Numerical Estimates of Generalized Dimensions D(¢) For Negative ¢
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Usual box-counting algorithms are unefficient for comput-
ing generalized fractal dimensions D(g) in the range of ¢ < 0.
In this Letter we review the properties of a new algorithm [R.
H. Riedi, J. Math. Anal. Appl. 189, 462 (1995)] specifically
devised to deal with large negative ¢q. We discuss the numer-
ical implementation of this algorithm, providing evidence for
its better performance. In particular, we throw some light on
the structure of the Hénon attractor.

PACS number(s): 05.45.+b, 47.53.4n, 47.10.4+g

A great deal of effort has been devoted in the last
years to the study of the fractal patterns [1] exhibited
by some physical systems such as diffusion-limited ag-
gregates [2], percolation clusters [3], and chaotic attrac-
tors of nonlinear dynamical systems [4]. Tt has become
clear, however, that many natural fractal objects are
actually multifractals [5,6], that is, they are composed
of an infinite set of interwoven subfractals, character-
ized by Holder exponents « and a multifractal spectrum
fl) (see [6,7] and references therein). The usual fixed-
size box-counting multifractal formalism for a general
measure f on IR considers the so-called partition sum
Ze(q) = ZH(B);&O(F‘(B))(] where th§ sum runs over all
boxes B of size ¢ taken from an e-grid G, i.e.

d
B =[] lee, (0 + el
k=1

lx being integral numbers. The generalized dimensions

D(q) [8-10] are then defined by

D(q) _ 1 lim loglo Za(Q). (1)

~g—1:=0 logj¢

The function D(q) is non increasing as a consequence of
the convexity of (-)? and of the boundedness of y, that
is, Y5 u(B) = const = . The f(a) spectrum is given
by the Legendre transformation of (¢ — 1)D(q) [6,7,10].

These definitions, though temptingly simple and rig-
orous, cause problems even in their pure mathematical
application. To be more precise, the limit (1), if it ex-
ists, can only be oo for ¢ < 0 [7,11]. This is due to

boxes B with unnaturally small measure overwhelming
the function Z. In certain cases the variable ¢ used in
the eq. (1) can be restricted to a sequence &, in order
to give meaningful results [7,11]. A limit obtained in
this way, however, depends strongly on the choice of ¢,
and requires, thus, a priori knowledge of the multiplica-
tive structure one wants to analyze. Serious problems
arise also in any attempt to translate this notion into a
numerical algorithm, which we will call Standard Algo-
rithm (SA) in the following, and which computes D(q) as
the slope of a least-squares fitting of log;,(Z:(¢))/(¢ —1)
against logyy(¢). First, one has to choose a sequence ¢,
with the problems just mentioned. In addition, a scal-
ing behavior will only be observed in a restricted scaling
region of € since the set of data is finite. SA is slowly
convergent and it works well only for ¢ > 1 and only for
measures in IR? with d < 2, being especially problem-
atic the region ¢ < 0 [12,13]. Some attempts have been
made in order to design efficient fixed-size box-counting
algorithms [14-16], but all of them fail when dealing with
q <0.

One of us (RR) proposed recently [7,11] a new box-
counting approach, the so-called Enlarged Boxz Algorithm
(EBA), devised to overcome the drawbacks for negative
q. The basic idea i1s very simple: As we do not assume
a priort knowledge on the geometrical structure of the
distribution g we cannot prevent that some boxes B will
meet p only in a very small part, say a corner of B.
Such a box B is, hence, a very poor approximation of a
ball centered in a point on the distribution. Multifractal
analysis is bound, on the other hand, to characterize pu
by 1ts local scaling behavior, meaning that we expect the
measure of a ball centered on x being roughly equal to
a power of its diameter ¢, that is u(U;(z)) ~ ¢*. The
Legendre path is legitimate only if the sets B appearing
in 7 are good approximations of balls U, (z) centered in
a point & on p, since it relies essentially on the argument

Z(@)=)_ D, (uB)
o p(B)~ex
~ Z(l/e)f(“)eq“ ~ gminfga—fla)}
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FIG. 1. Generalized dimensions from SA and EBA for the
deterministic measure on a Sierpinsky Gasket. Errorbars are
about the size of the points, unless in SA, for ¢ < 0. The solid
line corresponds to the analytical result eq. (6).

(see [6,7,11,17]). For large positive ¢, mismatching boxes
as described above can be neglected since their contri-
bution to Z is almost null. To the contrary for negative
q.

From the numerical point of view the best way to cure
this problem is to take the measure of extended bores B*,
constructed by expanding a given box B by a factor 3,
and defined by

d
B* =] — Ve, (e + 1+ 1)e[
k=1

and form a new partition sum Z* [7]. The new measure-
ment of the sets B € G., p*(B) = pu(B*), is actually not
a measure but a capacity (since it is monotonous but not
additive). In addition, p* is clearly not normalized. Tt
18, however, bounded on each G, since B* is the union of
3% boxes from G-, hence Yoa. (B) < 3%, The extended
partition sum Z* is defined by

Y w(B). (2)

u(B)#0

ZX(q) =

The key point in this definition is that the condition of
the sum is given by u(B) # 0 and not by pu*(B) # 0
[7]. This condition guarantees that the cubes we con-
sider are indeed good representatives of balls centered in
points of the distribution. In particular, Z} is essentially
different from Z3.. Consequently, we define the extended
generalized dimensions as

1 1 z*
D* (q) — — lim 0810 4, (Q) (3)
q—1e=0 logye

From a theoretical point of view, D*(¢) performs much
better than D(q): Tt can be proven [7] that the limit
(3) is the same if the continuous ¢ is restricted to a se-
quence £, with e,41 > ve, for some v > 0. In addition,
D*(g¢) is invariant under bilipschitz coordinate transfor-
mations, it coincides with D(g) (eq. (1)) for ¢ > 0 and
produces the expected, meaningful results for self-similar
measures. From a numerical point of view, the implemen-
tation of EBA is a more efficient algorithm than SA, as
we are about to show.

We applied SA and EBA to distributions given by a
sample of N points from the trajectory of some dynam-
ical system. Given an e-grid of boxes of side ¢, the oc-
cupation number n;(¢) of the i-th box is defined as the
number of sample points it contains. The measure p;
of box B; is the fraction of time which a generic trajec-
tory on the attractor spends in the i-th box B; [9], and
is roughly equal to n;()/N. The implementation of SA
thus computes D(g) as the slope of a linear fit of

logig Z:(¢) = logyp (Z (”2(5))q) (4)

K3

against log,,¢. Note that we have dropped the normal-
ization factor N = >, n;(¢) since it is independent of
£.

To implement EBA, we replace the occupation num-
bers n;(¢) by the extended occupation numbers n}(e)

which are defined by

j:B;CB:

that is, the number of sample points contained in the
box B; and its neighboring boxes. The implementation
of EBA, thus, obtains D*(q) as the slope of a linear fit of

logyo 22 (q) = logy (Z (”:(@)q) (5)

K3

against log;,e. As with SA we do not include a normal-
ization with the advantage of good numerical behavior
for large |g|, the object of our main interest. This proce-
dure might, however, affect the monotony of D*(q) since
Z¥(1) is not a constant in e.

In order to check the accuracy of our method, we have
applied both SA and EBA to a self-similar deterministic
multifractal measure on IR? constructed with the ‘Chaos
Game’ [18], and generated by iteratively applying the fol-
lowing set of transformations wy, at random, with proba-
bilities py:

(z,y) = (2/2,(y+1)/2) p1 = 3/16,

wilx,y
wi(z,y) = ((x+1)/2,(y+1)/2)  p2 = 5/16,
ws(z,y) (x/?,y/?) ps = 8/16.
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FIG. 2. Log-log plot of the extended partition sum Z* of
the natural measure on the Hénon attractor as a function of
e, for different values of g¢.

This allows a comparison of our numerical results with
the analytical spectrum D, given by [7,10]

D, =—

1
P (0% + p% +pi). (6)

We have analyzed 50 different realizations, each one com-
posed by N = 50,000 points. Linear regressions were
performed over an interval of 1.5 decades.

Fig. 1 depicts the generalized dimensions D and D*
obtianed from SA and EBA| respectively. Statistical er-
rors from the regression algorithms provide error bars of
about 0.01 (except for SA at negative ¢ values). Ap-
pearently, both SA and EBA provide fairly good results
for ¢ > —2, EBA, however, with far better regression
coefficients. For ¢ < —2, SA suffers from unacceptable
regression coefficients and large error bars. On the other
hand, EBA is in excellent agreement with the analytical
values over the whole range of ¢ (compare Table T).

We also considered the standard Hénon attractor [19],
with parameters ¢ = 1.4 and b = 0.3. Fig. 2 shows the

TABLE I. Comparison of some numerical values from SA
and EBA with the analytic result Dy, (eq. (6)), for the deter-
ministic measure on a Sierpisky Gasket.

Analytical result SA EBA

Do =1.0000 —

Dyo = 1.0256 D(40) = 1.02 D*(40) = 1.02
Do = 1.5850 D(0) = 1.62 D*(0) = 1.62
D_so = 2.3677 — D*(—50) = 2.34
D_o =2.4150 —
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FIG. 3. a) Generalized dimensions from SA and EBA for
the natural measure on the Hénon attractor. Being meaning-
less, the values of SA for ¢ < 0 have not been plotted. b)
Detail of the region —10 < ¢ < 0.

scaling region of the extended partition sum Z* for dif-
ferent values of ¢q. The linear fits are excellent even for
a negative value as large as ¢ = —50. In Fig. 3(a) we
have plotted D(q) and D*(¢) computed from 50 differ-
ent realizations of the attractor, each one composed by
N = 150,000 points. Table IT shows some numerical
values, together with theoretical predictions and other
numerical estimates from box-counting algorithms. Lin-
ear regressions were performed over an interval between
Emin = 1072% and g4, = 1071, Fig. 3(a) shows several
remarkable features that deserve some deeper coment:

i) D*(q) > D(g) for ¢ > 1. The values computed with
SA are similar to those found by other authors by means
of fixed-size [20] and fixed-mass [21] box-counting algo-
rithms, while the results from EBA are somewhat larger,
out of the error bars, however in agreement with theo-
retical predictions (see Table II). It is known that the
generalized dimensions of chaotic attractors computed
from standard box-counting algorithms significantly un-
derestimates the theoretical predictions, a fact consid-
ered a fundamental limitation of this kind of algorithms
[20]. Table IT shows that EBA is in some cases closest
to the theoretical estimates, especially for the extended
Kaplan-Yorke relation approach in Ref. [22]. We have
to note, however, the disagreement with the prediction
D(o0) < 0.84 from Ref. [12].

ii) D*(q) shows a striking inflexion in the region —10 <
q < 0 (see Fig. 3(b)), which hints towards a failure of the
Legendre relation. This inflexion is robust and it does
not disappear even when shifting the interval of linear



TABLE II. Henon attractor: Comparison of the perfor-
mance of SA and EBA with both, theoretical predictions and
other numerical estimates.

Theoretical Numerical SA EBA
D(—o0) = 1.352* D(—o0) ~ 1.5° — D*(=50) = 1.26
D(—6) ~ 1.3° — — D*(—6) = 1.23
D(0)=1.2761  D(0) =1.259° D(0)=1.23 D*(0)=1.23

— D(2) =1.199° D(2)=1.21 D*(2) =121
D(6) ~ 1.05° — D(6) =0.98 D*(6) = 1.08
— D(40) ~ 0.8'  D(40) = 0.82 D*(40) = 0.93
D(oc) < 0.845  D(o0) ~ 0.87°
*Ref. [24].
PRef. [21], estimate from Fig. 2.
“Ref. [22], estimate from Fig. 1.
IRef. [22].
°Ref. [20].
TRef. [20], estimate from Fig. 2.
8 Ref. [12]

fit or by changing the number of sample points N or
normalizing ZF. Thus, we view it as a very property
of the Hénon attractor, perhaps related to its lacunar-
ity [1,20], or more likely, caused by a ’phase transition’,
meaning that the dense and sparse parts of the attractor,
i.e. the turnbacks and the ‘straight parts’, follow slightly
different multiplicative laws due to the bending in the
turnbacks. For similar phenomena see [23].

iii) As far as we are aware, we have computed for the
first time a fixed-size box-counting estimate of D(—o0)
for the Hénon attractor (~ 1.3). This value is in good
agreement with theoretical previsions, in which D(—o0)
is conjectured to be 1.352 [24]. We would like to stress,
however, the disaccord with the fixed-mass estimate
around 1.5 [21] (see Table IT).

In this Letter we have contrasted the performances of
the Standard (SA) and a more efficient Enlarged Box
(EBA) algorithms for computing generalized dimension.
For self-similar measures, EBA renders excellent results
in the whole range of values of ¢, with very small error
bars and larger correlation coefficients. In analyzing the
Hénon attractor, we find dimensions for ¢ > 0 which are
in closer agreement with theoretical predictions. We have
also estimated the spectrum for ¢ < 0, obtaining a good
performance and values also in good concordance with
theory. An inflexion is also found in the spectrum, which
can be interpreted as some kind of ‘phase transition’.
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