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Usual box	counting algorithms are une
cient for comput	
ing generalized fractal dimensions D�q� in the range of q � ��
In this Letter we review the properties of a new algorithm 
R�
H� Riedi� J� Math� Anal� Appl� ���� ��� ������� speci�cally
devised to deal with large negative q� We discuss the numer	
ical implementation of this algorithm� providing evidence for
its better performance� In particular� we throw some light on
the structure of the H�enon attractor�

PACS number�s�� �������b� �������n� �������g

A great deal of e�ort has been devoted in the last
years to the study of the fractal patterns ��� exhibited
by some physical systems such as di�usion�limited ag�
gregates ���	 percolation clusters �
�	 and chaotic attrac�
tors of nonlinear dynamical systems ���� It has become
clear	 however	 that many natural fractal objects are
actually multifractals ��	
�	 that is	 they are composed
of an in�nite set of interwoven subfractals	 character�
ized by H�older exponents � and a multifractal spectrum

f��� �see �
	�� and references therein�� The usual �xed�
size box�counting multifractal formalism for a general
measure � on IRd considers the so�called partition sum

Z��q� �
P

��B�������B��q where the sum runs over all
boxes B of size � taken from an ��grid G�	 i�e�

B �
dY

k��

�lk�� �lk � ���� �

lk being integral numbers� The generalized dimensions

D�q� ������ are then de�ned by

D�q� �
�

q � �
lim
���

log��Z��q�

log�� �
� ���

The function D�q� is non increasing as a consequence of
the convexity of ���q and of the boundedness of �	 that
is	
P

B ��B� � const � ��� The f��� spectrum is given
by the Legendre transformation of �q � ��D�q� �
	�	����

These de�nitions	 though temptingly simple and rig�
orous	 cause problems even in their pure mathematical
application� To be more precise	 the limit ���	 if it ex�
ists	 can only be � for q � � ��	���� This is due to

boxes B with unnaturally small measure overwhelming
the function Z� In certain cases the variable � used in
the eq� ��� can be restricted to a sequence �n in order
to give meaningful results ��	���� A limit obtained in
this way	 however	 depends strongly on the choice of �n
and requires	 thus	 a priori knowledge of the multiplica�
tive structure one wants to analyze� Serious problems
arise also in any attempt to translate this notion into a
numerical algorithm	 which we will call Standard Algo�

rithm �SA� in the following	 and which computes D�q� as
the slope of a least�squares �tting of log���Z��q����q���
against log������ First	 one has to choose a sequence �n
with the problems just mentioned� In addition	 a scal�
ing behavior will only be observed in a restricted scaling

region of � since the set of data is �nite� SA is slowly
convergent and it works well only for q � � and only for
measures in IRd with d � �	 being especially problem�
atic the region q � � ���	�
�� Some attempts have been
made in order to design e�cient �xed�size box�counting
algorithms �����
�	 but all of them fail when dealing with
q � ��
One of us �RR� proposed recently ��	��� a new box�

counting approach	 the so�called Enlarged Box Algorithm

�EBA�	 devised to overcome the drawbacks for negative
q� The basic idea is very simple� As we do not assume
a priori knowledge on the geometrical structure of the
distribution � we cannot prevent that some boxes B will
meet � only in a very small part	 say a corner of B�
Such a box B is	 hence	 a very poor approximation of a
ball centered in a point on the distribution� Multifractal
analysis is bound	 on the other hand	 to characterize �
by its local scaling behavior	 meaning that we expect the
measure of a ball centered on x being roughly equal to
a power of its diameter �	 that is ��U��x�� � ��� The
Legendre path is legitimate only if the sets B appearing
in Z are good approximations of balls U��x� centered in
a point x on �	 since it relies essentially on the argument

Z��q� �
X
�

X
��B����

���B��q

�
X
�

�����f����q� � �minfq��f���g�

�
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FIG� �� Generalized dimensions from SA and EBA for the
deterministic measure on a Sierpinsky Gasket� Errorbars are
about the size of the points� unless in SA� for q � �� The solid
line corresponds to the analytical result eq� ����

�see �
	�	��	����� For large positive q	 mismatching boxes
as described above can be neglected since their contri�
bution to Z is almost null� To the contrary for negative
q�

From the numerical point of view the best way to cure
this problem is to take the measure of extended boxes B�	
constructed by expanding a given box B by a factor 
	
and de�ned by

B� �
dY

k��

��lk � ���� �lk � � � ���� �

and form a new partition sum Z� ���� The new measure�
ment of the sets B � G�	 �

��B� � ��B��	 is actually not
a measure but a capacity �since it is monotonous but not
additive�� In addition	 �� is clearly not normalized� It
is	 however	 bounded on each G� since B� is the union of

d boxes fromG�	 hence

P
G�

���B� � 
d� The extended
partition sum Z� is de�ned by

Z�� �q� �
X

��B� ���

����B��q � ���

The key point in this de�nition is that the condition of
the sum is given by ��B� �� � and not by ���B� �� �
���� This condition guarantees that the cubes we con�
sider are indeed good representatives of balls centered in
points of the distribution� In particular	 Z�� is essentially
di�erent from Z��� Consequently	 we de�ne the extended

generalized dimensions as

D��q� �
�

q � �
lim
���

log��Z
�
� �q�

log�� �
�
�

From a theoretical point of view	 D��q� performs much
better than D�q�� It can be proven ��� that the limit
�
� is the same if the continuous � is restricted to a se�
quence �n with �n�� 	 	�n for some 	 � �� In addition	
D��q� is invariant under bilipschitz coordinate transfor�
mations	 it coincides with D�q� �eq� ���� for q 	 � and
produces the expected	 meaningful results for self�similar
measures� From a numerical point of view	 the implemen�
tation of EBA is a more e�cient algorithm than SA	 as
we are about to show�
We applied SA and EBA to distributions given by a

sample of N points from the trajectory of some dynam�
ical system� Given an ��grid of boxes of side �	 the oc�
cupation number ni��� of the i�th box is de�ned as the
number of sample points it contains� The measure �i
of box Bi is the fraction of time which a generic trajec�
tory on the attractor spends in the i�th box Bi ���	 and
is roughly equal to ni����N � The implementation of SA
thus computes D�q� as the slope of a linear �t of

log��Z��q� � log��

�X
i

�
ni���

�q�
���

against log�� �� Note that we have dropped the normal�
ization factor N �

P
i ni��� since it is independent of

��
To implement EBA	 we replace the occupation num�

bers ni��� by the extended occupation numbers n�i ���
which are de�ned by

n�i ��� �
X

j�Bj�B�

i

ni����

that is	 the number of sample points contained in the
box Bi and its neighboring boxes� The implementation
of EBA	 thus	 obtains D��q� as the slope of a linear �t of

log��Z
�
� �q� � log��

�X
i

�
n�i ���

�q�
���

against log�� �� As with SA we do not include a normal�
ization with the advantage of good numerical behavior
for large jqj	 the object of our main interest� This proce�
dure might	 however	 a�ect the monotony of D��q� since
Z�� ��� is not a constant in ��
In order to check the accuracy of our method	 we have

applied both SA and EBA to a self�similar deterministic
multifractal measure on IR	 constructed with the �Chaos
Game� ����	 and generated by iteratively applying the fol�
lowing set of transformations 
k at random	 with proba�
bilities pk�


��x� y� �
�
x��� �y � ����

�
p� � 
��
�


	�x� y� �
�
�x� ����� �y � ����

�
p	 � ���
�


��x� y� �
�
x��� y��

�
p� � ���
�

�
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FIG� �� Log	log plot of the extended partition sum Z� of
the natural measure on the H�enon attractor as a function of
�� for di�erent values of q�

This allows a comparison of our numerical results with
the analytical spectrum Dq given by ��	���

Dq � �
�

q � �
log	

�
pq� � pq	 � pq�

�
� �
�

We have analyzed �� di�erent realizations	 each one com�
posed by N � ��� ��� points� Linear regressions were
performed over an interval of ��� decades�

Fig� � depicts the generalized dimensions D and D�

obtianed from SA and EBA	 respectively� Statistical er�
rors from the regression algorithms provide error bars of
about ���� �except for SA at negative q values�� Ap�
pearently	 both SA and EBA provide fairly good results
for q 	 ��	 EBA	 however	 with far better regression
coe�cients� For q � ��	 SA su�ers from unacceptable
regression coe�cients and large error bars� On the other
hand	 EBA is in excellent agreement with the analytical
values over the whole range of q �compare Table I��
We also considered the standard H�enon attractor ����	

with parameters a � ��� and b � ��
� Fig� � shows the

TABLE I� Comparison of some numerical values from SA
and EBA with the analytic result Dq �eq� ����� for the deter	
ministic measure on a Sierpisky Gasket�

Analytical result SA EBA

D� � ������ � �
D�� � ������ D���� � ���� D����� � ����
D� � ������ D��� � ���� D���� � ����
D��� � ������ � D������ � ����
D�� � ������ � �
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FIG� �� a� Generalized dimensions from SA and EBA for
the natural measure on the H�enon attractor� Being meaning	
less� the values of SA for q � � have not been plotted� b�
Detail of the region ��� � q � ��

scaling region of the extended partition sum Z� for dif�
ferent values of q� The linear �ts are excellent even for
a negative value as large as q � ���� In Fig� 
�a� we
have plotted D�q� and D��q� computed from �� di�er�
ent realizations of the attractor	 each one composed by
N � ���� ��� points� Table II shows some numerical
values	 together with theoretical predictions and other
numerical estimates from box�counting algorithms� Lin�
ear regressions were performed over an interval between
�min � ���	�
 and �max � ����� Fig� 
�a� shows several
remarkable features that deserve some deeper coment�
i� D��q� � D�q� for q � �� The values computed with

SA are similar to those found by other authors by means
of �xed�size ���� and �xed�mass ���� box�counting algo�
rithms	 while the results from EBA are somewhat larger	
out of the error bars	 however in agreement with theo�
retical predictions �see Table II�� It is known that the
generalized dimensions of chaotic attractors computed
from standard box�counting algorithms signi�cantly un�
derestimates the theoretical predictions	 a fact consid�
ered a fundamental limitation of this kind of algorithms
����� Table II shows that EBA is in some cases closest
to the theoretical estimates	 especially for the extended
Kaplan�Yorke relation approach in Ref� ����� We have
to note	 however	 the disagreement with the prediction
D��� � ���� from Ref� �����
ii�D��q� shows a striking in�exion in the region ��� �

q � � �see Fig� 
�b��	 which hints towards a failure of the
Legendre relation� This in�exion is robust and it does
not disappear even when shifting the interval of linear






TABLE II� Henon attractor� Comparison of the perfor	
mance of SA and EBA with both� theoretical predictions and
other numerical estimates�

Theoretical Numerical SA EBA

D���� � �����a D���� � ���b � D������ � ����
D���� � ���c � � D����� � ����
D��� � �����d D��� � �����e D��� � ���� D���� � ����

� D��� � �����e D��� � ���� D���� � ����
D��� � ����c � D��� � ���� D���� � ����

� D���� � ���f D���� � ���� D����� � ����
D��� � ����g D��� � ����b

aRef� 
����
bRef� 
���� estimate from Fig� ��
cRef� 
���� estimate from Fig� ��
dRef� 
����
eRef� 
����
fRef� 
���� estimate from Fig� ��
gRef� 
����

�t or by changing the number of sample points N or
normalizing Z�� � Thus	 we view it as a very property
of the H�enon attractor	 perhaps related to its lacunar�

ity ��	���	 or more likely	 caused by a �phase transition�	
meaning that the dense and sparse parts of the attractor	
i�e� the turnbacks and the �straight parts�	 follow slightly
di�erent multiplicative laws due to the bending in the
turnbacks� For similar phenomena see ��
��
iii� As far as we are aware	 we have computed for the

�rst time a �xed�size box�counting estimate of D����
for the H�enon attractor �
 ��
�� This value is in good
agreement with theoretical previsions	 in which D����
is conjectured to be ��
�� ����� We would like to stress	
however	 the disaccord with the �xed�mass estimate
around ��� ���� �see Table II��
In this Letter we have contrasted the performances of

the Standard �SA� and a more e�cient Enlarged Box
�EBA� algorithms for computing generalized dimension�
For self�similar measures	 EBA renders excellent results
in the whole range of values of q	 with very small error
bars and larger correlation coe�cients� In analyzing the
H�enon attractor	 we �nd dimensions for q � � which are
in closer agreement with theoretical predictions� We have
also estimated the spectrum for q � �	 obtaining a good
performance and values also in good concordance with
theory� An in�exion is also found in the spectrum	 which
can be interpreted as some kind of �phase transition��
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