conclude that e��u� will not depend
on the choice of the wavelet� provided the above regularity
conditions are met	
For an MWM signal C�t� with identically distributed

multipliers� we can say more	 It can be shown �
�� that
the wavelet coecients Wn�kn of  for any ��� ���supported

mother wavelet are distributed as eAn�kn �
n��Mn

kn 
 
 
M�
k�
witheAn�kn independent of M

i
ki
and distributed as W���	 So� it

follows that ���� holds also in this setting with T given by

���� �see ���� for a similar result on deterministic cascades�	
Choosing a compactly supported wavelet with enough reg�
ularity we �nd� using Lemma �� that an MWM signal C�t�
with identically distributed multipliers is in Bs

v�L
u� for all

s 	 �T �u�� u� ���u almost surely	

A�� Interpretation of multifractal spectra

We collect here as a summary a few basic properties of multi�
fractal spectra that follow directly from the above de�nitions
and theorems	 Here� Y is an arbitrary increasing process	

��t� � �� Y di�erentiable at t with derivative �	 In the case
of a cascade� the plot Figure � is a graph of the approx�
imative derivative of D� i	e	 C�n	�k����n � ��n��

n
k
��	 �

��n����	 	 �� at resolution ��n near t	
��t� 	 �� These are points where Y is singular and has

�instant growth�� The plot Figure � will show height
C�n	�k����n � ��n����	 	� at resolution ��n near t	

fH��� � �� This means that at almost all points ��t� � �	
Recall that � � � for increasing processes such as the
binomial distribution function D	

fG��� � �� This says that for a signi�cant number of
k � �� � � � � �n � � we see increments of the size !n

k �Y � �
��n�

n
k � ��n�	

fG�a� 	 fG�b�� The chance to encounter an interval
�k��n� �k � ����n� with �nk � a is signi�cantly smaller
than �nding �nk � b	 These chances are �n�fG�a	��	 and
�n�fG�b	��	� respectively	 Both are very small regardless�
unless b � �	

�shape of fG� If this is the case� then the multifractal
formalism holds� i	e	 fG � ��	 This is true for the
MWM and binomial measures	 It may fail� however� e	g	
for superpositions of MWM�s with di�erent spectra ����	

B Proof of the Multifractal Formalism

for MWM

Here� we outline the proof of the multifractal formalism �The�
orem �� for the MWM model	 We will consider a slightly
more general setting� i	e	 we assume only that there are ran�

dom variables M
�n	
� and M

�n	
� such that M

�n	
� �M

�n	
� � � al�

most surely� and thatMn
kn
is identically distributed toM

�n	
k�n��

for all n and kn	 This corresponds to choosing A�n	 identi�

cally distributed as M
�n	
� �M

�n	
� 	 With this� we leave the

original setting where A�n	 must be symmetric	 We do so
in order to �rst study the deterministic case and acquaint
ourselves with the methods	 In the deterministic case� the
requirement of symmetry would force all A�n	 to be zero	
A closer look at ���� yields immediately�

Lemma �� Consider an MWM as given in ���
 or ���
�
with multipliers Aj�k identically distributed within scale and
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independent along lines of descendants �c�f� ��	
 and ���

�
but not necessarily symmetric� Then�

T �q� � � lim
n��

�

n

nX
i��

log� IE�
h
�M

�i	
� �

q � �M
�i	
� �

q
i

���
�

provided the limit exists� We set T �q� � �� if

IE�
h
�M

�i	
� �

q � �M
�i	
� �

q
i
�� for large i�

We aim to establish the following�

Theorem �� Let the assumptions of Lemma 	 be in force�
In addition� assume that the multipliers M �n	 converge in a
very weak sense� we require the limit �	�
 to exist for all q�
Then� for any � with T ���� � �

dim�K�� � fG��� � ����� � T ���� �����

almost surely� For any other �� the set K� is empty and
fG��� � �� almost surely�

With ������ we only need to show that T ���� � dim�K��	
We will start by giving the basic argument for a deterministic
binomial cascade and show �rst how to generalize this result
to a cascade with multipliers whose distributions vary with
scale� but converge as j 	 � 	 Then� we will outline the
method of Falconer ���� that generalizes the basic argument
to the random case and explain how to adapt it to the case
of variable multipliers	 As will be apparent� we only need
convergence of the multipliers in a mean sense� as in ���
�	
However� our generalization applies to arbitrary �statistically
self�similar� measures as introduced in ����� provided we have
convergence in distribution	

B�� Deterministic cascade

In this section� we will assume that the binomial measure 
�recall Section �	�� was constructed via a deterministic cas�
cade� i	e	 there are two positive numbers m� and m� with
m� � m� � � and M�

� � �� M
n
kn
� mk�n��

for all n almost
surely	
Consider a more careful look into the Large Deviation

result for this case	 The LLN� as we have seen in ����� tells
us that ��t� � � �� ������ log��m�m�� for Lebesgue�almost
all t	 In other words� K� is a set of positive length	 Therefore�

dim�K�� � �� �����

This implies with ����� that the peaks of the histograms
���� will be close to �	 To obtain information about other
dim�K�� and other parts of the histograms� we need to have
a way of choosing intervals �or points t� where the �unusual�
happens� i	e	 where �nkn is �far� from � �c	f	 ��
� and �����	
This we will achieve through a �change of probability��

meaning that the points t are chosen randomly according to
a law q that insures the convergence of �

n
kn
towards some

value aq	 This distribution q is de�ned in the same way as
 but with probabilities m� �� mq

��
T and m� �� mq

��
T 	 Note

thatm��m� � � due to ���
�� i	e	� T �q� � � log� �mq
� �mq

��	

The key observation is that q�Inkn� � mk�n��
mk�n��


 
 
mk��
is the q�probability that a q�random point t lies in the
interval Inkn � �kn�

�n� �kn � ���
�n�	 �Recall that kn�

�n �Pn��
i�� k

�
i�
���i from ����	� In other words� for any i the q�

probability to observe the dyadic digit k�i � j ismj 	 Applying
now the LLN to q yields

�nkn��
�

n
log� �I

n
kn� � � �

n
log�

�
mk�n��

mk�n��

 
 
mk��

�
	 IEq �� log��mk��

�� � �
�X
i��

mi log�mi � T ��q�� �����

In other words� for the points picked randomly with dis�
tribution q� the �nkn converge �almost surely� to aq �� T ��q�	
Thus these points all lie in

Kaq �� ft � ��t� �� limn �nkn � aqg� �����

To determine the dimension of K� let us note that for the
same points t in K� we have

� �
n
log� q�I

n
kn� � � �

n
log�

�
mk�n��


mk�n��

 
 
mk��

�
	 qaq � T �q� � T ��aq�� �����

using mi �� mq
i�

T 	 This result is helpful in two ways	 First�
it gives an intuitive proof of the theorem� or at least one for
fG��� � T ����	 Indeed� the following very rough estimation
�which can be made precise along the lines of ���� p	 �
���
yields the number of intervals that have ��Inkn� � aq 	 These
intervals are the ones contributing the bulk probability to q 	
Using ������

� �
X

��I
�n�
k

	�aq

q
�
I
�n	
k

�

� #
n
k � �

�
I
�n	
k

�
� aq

o
��nT

��aq	� �����

Thus� the number of such intervals is approximately �nT
��aq	�

in other words fG��� � T ����	
Second� ����� allows us the estimate dim�K�� � T ����

using �
�� Prop	 �	��	 Intuitively� we can think of q as gen�
eralizing d�dimensional volume� since it scales in the right
way� if a subset E of K� is shrunk by a factor r then its q�
measure multiplies by rT

�
	 If T � was an integer d this would

be exactly the de�nition of d�dimensional volume	 Now a
planar object in space has in�nite ��d volume �length�� zero

�d volume� but �nite� positive ��d volume �area�� its di�
mension is �� after all	 Generalizing� we say that K� has
at least dimension T ���� since q�K�� � � is positive� i	e	
dim�K�� � T ����	 A complete argument is given in ��
� ���	

B�� Deterministic cascade with variable multi�
pliers

Let us now generalize  slightly by allowing the almost sure

multipliers mi to depend on scale� M
�n	
i � m

�n	
i for all n al�

most surely� where m
�n	
� �m

�n	
� � �	 Let us assume� however�
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that the m
�n	
i converge� say to mi	 Then� using ���
�

T �q� � lim
n��

��
n

nX
i��

log�

�
�m

�i	
� �

q � �m
�i	
� �

q
�

� � log� ��m��
q � �m��

q� � �����

and we obtain the same formula as in the previous section	
Applying now the Strong LLN to the same auxiliary mea�

sures q as before we �ndPn
i�� log�m

�i	
k�
i��

� IEq
Pn

i�� log�m
�i	
k�
i��

n
	 � �����

for q almost all points	 But

IEq
Pn

i�� log�m
�i	
k�
i��

n

�

Pn
i��

�
m� log�m

�i	
� �m� log�m

�i	
�

�
n

	 m� log�m� �m� log�m�� �����

whence we obtain �nkn 	 aq q�almost surely� exactly as be�
fore	 In summary� we have again T ���� � dim�K��	

B�� Random cascades

Let us turn �nally to the case of random multipliers	 For a
start� we assume the same distribution on all scales� i	e	 all

M
�n	
i �n � IIN� are distributed as someMi� where M��M� �
� almost surely	
Such cascades have been termed �conservative� by Man�

delbrot ��
� due to the conservation of mass in every step	
Subsequent mathematical studies on cascades considered the
case of independent Mi with IE�M� �M�� � � ����	 These
results have been generalized to conservative cascades ����
and ����� and to more general invariant measures �������	
Here� we present the argument of Falconer ����	 Essen�

tially� there are two diculties to deal with	 First� the aux�
iliary measures q are now random� and we have to ensure
their existence	 Second� as the multipliers for each realization
will have di�erent values from scale to scale �though drawn
randomly with equal distribution�� not even the strong LLN
helps here and we have to prove q�K�� � � directly	
To guarantee the convergence of the construction of q �

we use a martingale argument	 Let

M
n
kn �� �M

n
kn�

q��n� ���
�

Since the Mn
kn
are distributed as M

�n	
k�n��

we have M
n
kn

d
�

�M
�n	
k�n��
�q��n� which we abbreviate byM

�n	
k�n��
	 Thereby� �n�q�

is chosen such that IE
h
M

�n	
� �M

�n	
�

i
� �	 We de�ne nq as

nq �I
n
kn� ��M

n
kn M

n��
kn��


 
 
M�
k� � �����

Now keeping kn �xed� we write Inkn as a union of smaller

dyadic intervals Im��
km��
� where m � n and where km�� runs

over �m���nkn� � � � � �
m���n�kn � ��� �� we obtain

IE�
h
m��
q �Inkn�jmq

i

�
mX
i�n

X
k�
i
����

IE�
h
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q �Im��
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�jmq

i
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mX
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X
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i
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IE�
h
M
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M
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km 
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k� jmq
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mX
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X
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i
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IE�
h
M
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i
M
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km 
 
 
M
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k�

�
m��X
i�n

X
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i
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IE�
h
M
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i
M
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�
m��X
i�n

X
k�
i
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M
m
km 
 
 
M

�
k�

� mq �I
n
kn�� �����

This shows that mq �I
n
kn�� m � IIN� forms a martingale and�

thus converges	 The limit is denoted by q�Inkn� and de�nes
a true measure as we let n and kn vary	
In our situation� all �n�q� are equal to T �q� since the dis�

tributions of the multipliers do not depend on scale	 How�
ever� as presented here� it becomes clear that the martingale
construction holds also for variable multipliers	 Furthermore�
it is indeed easy to see that under the assumption of Theo�
rem ��� the �n converge to T 	 This knowledge is enough to
generalize the proof of ���� to our case	
Falconer�s proof applies to general random measures that

are statistically self�similar ����� i	e	 where the multipliers of
�mass� as well as �geometry� are random	 It is notable that
the generalization indicated above works also in this case� i	e	
when the distributions are allowed to depend on scale	 How�
ever� a slightly stronger assumption has to be imposed� we
require that these multipliers converge in distribution	 In the
case of a binomial cascade� the geometry is deterministic by
de�nition	 This is why the weaker condition ���
� is enough
here	
Finally� for simplicity we have not bothered with the fact

that ���� assumes that the multipliers are bounded away from
zero	 In order to make the proof complete for arbitrary
MWM processes� where the multipliers may be arbitrarily
small� the more involved approach of ���� needs to be taken	
This is� however� certainly beyond the scope of this paper	
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