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Abstract

We analyze two traces of TCP�tra�c recorded at the gateway of a LAN corre�
sponding to two hours at Berkeley and to eight hours at CNET labs respectively�
We are mainly interested in a multifractal approach� which we introduce with var�
ious examples� We elaborate on the di�erence to �mono	fractal statistical tests
being used so far� Though we 
nd statistical self�similarity� the data is clearly not
monofractal� Consequently� previously proposed models based on fractional Brow�
nian motion are correct only up to second order statistics� Multifractal analysis
allows several conclusions which could not be made with the usual estimation of
the Hurst exponent� Among these we mention the remarkable fact that incoming
and outgoing tra�c observed at the same gateway may show strikingly di�erent
multifractal behavior� Furthermore� our analysis suggests that heavy and moderate
outgoing tra�c at Berkeley are in some sense independent of each other� Finally� the
outgoing and the incoming tra�c at Berkeley and at CNET look entirely di�erent
from a multifractal point of view�

� Introduction

�Fractal� analysis of computer network tra�c has recently been the subject of various
studies �LTWW� N�� N�� TTW�� TTW��� Most of the e�ort has been focused on mea�
suring and modeling a possible long range dependence in the data� This was motivated
by a thorough experimental study �LTWW� providing strong evidence for the presence
of long range dependence in real data tra�c� Such a property would have important
consequences in many area such as queuing theory �N�� N�� or network design�

However� long range dependence is only one feature of a �fractal� behavior� In this work�
we study rather di�erent properties which are conveniently described using multifractal
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analysis� Very roughly speaking� while previous studies tried to investigate the low fre�
quency content of the signal� we perform here a statistical analysis of the high frequency
part of it� The motivation for studying these high frequencies is twofold 
 �rst� in applica�
tions such as tra�c control� attempting to understanding large rapid variations may prove
more crucial than looking for long term correlations� Second� we try to �nd a possible
relation between the local singularities of the signal� revealed by a multifractal analysis�
and the �ndings of previous studies concerning the long range dependence� Indeed� for
some simple fractal models such as fractional Brownian motion �proposed by several au�
thors for tra�c modeling �LTWW� N�� N���� the exponent governing the local singular
behavior is identically equal to the Hurst exponent H ruling the long range dependence�
For general processes� however� the local singular behavior depends on time and is best
described by the multifractal spectrum of singularity exponents� Our analysis may thus
shed new light on the adequacy of previously proposed models by looking at very di�erent
properties of them� and help to clarify this rapidly evolving topic�

This paper is organized as follows� Section � gives an introduction to the basics of multi�
fractal analysis through a simple example on which the various notions and techniques are
explained� Then� the notion of the multifractal spectrum is thoroughly introduced along
with the multifractal formalism which is essential in this context� Various pedagogical
examples provide insight into the practical side� Section 	 makes precise the multifractal
and statistical methods of moments� and explains in detail the more elaborate estima�
tion procedure for the multifractal spectrum� Section �� �nally� presents the numerical
analysis performed for two real tra�c traces� addressing in particular quality and signi��
cance of the results in a comparison of the multifractal and the statistical approach� The
multifractal spectra obtained allow to draw conclusions of a general kind�

� Multifractal Analysis

It is well known that the geometrical complexity of a �fractal� set may be described� at least
in a global way� by giving its dimension� In order to provide more detailed information�
multifractal analysis is concerned with describing the local singular behavior of measures�
distributions� or functions in a geometrical and statistical fashion� It was �rst introduced
in the context of turbulence �M�� M	� FP�� and then studied as a mathematical tool
�F�� BMP� HW� AP� O� R�� LV� as well as in many applications such as investigation of
DLA pattern �ME� EM��� earth quake distribution analysis �HI�� signal processing �L�� L	��
and road tra�c analysis �VL��

��� The Binomial Measure

Purpose and techniques of multifractal analysis are best explained in the most simple
situation
 the binomial measure on the unit interval�
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The binomial measure is a probability measure � which is de�ned conveniently via a
recursive construction� Start by splitting I 
� ��� �� into two subintervals I� and I�
of equal length and assign the masses m� and m� � � � m� to them� With the two
subintervals one proceeds in the same manner and so forth
 at stage two� e�g� the four
subintervals I��� I��� I��� and I�� have massesm�m�� m�m��m�m�� and m�m� respectively�
At stage n� the total mass � is distributed among the �n intervals I������n according to all
possible products
 ��I������n� � m�� � � � � �m�n� This de�nes a sequences of measures �n� all
uniform by pieces� which converge weakly towards a probability measure� denoted by ��
By construction� the restrictions of � to the intervals I� and I� have the same structure
as � itself� In fact� they are reduced copies of � where the reductions in space and mass
are by ��� and mi� respectively� In other words� � is self�similar in a very strict way �see
Fig� �����
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Figure �
 The Binomial measure with m� � �� as obtained after �	 iterations�

Another way of de�ning � is the following� Let x � ����� � � � be the dyadic representation
of a point in ��� ��� Here� we don�t have to care about points with multiple expansions
since our results concern �almost all points x�� Imagine that the digits �k are picked
randomly such that P ��k � i� � mi independently of k� Then� � is the law�or probability
distribution�of the corresponding x on ��� ���

This measure � clearly has no density� unless m� � m� � ���� More precisely� M�x� �
����� x�� has zero derivative almost everywhere� Nevertheless� any coarse graining �or
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sampling� of �� e�g� through �n on the dyadic intervals I������n as above� will naturally
result in a distribution with density� It is� therefore� essential to understand the limit
behavior of such an approximation �n�

Let I�n��x� denote the unique dyadic interval of order n containing x� Set

�n�x� 
�
log ��I�n��x��

log jI�n��x�j
� �

�

n
log� ��I

�n��x���

For the binomial measure as introduced above� the Law of Large Numbers implies that

�n�x� � �
�

n

nX
k��

log�m�k � IE��� log�m�i � � �
�

�
log�m�m��

for �Lebesgue� almost all x� From ��
� log�m�m� � � we conclude that M ��x� � � almost

surely� as mentioned above� But the LLN implies also that for ��almost all x

�n�x�� IE��� log�m�i� � �m� log��m���m� log��m��� ���

More precise information on limits ��x� � limn�� �n�x� is provided by so�called large de�
viation theorems �Ell�� Let Pn be the uniform distribution on the set of all dyadic intervals

I
�n�
k � ��� �� of order n� i�e� Pn�I

�n�
K��� � I

�n�
k � � ���

n for all k � �� � � � � �n� Denote expecta�

tion w�r�t� Pn by IEn and consider the sequence of random variables Yn � log ��I
�n�
K �� In

order to apply Ellis� theorem �Ell� Thm �� one has to calculate the asymptotic behavior
of its moment generating functions


IEn�exp�qYn�� � �
�n

�nX
k��

��I�n�k �
q
� ��n

�
mq

� �mq
�

�n
�

Since

c�q� 
� lim
n��

��

n
log� IEn�exp�qYn�� � �� log�

�
mq

� �mq
�

�
� ���

is a di�erentiable� concave function� we conclude with Ellis� theorem on Large Deviations
that

�

n
log� Pn

h ��

n log �
Yn � ��� 	� �� 	�

i
� c���� �n��� 	� ��� �	�

Hereby� c� denotes the Legendre transform� i�e� c���� � infq�q�� c�q��� The distribution
Pn used here is uniform� i�e� it reduces to counting� Noting that

��

n log �
Yn �

log ��I
�n�
K �

log jI�n�K j
�
 ��I

�n�
K �

is in fact the coarse H�older exponent of the dyadic intervals of order n� we may interpret
�	� as giving the convergence of properly rescaled histograms of ��I�n�k �� This approach
to the multiplicative structure of the measure � and to its singularities has been called
coarse graining and will be introduced momentarily with all rigor�
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Before doing so� we suggest to have a more careful look into the Large Deviation result�
Its proof involves a �change of probability� meaning that the intervals I�n�k are chosen

randomly according to a law �q which insures the almost sure convergence of ��I
�n�
k �

towards some value �q� This distribution �q is de�ned in the same way as � but with
probabilities m� 
� mq

��
� and m� 
� mq

��
� where 
 is such that m� �m� � �� Hence�


�q� � � log�
�
mq

� �mq
�

�
� c�q�� ��

Choosing the digits �k of the dyadic expansion of a point x such that P ��k � i� � mq
i�

�

amounts to picking x randomly with law �q� Then� �q�almost surely

�n�x�� IE�q �� log��m�i�� � �
�X
i��

mi log�mi � 
��q�

by the LLN� whence the claimed almost sure convergence with �q 
� 
��q��

Moreover� for the same points x we �nd that

log �q�I�n��x��

log jI�n��x�j
� �

�

n
log� �q�I

�n��x��� q�� 
�q� � 
����� ���

This result allows us to determine the Hausdor� dimension �F�� of K	� the set of points
x with ��x� � �� In fact� when �xing q and letting � � 
��q�� ��� means that �q is
equivalent to the 
�����dimensional Hausdor� measure �F�� restricted to K	� Since K	

has full �q�measure� 
���� is a lower bound on the dimension of K	� From the coarse
graining approach it follows easily that this bound is in fact sharp �R���

In summary� we veri�ed that in this simple situation three approaches coincide
 one
through a �partition function� c or 
� one through �coarse graining� and one using the
concept of �dimensions�� In a notion which we are about to introduce this reads as

fL��� � fG��� � fH���� ���

��� Multifractal spectra and the multifractal formalism

We introduce now rigorously what has been motivated in the preceding section�

Much e�ort has been made in order to obtain rigorous mathematical extensions of the
aforementioned result ��� to more general cases �KP� CM� O� F�� AP� LV� R��� The
general setting is as follows�

Assume that a distribution of points in d�space is given in form of a measure �
 the
probability for a point to fall in a set E is ��E�� If this distribution is singular one cannot
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describe it by means of a density and multifractal analysis proves useful in characterizing
the complicated geometrical properties of �� The basic idea is to classify the singularities
of � by strength� This strength is measured as a singularity exponent ��x�� called H�older
exponent� Usually� points of equal strength lie on interwoven fractal sets K	


K	 
� fx � IR
d 
 ��x� 
� lim

B�fxg

log ��B�

log jBj
� �g� ���

which explains the name �multifractal�� Here� B � fxg means that B is a ball containing
x� and that its diameter jBj tends to zero� The geometry of the singular distribution � can
then be characterized by giving the �size� of the sets K	� more precisely their Hausdor�
dimension �F��


fH��� 
� dim�K	��

This de�nition is most useful in purely mathematical settings� It is not required� though�
for the understanding of this paper� For the interested reader we refer to �F�� AP� R�� LV�
for further details�

In applications� one assumes that � has bounded support and considers a coarse grained
version fG� also called large deviation spectrum� As a matter of fact it has been introduced
prior to fH �M�� M	� Gr�� FP� HP� HJKPS� JKP�


fG��� 
� lim
���
lim sup

��

logN
��� 	�

log ���

with the convention log � 
� ��� Here� N
 denotes the number of cubes C of size � with
coarse H�older exponent ��C� �roughly equal to ��� More precisely� denote by G
 the set
of all cubes of the form C � �l��� �l� � ���� � � � � � �ld�� �ld � ���� with integer l�� � � � � ld
and with ��C� �� �� Then� we set

C� � ��l� � ���� �l� � ����� � � �� ��ld � ���� �ld � �����

��C� 
�
log ��C��

log �
� ���

and
N
��� 	� �  fC � G
 
 ��C� � ��� 	� �� 	�g�

As is pointed out in �R�� PR� using C� instead of C greatly improves the theoretical
properties as well as the numerical behavior of fG since C provides a poor approxima�
tion of a ball centered in a point of the distribution �� especially in points close to the
boarder of the support of �� Since singular measures are typically supported on fractals�
these problems are present on all scales leading to wrong results� One of the advantages
when using C� is the fact that the spectrum fG��� does not change when replacing the
continuous limit � � � by the discrete limit �n � c��n �n � ��� Furthermore� for
measures supported on an interval of length c this choice �n provokes no �boarder e�ects�
and C� may again be replaced by C without changing the outcome� These properties
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have been used throughout our numerical analysis� For the ease of notation we will write
N �
n��� 
� N
n��� 	��

Though tempting it is wrong to interpret fG as the box dimension of K	� This function
is better explained in statistical terms
 Note �rst that the number N
 of cubes in G


behaves roughly as N
 	 ��D where D denotes the box dimension of the support of ��
It follows that fG��� 
 D for all �� Now suppose that one picks a cube C out of G


randomly and determines its coarse H�older exponent ��C� 
� log ��C��� log �� Then� the
probability of �nding ��C� 	 � behaves roughly like

N
��� 	��N
 � P
���C� 	 �� 	 �D�fG�	�� ���

Note in particular that in the limit � � � the only H�older exponent which is observed
with non�vanishing probability is ��� where fG���� � D�

What spectra fH and fG can we expect!� Could they be trivial functions �f��� � ���!
Before giving a proof �� that this is not the case let us explain in simple terms why there
is at least �� with fG���� � D� We give an argument for �self�similar measures� with
D � � using the Law of Large Numbers �LLN�� Write

��x� � lim
n��

�
�

n
log� ��C

�
n�x�� � lim

n��
�
�

n

nX
k��

log�
��C�

k�x��

��C�
k���x��

where Cn�x� is the unique cube in G���n containing x� Then� the assumption of self�
similarity means that the random variables log� ��C

�
k�x�����C

�
k���x�� are i�i�d� �compare

Subsection ��� and �R�� AP��� Denote the common expectation by ��� The LLN implies
that almost surely ��x� � �� when picking points x randomly with �uniform� distribution�
i�e� when picking C randomly in G
� This establishes the claim�

In special cases such as the binomial measure with m� � m� � ��� �uniform distribution�
�� is the only H�older exponent� i�e� ��x� � �� � �� fH���� � fG���� � � and fH��� �
fG��� � �� for � �� �� in this case� Such measures with only one H�older exponent are
called uniform or monofractal�

In general� other H�older exponents occur� For the binomial� e�g� we �nd ���� � � log��m��
���� � � log��m�� etc� Also� the coarse graining will show non�trivial spectra� i�e� on every
�nite level of approximation G
 one will have a whole histogram of coarse H�older expo�
nents ��I�n�k �� For � �� ��� however� the probability of �nding ��I

�n�
k � 	 � will decrease

exponentially fast to � as � � �� A rigorous proof of this fact is most easily obtained �
at least under certain conditions � by applying the Principle of Large Deviations �PLD�
of G�artner�Ellis �see �Ell��� Translated into our setting the PLD states� in simple terms�
that

Pn�
�

n
log� ��C

�
n�x�� 	 �� 	 �nc

��	�

with some scaling function c� with c���� � � unless � � ��� A rigorous formulation is
the following


�Some answers of a general kind can be found in �LV� LT��
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Theorem � ��Ell� R��� Assume that the �moment generating function�

c�q� 
� lim
n��

��

n
log� IE�exp �q log ��C

�
n�x����

exists and is convex and di�erentiable for all q � IR� Then	

lim
���

lim
n��

�

n log �
Pn�

���� �
n
log� ��C

�
n�x��� �

��� 
 	� � c����

where c���� � infq�q�� c�q�� is the Legendre transform of c�

The partition function  �q� �M	� FP� HP� HJKPS� R�� LV�

 �q� 
� lim

��

log S
�q�

log �
with S
�q� 
�

X
C�G�

��C��q

equals c up to a constant� Indeed� since D � � ��� by de�nition� we �nd

c�q� �  �q��  ��� �  �q� �D�

For the binomial measure de�ned in Subsection ��� one �nds with ���

 �q� � � log��m
q
� �mq

���

For other examples see Subsection ��	 below�

Provided that Ellis� theorem applies� i�e� assuming that  �q� exists and is di�erentiable�
it follows that ��� holds with c� � fG����D� i�e�

fG��� �  ����� ��

This has been termed the multifractal formalism� The similarity to the well�known
thermo�dynamical formalism �V� R	� is immediate�

Since  �q� is obtained by averaging� it depends more regularly on the data than fG���
and is easier to compute� It is important to note� though� that it contains in general less
information than fG� Let us make this point more precise�

The partition function is always convex since S
�q� is convex for all �� But it is not
necessarily di�erentiable in every q and the multifractal formalism may not hold for all ��
For some simple and convincing counterexamples see Fig� � and �LV� R�� MR� RM�� RM	��
It is natural� thus� to introduce the Legendre spectrum

fL��� 
�  �����

This spectrum is sometimes referred to as obtained by the method of moments�
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While �� may be wrong for certain �� the opposite relation

 �q� � f�G�q� � inf
	�IR

�
q�� fG���

�

holds for all q �R���

As a �rst consequence� D is indeed the maximal value of fG in general� Secondly� fL �
 � � fG

�� is the concave hull of fG� Thus�

fG��� 
 fL����

Thirdly� it follows that even a not everywhere di�erentiable  �q� determines fG��� at least
in its concave points� To be more precise let �� 
�  ��q�� for q � � and �� 
�  ��q��
for q � � denote the one�sided derivatives of  �q� which must exist since  �q� is convex�
Then �R	� R���

fG���� � q�� �  �q� �  ����� �q � ��
fG���� � q�� �  �q� �  ����� �q � ���

����

An alternative way of displaying the scaling of moments is through the so�called general�
ized dimensions

D�q� 
�
 �q�

q � �
�

Besides D � D�� a notable Dq is �� �  ���� � D�� It has been termed information
dimension �Gr�� GP�� GP�� OWY�
 With respect to the given distribution � we have
��x� � �� � D� almost surely� For a binomial measure �� is given by ����

��� Reading a multifractal spectrum

Before listing some properties of the shape of a multifractal spectrum we give an intuitive
interpretation in loose terms�

The multifractal spectra provide a global description of the singularities of the observed
measure �� The parameter � quanti�es the degree of regularity in a point x
 loosely
speaking� the measure of an interval �x� x�"x� � in applications usually the number of
events occurring in this interval � behaves as �"x�	 ������

For a uniform distribution one �nds ��x� � � for all x� More generally� for any a � �
the distribution with density xa�� on ��� �� has ���� � a and ��x� � � for all x � ��� ���
Values ��x� � � indicate� thus� a burst of events around x �on all levels� �bursts of bursts��
while ��x� � � is found in regions where events occur sparsely�
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The spectrum fG��� captures how �frequently� a value ��x� � � is found
 the number
of dyadic intervals C of size "x with ��C� � � behaves as �"x��fG�	�� For the �almost
sure� value �� one has fG���� � D which is necessarily the maximal value of fG� A more
precise characterization is given by ����

The spectrum fH��� gives the size of the �set of H�older exponent �� K	 in terms of its
dimension�

In order to give an idea of how to extract information from the shape of a spectrum f
we proceed by giving examples for which the spectra are known explicitly� The plots are
obtained by solving implicit equations for  �q� similar as the one for the Binomial measure
of Subsection ���


mq
��

� �mq
��

� � ��

and plotting its Legendre transform by varying the parameter q


��q� �  ��q� fL��� �  ���� � q ��q��  �q��

The shape of a �typical� spectrum f includes various features� First of all� the Legendre
spectrum fL possesses an overall shape like the symbol �� This translates to fG pro�
vided the multifractal formalism holds� Next� we have seen that fG��� 
  ��� � D �
sup	 fG���� Finally� since we are considering measures� we have necessarily S
��� � � for
all �� This implies that  ��� � �� In other words� fL touches the internal bisector of the
axis� whence we obtain a further bound of interest
 fG��� 
 fL��� 
 � �see Fig� ����

Figure �
 A typical spectrum will
be strictly concave� it will touch the
bisector �dashed� and it will reach
the maximum D� the dimension of
the support of the measure� Here�
we display the spectrum of the bino�
mial measure with m� � ���� m� �
���� and r� � r� � ���� It is sup�
ported on the unit interval which
has dimension D � � ��� � ��
The extremal H�older exponents are
�min � log������ log���� 	 ��	� and
�max � log������ log���� 	 ���	��
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Whenever a spectrum f fails to show the typical concave ��shape we have evidence that
� is not purely multiplicative� A search of models with similar features in their spectra
may reveal telling details on the structure of the distribution �� A most prominent
example is DLA where the spectra estimated numerically showed clear evidence for an
in�nite range ��min��� of H�older exponents with a spectrum f increasing over this whole
interval� Searching for multifractal measures displaying similar spectra Mandelbrot et al�
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were led to suggest that the underlying self�similarity of DLA was in fact of an in�nite
type �M�� EM�� ME� MEH� RM���

In the sequel we provide various examples with atypical spectra and explain the particular
appearances� Let us start by generalizing step by step the construction of the binomial
measure from Subsection ���� with the multifractal formalism remaining valid all through 


�� Take arbitrary contraction ratios r� and r� instead of ���� More precisely� for each
interval I������n in the iterative construction choose two subintervals I������nk with
disjoint interiors such that the ratio of lengths is rk � jI������nkj�jI������n j� Note that
necessarily r� � r� 
 �� The formula for  �q� generalizes then to


mq
�r�

�� �mq
�r�

�� � ��

In particular� the support of the measure obtained in this way is a Cantor set of
dimension D � � ���� which is in general strictly less than �� As a matter of fact�
D � � i� r� � r� � �� In this paper� we consider only this case� i�e� measures
supported on a whole interval �see Fig� ���

�� Take a �xed� but arbitrary number N of disjoint subintervals in each step� with
length ratios r� � � � �� rN�� 
 � and mass ratios m� � � � ��mN�� � �� Then�  �q�
is uniquely determined by

N��X
i��

mq
i ri

�� � ��

Such a measure is called self�similar�

	� Fix the distributions of �N random variables Ri and Mi �i � �� � � � � N � �� such
that

PN��
i�� Ri 
 � almost surely and IE

PN��
i�� Mi � �� Then� in each step of the

construction for each of the intervals I������n choose disjoint subintervals I������nk ran�
domly in the following way
 When �xing k and letting 	� � � � 	n run through all �nite
sequences of digits f�� � � � � N � �g� the random variables

R������nk 
� jI������nkj�I������n

are i�i�d� with same distribution as Rk� and the mass ratios �n���I������nk���n�I������n�
are i�i�d� with lawMk� This way of redistributing mass independently and identically
in each step of the construction could fairly be called multifractal stationarity� As a
sum of i�i�d� random variables� log ��I������n� is approximately Gaussian� if properly
normalized� There is evidence that log�normal marginal distributions� though not
heavy�tailed� may well characterize real data tra�c �P��

Under the given conditions� there is a unique  such that

IE
X
i

M q
i Ri

�� � ��

and  �q� is di�erentiable and convex on IR �F�� AP�� Its Legendre transform fL��� �
 ���� equals the dimension of the set K	 as well as the large deviation spectrum
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almost surely where it is positive� i�e� if fL��� � � then fH��� � fG��� � fL���
with probability one�

For the H�older exponents � with fL��� � � no rigorous results are available in
general� These values �nd a natural interpretation� though� as so�called negative
dimensions �M��
 the probability of observing � decreases too fast with the grid
size �� i�e� approximately as ���fL�	� �compare �	��� These H�older exponents are�
thus� only observed when oversampling the process at least �fL�	� times� Then� at
least in the average� one of the �fL�	��� intervals of size � now available should show
the H�older exponent ��

Such a self�similar random measure is shown in Fig� 	 where it is also compared
with a trace of real data tra�c� The striking resemblance makes multifractals a
natural candidate for data tra�c modeling� This point of view is further supported
by a thorough analysis in Section ��

Y x 103

6X x 10
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

160.00

0.00 0.50 1.00 1.50

Y x 103

6X x 10

00

10

20

30

40

50

60

70

80

90

100

110

120

130

0.00 0.50 1.00 1.50

Figure 	
 Tra�c observed at the gateway of Berkeley and the measure obtained by a
randomized version of the Binomial measure�

Let us now give examples of measures with atypical spectrum� The easiest way of breaking
the property of being concave is by considering sums of binomial measures � � �� � ���
The spectra are then known in two extreme cases�

In the �rst case� called �lumping� of measures� the supports of �� and �� are disjoint�
Then the formula

f��� � max�f����� f�����
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is valid for both� fG and fH� For fL� on the other hand� it cannot hold in general� since
the maximum of concave functions is in general not concave� We have� though� that
 �q� � max� ��q��  ��q��� Provided fG

k � fL
k� fL is the concave hull of fG� Such is the

case for self�similar measures �see Fig� � and Fig� ���

The other extreme case is the �superposition� of two measures which means that the
geometrical part of the construction of two self�similar measures �� and �� are identical
and the only di�erence between them lies in the choice of the weights mi� Then� a
spectrum as in Fig� � results�

F(a)

a
0.0

0.0

F(a)

a
0.0

0.0

Figure �
 The spectrum of the lumping � � �� � �� of two measures �meaning that
their supports are disjoint� is simply the maximum of the individual spectra� This will in
general result in a non�concave spectrum as shown in two cases here� The dashed parts
show the internal bisector of the axes and the spectra of the binomial measures �� and
�� where they do not coincide with the spectrum of ��

The failure of being concave is here a direct consequence of a sort of phase transition

The major contributor to the singularities of strength � changes from one of the measures
�� and �� to the other�

Similar phenomena have been observed with the somewhat richer class of self�a�ne mea�
sures � in the plane �R��� Here�  �q� � max�#��q��#��q�� where the #k�q� represent the
contributions of the two eigenspaces to the singularities of �� The phase transition is here
between the two eigenspaces as the major contributor�

In conclusion� we take non�concave spectra as evidence for the absence of a �universal�
multiplicative law� and not much can be said in general� If the spectrum consists of clearly
identi�ed bumps� though� we may assume the presence of several such laws�
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� Numerical methods

We are given a sequence of positive numbers �Zi�Ni�� which may represent any interesting
information on the tra�c load passing through a gateway� �In Section � we will reserve
this letter for one particular data�� Among many other ways of analyzing we may interpret
the data as a sampling a� of a random measure where Zi�

P
i Zi is the probability for a

byte to arrive at time ti� or b� of a stochastic process�

In the former case� a multifractal analysis is in order� In the latter case� it has been
widely agreed �LTWW� N�� N�� that the most important fractal statistical parameter to
be estimated is the degree of long range dependence �LRD�� usually measured through
the Hurst exponent H� Among the various methods of estimating H �TTW�� TTW�� the
method of moments comes closest to the multifractal approach�

In the �rst part of this section we make precise the notion of multifractal and statistical
scaling of moments� We will argue that the multifractal method is more natural when
positive data such as tra�c data is given since there is no need to center the data be�
fore analyzing� A more sophisticated comparison of the two approaches is postponed to
Subsection ��	 where the necessary data analysis is available�

In the second part we will elaborate on the more sophisticated estimation of the large
deviation spectrum fG� We will show� in particular� how to reduce the double limit to
a single one� Recall that fG provides more detailed information than the method of
moments� i�e� the Legendre spectrum fL�

��� Multifractal scaling

As was explained in more detail in Section �� the most straightforward approach to mea�
suring local singularity exponents of a measure is through the partition function  �q�� One
considers then the data �Zi�Ni�� as a sampling of a measure � on ��� �� at scale � � ��N
and de�nes the partition sum through

SZ
m�q� 
�

N�mX
k��

�Z
�m�
k �q�

where

Z
�m�
k 
�

mX

l��

Z�k���m�l

provides a sampling of � at scale �m � m�N �

If logSZ
m�q� is in good approximation linearly depending on logm� we say that the data

exhibits multifractal scaling� in short
 Zi is a multifractal� The slope of the linear law�



��� Statistical scaling ��

usually obtained by least square �tting� is denoted by Z�q�� or shortly  �q�


log SZ
m�q� 	 Z�q� � logm� const� ����

In order to visualize the quality of a linear approximation of the graph of log� S
Z
m�q� versus

log�m it is useful to look at the piecewise increments of log� S
Z
m�q�� i�e�

Zm�q� 
�  �Z�m� q� 
� log� S
Z
�m�q�� log� S

Z
m�q� ����

as a function of log�m� If ���� holds in good approximation then m�q� 	  �q� indepen�
dently of m�

In praxis� one computes  �q� through a least square �tting rather than through averaging
m�q�� The behavior of the latter� though� can be used to determine the scaling region�
i�e� the range of m in which the �tting is performed�

Furthermore� as the slope  �q� varies often only little� typically in the range ����� ��� its
plot may appear to be almost linear to the naked eye� Therefore� displaying its Legendre
transform fL is generally more informative� Note� that fL may show negative values�
These correspond to very rare H�older exponents as explained in Subsection ��	�

��� Statistical scaling

The statistical approach we refer to relies on the notion of self�similar processes� Consider
a process Yi with stationary increments Xi � Yi � Yi��� Assume that Yi is H�self�similar�
i�e�

Ymi
d
� mHYi�

Let

X
�m�
k � ��m

mX

l��

X�k���m�l � ��mX
�m�
k �

Then�

Xk
d
� m��HX

�m�
k � ��	�

As was proposed by Taqqu� Teverovsky $ Willinger recently �TTW��� a test of self�
similarity could be performed through the behavior of the absolute moments� An estima�
tor of IEjX�m�jq would be

%IEjX�m�jq 
�
�

N�m

N�mX
k��

jX
�m�
k jq�

In analogy to multifractal analysis we consider rather

SX
m �q� 
�

N�mX
k��

jX
�m�
k jq � mq��N � %IEjX�m�jq�
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If Xi is self�similar in the sense of ��	� we have

log IEjX�m�jq � log IEjmH��Xjq � b�q� logm� const�

Moreover� b�q� is then linear in q

b�q� � q�H � ���

Thus� Taqqu et al� �TTW�� propose a test of self�similarity which we translate into our
setting
 Determine whether there is � such that

log SX
m�q� 	 ��q� � logm� const� ����

If � depends linearly in q then the data may be called self�similar in the sense of ��	�� and

��q� � q � � � b�q� � qH � ��

It is worth noting� �rst of all� that ��	� implies together with stationarity that

either IEX � �� or IEX � �� or H � ��

But H � � implies that Yt � t �Y� almost surely� In other words� the concept of statistical
self�similarity ���� makes sense only after centering the data� i�e� in our context when
setting

Xi 
� Zi � %IEZ � Zi � ��N
NX
i��

Zi�

Multifractal analysis as presented here� on the other hand� is perfectly �tted to positive
data such as data tra�c measurements�

Further comparison of the multifractal and the statistical approach is postponed to Sub�
section ��	� Here� we would like to add that a multifractal analysis of processes with
arbitrary increments is being developed using wavelets �J�� J��� The application of this
approach� though� is beyond the scope of this paper and has to be presented in forthcom�
ing publications �RL��

��� Estimation of the large deviation spectrum fG�

As mentioned before� the most attractive multifractal spectrum from numerical point of
view is the one obtained through the Legendre transform

fL��� 
�  �����



��� Estimation of the large deviation spectrum fG� ��

In cases where the multifractal formalism holds� fL provides as much information as
fG� In general� though� fG provides more detailed information �see ������� The most
prominent situation in which the formalism has been established are the so�called self�
similar measures which generalize the construction of the Binomial measure� As has been
pointed out before� we have

fG��� � fL��� �  ���� at � �  ��q��

provided this derivate exists� Such situations are indeed encountered with many multi�
plicative measures such as the self�similar and the self�a�ne ones�

In a concrete application� one will compute  �q� as the slope of a least square �tting of a
log�log plot of SZ


 �q� against �� It is essential to check the quality of this �tting� If one
does �nd a nearly linear behavior we say that we have multifractal scaling� It is then
legitimate to assume that one properly estimated  �q��

When there are reasons to believe that fG is not concave� it becomes necessary to design a
speci�c estimation procedure �L��� Mathematical examples with such a behavior include
the lumping and superposition of binomial measures �compare Subsection ��	� as well as
the discontinuous self�similar measures �MR� RM��� As is shown later� certain aspects of
data tra�c provide wonderful real world examples �see �������

The procedure is based on a classical tool in density estimation
 the kernel method� or
more precisely the double kernel method ��D��� Such a method has been used extensively
with good success in density estimations� and rather precise theorems are known that
assess the quality of the results� In particular� the use of smooth kernels allows to ob�
tain more regular estimates� The di�culty we meet here is that fG is not the density
corresponding to the ��s� but rather a double logarithmic normalization of this density�

At the starting point of the double kernel method stands the observation that N �
n��� can

be re�written as the following convolution
 N �
n��� � �

n��	K� � �n���� where �n is the
density of the coarse H�older exponents ��C� �C � G���n� as de�ned in ���� and K� is the
rectangular kernel
 K�x� � � for x � ������ �����K�x� � � else� andK��x� � ��	K �x�	��
It is easily shown that in fact any choice of a compactly supported kernel K leads to the
same result�

A classical problem in density estimation is the choice of an 	 such that K� � �n is as
close as possible to the limiting density �� In this setting� 	 becomes a function of n�
Adapting classical techniques allows to design an algorithm which provides an optimal
sequence 	n� In particular� we have fG

n��� � ���n�logN �n
n ��� � fG��� assuming that

such a sequence exists�

Such is the case in the following context� Assume that the distribution � is a �nite
superposition or lumping of binomial measures� Let f �nn correspond to the rectangular
kernel and g�nn correspond to the triangular kernel �T �x� � � � x for x � ��� ��� T �x� � �
for x � �� T ��x� � T �x��� �L�� shows that if �	n�	�n� minimizes sup	�f

�n
n ��� � g�

�

n
n �����
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then f �nn ���� f��� for all ��

Numerical experiments using this technique are displayed in Fig� � and � where the
theoretical fG along with its kernel estimate are shown for a superposition and a lumping
of two binomial measures�

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Estimation
Theoretic

Figure �
 Theoretical �dashed� and es�
timated �solid� fG spectrum for the su�
perposition of two binomial measures�

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Theoretic
Estimated

Figure �
 Theoretical �dashed� and es�
timated �solid� fG spectrum for the
lumping of two binomial measures�

� Numerical analysis of the TCP tra�c

The two traces analyzed in this study are TCP�data tra�c collected at the gateway
of a LAN� corresponding to two hours at Berkeley and to eight hours at CNET labs�
respectively� Both traces contain about ��� observations� consisting of the arrival time Ti
of the packet number i� the size Zi of the packet in number of bytes� as well as information
regarding sender and recipient�

This allowed to distinguish between the tra�c entering the LAN� called incoming� and
the tra�c leaving the LAN� called outgoing� We would like to stress that the incoming
tra�c is� therefore� generated by a WAN tra�c� thus �WAN�LAN�� while the outgoing
one is produced by a LAN tra�c� thus �LAN�WAN�� Both tra�c streams� however� have
to pass through the same gateway� producing the measured tra�c load Zi� This is what
we mean by �tra�c�� When confusion is possible we will call it combined tra
c in the
sequel�

��� Trace recorded at Berkeley

In the sequel we will address the various parts of the recorded data� i�e� the �number
of bytes of packet� Zi� the �inter�arrival time between packets� Ti� the �number of bytes



��� Trace recorded at Berkeley �

arriving per time� Bk� and �number of packets arriving per time� Pk� as aspects of the
tra�c�

	
�
� Bytes per packet

In a �rst attempt we investigated Zi�i�e� the aspect �bytes per packet�� Not only is this
aspect the most easily accessible� it poses also no problems when separating incoming and
outgoing tra�c�

At �rst sight� one would not expect an interesting behavior� since TCP packets are mostly
either very small �ACK� NACK� or very large� This reasoning� however� considers only
the histogram at the �nest time scale� As we are about to show� the aspect Zi reveals
essential characteristics of the tra�c� In particular� though there is only little variability
in the data Zi� there is excellent multifractal scaling� meaning that there are clusters of
very large �small� packets� clusters of clusters� and so on� In other words� there is no
�averaging�� To the contrary the multifractal properties of Zi allow to clearly distinguish
between outgoing and incoming tra�c and demonstrate the striking di�erence between
tra�c generated at the University of Berkeley versus the one produces at the research
laboratories of CNET�

Let us report on the multifractal scaling �rst� We found excellent multifractal scaling
of SZ

m�q� for all q when choosing m � ��� ��� ���� � � � � ���� as well as when taking m �
�� �� �� � � � � ��� �see Fig� ��� The linear behavior is of exceptional quality especially in
the scaling region m � �	� � � � � ��� �see Fig� ��� Also the collapse of the estimators fG

m

obtained at various levels of aggregation m is very satisfactory �see Fig� ��

The  �q� obtained from a least square �tting of log SZ
m�q� against logm yields a narrow

multifractal spectrum fL� Nevertheless� we �nd  ��q� to �ll the range ��� ���� and a
Legendre spectrum fL �  � in excellent agreement with the fG obtained by coarse graining
�see Fig� ��

The most striking feature of the multifractal spectrum fG is its departure from a pure
bell�shape 
 it shows a bump or a �non�concavity� �see Fig� � and is a perfect example
where coarse graining �fG� provides more information than the method of moments �fL��
This phenomenon found a most satisfying explanation when incoming and outgoing tra�c
were separated� While the former shows a clear bell�shaped spectrum� we �nd two �bells�
for the latter �see Fig� �� and also Fig� ���� A most simple interpretation would be
that there are two multiplicative laws underlying the outgoing tra�c� In other words� at
Berkeley� heavy outgoing tra�c seems to be widely independent of the moderate outgoing
tra�c�

With the statistical approach the scaling behavior is less favorable� For the centered data
Xi 
� Zi � %IEZ the scaling behavior of the partition sum SX

m �q� was acceptable only
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for positive q �see Fig� ���� For negative q the log�log plots were far from being linear�

obviously due to very small values jX�m�
k j �� � produced when centering the data� From

the point of view of scaling� thus� it can be regarded as a disadvantage having to center
the data in the �statistical scaling approach��

But the estimates �Xm �q� su�er from high variability even in the positive q range� The
estimation ofH in particular depends highly on the choice of the scaling region and cannot
be called robust �Subsection ��	�� Nevertheless� the scaling function ��q� we obtained is
fairly linear for q � �� This linearity corresponds to a Legendre transform �� which �stops�
at the point with slope q � � �see Fig� ���� The decreasing part� though displayed� is not
reliable since there was poor scaling for negative q �see Fig� ���� Most importantly� with
the centered data Xi no signi�cant di�erence could be observed between incoming and
outgoing tra�c� i�e� the reliable increasing part of the ���spectra are practically identical
�see Fig� ���� We note on the side that the fG spectra of X do not show such a clear
di�erence either�

	
�
� Time per packet

The next simple aspect from the point of view of an analysis is �time per packet�� We
have chosen to keep the absolute arriving times rather than the interarrival times when
separating incoming and outgoing tra�c� This takes into account the mutual in&uence of
the two data streams as it is observed at the gateway�

The multifractal scaling was excellent in the scaling region �
� � � � � ��
 �see Fig� �	�� The
partition function T �q� obtained by least square �tting is found to be almost linear� So�
one could suspect that T �q� does not contain more information than one single parameter
such as the slope� But a closer look� in particular a comparison with the inverse aspect
P �packets arriving per time� reveals the accuracy and the signi�cance of the spectrum
fL �  �� We elaborate on this issue in ����	�

	
�
� Aspects with respect to time

From point of view of an application in tra�c modeling the most interesting aspect are
certainly the ones with respect to �time�� When cumulating data into time�intervals of
equal length one has to be aware� though� that additional information may be created�
We are about to explain in detail several methods we compared� As they all show the
same  and fG �see Fig� ��� we consider the multifractal behavior as being established�

The three methods of cumulating are the following� all based on new time instances
tk � k � �t with a �xed time interval �t�



��� Trace recorded at Berkeley ��

� Compute the �number� of packets Pk arriving in the arti�cial time interval Ik 
�
�tk� tk���� accounting for each e�ective arrival interval �Ti� Ti��� according to its �time
spent in Ik� 


Pk � Pk��t� �
X
i

j�Ti� Ti��� � Ikj

j�Ti� Ti���j

where j � j denotes the length of an interval� Similarly� the �number� of bytes Bk

�arriving� in Ik is

Bk � Bk��t� �
X
i

Zi �
j�Ti� Ti��� � Ikj

j�Ti� Ti���j
�

With this method� arti�cial information has been created�

� Approximate uniform inter�arrival times �t as closely as possible by choosing actual
time instances Tl�k� such that

Tl�k� 
 Tl�k��� � �t � Tl�k����

For this procedure to make sense� we need �t � Ti�� � Ti for all i� Now� take
P �
k ��t� 
� l�k � �� � l�k� and� consequently�

B�
k � B�

k��t� �
l�k�����X

i�l�k�

Zi�

No additional information has been created for the price of having non�uniform time
intervals� In order to switch from time scale �t to � � �t� � � �t� � � �t etc� one may

� repeat the procedure with time step ��t� i�e� consider P �
k �� � �t�� P

�
k �� � �t�� etc�

and similarly for B��

� or simply cumulate recursively� i�e� consider P ��
k ��t� 
� P �

k ��t�� P
��
k ��

l�� ��t� 
�
P ��
�k����

l�t� � P ��
�k ��

l�t�� and similarly for B���

It is clear that the computation is faster in the second case but that the approxima�
tion is better in the �rst case� The piecewise increments m showed no signi�cant
di�erence for the three methods� leading to virtually the same estimates of  �q� �see
Fig� ����

Of particular interest is the aspect �packets per time� Pk since it is �inverse� to the aspect
�time per packet� Ti� Theory �MR� RM�� RM�� says that the spectra should be related
by the formula

f �T ���� � �f �P �������

resp�
 �T � � �q�P � and  �P � � �q�T ��

Note� that the transformation ��� f� �� ����� ��� � f� exchanges the bisector of the axes
f � � with the horizontal line f � �� the two typical touching lines of a spectrum�
Whence� the �symmetry� of the spectra f �T � and f �P � which is clearly visible in Fig� ���

Several remarks are in order�
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� First� the fact that the predicted symmetry between f �T � and f �P � holds with high
accuracy proves that these spectra contain signi�cant and correct information�

� Second and most importantly� we would like to stress that the main di�erence
between the observed outgoing and incoming tra�c remains hidden to an analysis
based on statistical scaling analysis of the interarrival times Ti� since this di�erence
manifests itself in the part of the spectrum corresponding to negative q� There� the
scaling of centered data is poor �see Fig� ��� �� ��� �� and ����

� Finally� all aspects re&ecting the �tra�c load� �Zi� Pk and Bk� show that the outgoing
tra�c observed at Berkeley is clearly more regular and less bursty than the incoming
tra�c �see Fig� ����

��� Tra�c at CNET Labs

An analysis of tra�c at the LAN at CNET Laboratories showed again excellent multi�
fractal scaling� certainly superior to the statistical scaling �see Subsection ��	� as well as
Fig� � and ����

It was again striking to �nd such a clear di�erence between incoming and outgoing tra�c�
This time� the outgoing tra�c showed very small �� in fact only � 
 �� while the incoming
and the combined tra�c showed almost no tendency towards burstiness �see Fig� ��
and ���� Tra�c with �left sided� spectra are very irregular� in other words �bursty��
Comparing with the �ndings for the tra�c at Berkeley it has to be concluded that it is
not necessarily the incoming tra�c which contributes the bulk of the bursty tra�c at the
gateway of a LAN�

��� Statistical versus multifractal scaling

Recall that we denoted the given positive data by Zi and that we set

Xi 
� Zi � %IEZ � Zi � ��N
NX
i��

Zi�

in order to obtain centered data� For Zi a multifractal analysis is in order while Xi is
suitable for a statistical analysis estimating the parameter of self�similarity H�

In order to compare the two scaling behaviors note that
PN�m

k�� X
�m�
k � �� whence

SZ
m��� �

N�mX
k��

�Z
�m�
k �� � m�

N�mX
k��

�Z�m�
k ��



��� Statistical versus multifractal scaling �	

� m�
N�mX

k��

�X
�m�
k � %IEZ�� � m�

N�mX

k��

�X
�m�
k �� �mN� %IEZ��

� SX
m��� �mN� %IEZ��� ����

At this point a conceptual di�culty arises� The statistical test looks for asymptotic
behavior as m � �� while multifractal analysis is formulated in terms of the limit
�m � m�N � �� The equation above shows now that scaling can�t be perfect for both
simultaneously except in the trivial case ���� �  ��� � ��

Nevertheless� the scaling behavior of both� SZ
m and SX

m may be acceptable in a scaling
region� i�e� a range of values of m with nearly linear behavior in log�log coordinates�
Some remarks are in order�

First� SZ
N �q� � �S

Z
N����

q implies ZN �q� 	 q� and SX
N �q� � � � const yields �

X
N �q� 	 �� This

forces the scaling to break down as m� N � It is clear that the e�ect on �Xm is stronger
since both�  and � increase with q �see Fig� �� ��� �� and ���� In the limit m� �� on
the other hand� imprecision of the measurement will a�ect the scaling behavior�

Second�  �q� is a convex function as has been shown before �see also �B��� Since  ��� � ��
and  ��� � �� we must have  ��� 
 �� On the other hand� ���� 
 � follows from H 
 ��
Thus� the term of order m� will not be essential for m� ��

All this makes clear that scaling should be expected rather in the multifractal limit
m�N � �� If scaling is present there� ���� suggests

 ��� � min��� ����� � ���� � �H � �� ����

Equation ���� illustrates� �rst of all� the way in which multifractal analysis goes beyond
the �mono�fractal� statistical tests based on an estimation of H� As an estimator of H�
however� ���� ��� � �� is certainly of limited use�

To illustrate this point in some detail� and in order to show what di�erent conclusions
a statistical approach would provide we put forward some estimations of H through
%Hs 
� �������� � �� and %Hm 
� ���� ��� � �� which are obtained by least square �tting
of the log�log plot of the corresponding partition sum in a suitable scaling region�

In conclusion� %Hm is considerably larger than %Hs throughout the data and is� thus� of
limited use� Table � illustrates� though� that one has to take the whole spectrum  �q�
into consideration� not only one value such as  ����

With the statistical method of moments� on the other hand� we encounter as an essential
problem a general scaling behavior of a lesser quality� and more importantly� a signi�cant
dependence of the estimator on the choice of the scaling region� In this context it is
essential to note that despite of poor scaling� the partition functions �B�q� and �T �q� of



�� � NUMERICAL ANALYSIS OF THE TCP TRAFFIC

%Hm outgoing incoming combined

Berkeley� Z ��� ��� ��	
Berkeley� B ��� ��� ���

CNET� Z ��� �� ��
CNET� B ��� �	� ���

Table �
 The multifractal estimator %Hm � � ��� � ���� of the Hurst exponent for the
aspects Z �bytes per packet� and B �bytes per time�� The other two aspects showed
no conclusive di�erence between outgoing and incoming tra�c� As this table illustrates�
conclusions on the irregularity of data cannot rely on the value  ��� only� With the aspect
B at CNET� e�g� %Hm suggests that the incoming tra�c is more irregular than the outgoing
one� a conlcusion which is certainly denied when taking the whole spectrum into account
�Fig� ����

the centered aspects B �bytes per packet� and T �time per packet� is indeed fairly linear
for q � �� up to large values� supporting the asumption of self�similarity which forms
the bases of the statistical approach� The corresponding Legendre transform ����� forms�
thus� an �edge� at its maximum� i�e� one �nds straight lines of these slopes q which touch
���q� in only one point �Fig� ����

In summary� in our context the multifractal analysis is superior to the statistical method
of moments for the following reasons


� Throughout all data considered in this work� the multifractal scaling was more
convincing�

� Scaling was typically observed in the multifractal limit m� � and not as m� N �

� The necessary procedure of centering the data introduces inaccuracy in the statis�
tical method of moments� whence the scaling is unacceptable for negative q�

� Essential properties concerning regularity and burstiness were found when looking
at the whole spectrum and not only at one parameter�

� With the inter�arrival times the properties just mentioned manifest themselves in
the range corresponding to negative q and were� thus� even less accessible through
the statistical method of moments�

��� Discussion

We found that the data tra�c at Berkeley and at CNET labs is clearly multifractal�
Moreover� we would like to stress that the scaling is extraordinary in both� quality and
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%Hs outgoing incoming combined

Berkeley� Z ���� ��� ��	�
Berkeley� T ��	� ���� ���	
Berkeley� B ���� ���� ����
Berkeley� P ��� ���� ���
CNET� Z ��� ���� ���
CNET� T ���� ���� ���

CNET� Z ��� ��� ���
CNET� T ��� ��� ���

Table �
 The statistical estimator %Hs for various aspects� The lines at the end are obtained
from the same data �as indicated�� however with di�erent scaling regions ��� � � � � ��� as
compared to ��� � � � � ��
 which was applied at the top � lines �compare Fig� ����

size of the scaling region� The latter is especially astonishing when compared to �ndings
in other �elds
 the scaling region of TCP tra�c spans four to �ve orders of magnitude as
compared to the one to two orders which are typical in other �elds �Ha�� We also found
statistical self�similarity� but notably only for q � ��

We see possible reasons for the high quality of the multifractal scaling in the hierarchy
inherent to telecommunication protocols� as well as in the fact that data transfers involve
splitting wholes into pieces�

The analysis we provide� in particular the various spectra fG and fL� are best interpreted
from a �distant point of view�� Rather than looking at the exact values f��� one looks at
the shapes of the spectra� These spectra reveal telling information about the irregularities
as well as regularities of the data tra�c� Among such we were in particular able to dis�
tinguishing between incoming and outgoing tra�c and suggest that heavy and moderate
incoming tra�c at Berkeley are independent from each other� This could not be achieved
with an estimation of the statistical parameter H �see Table ���

One could wonder which tra�c� outgoing or incoming� should be more regular� both being
subject to some smoothing e�ects
 the incoming tra�c comes from a WAN where a greater
number of sources could lead to some averaging� while the outgoing tra�c is produced
by a LAN where response times are shorter and &ow control should be more e�cient�
Our analysis� especially the comparison of the tra�c at Berkeley and at CNET� shows
that the very type of LAN has a much greater in&uence than the mentioned e�ects� A
tentative explanation of the very sporadic outgoing tra�c at CNET could be found in the
fact that the essential part of this tra�c consists in consultations of the World Wide Web
�where the server is located outside the LAN�� One may suspect that the tra�c leaving
the LAN is more sporadic since it consists mainly of a control tra�c of the web clients
�ACKs and NACKS� with a few �true� data transfers in between� The tra�c arriving at
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the LAN stems mainly from the web server and is �as is most apparent in its aspect B�
more regular since it runs constantly on �heavy mode�� Investigations on Web tra�c seem
to support our �nding that it di�ers from �usual� tra�c �C��

Proposing as models of arriving tra�c loads simple random binomial measures �see Fig� 	�
we do not suggest to �t a whole spectrum of scaling exponents  �q� to a given trace but
to adjust rather few parameters which determine the distribution of the random weights
M�� M� as explained in Subsection ��	� The model in Fig� 	� e�g� is obtained by taking
Rk � ��� and M� 	 U ��� ��� M� 
� � � M� 	 U ��� ��� It is clear that this is too
simple a model� especially since its spectrum is perfectly concave� But modeling was not
what we aimed for but merely a visual comparison of a random binomial measure with
an actual trace� Indeed� having approximately log�normal marginal distributions these
models seems to well characterize real data tra�c �P��

Now that the multifractal structure of TCP tra�c has been demonstrated� several tasks
lay ahead� First� it would be useful to calculate essential statistical information such as
forecasting for such random measures� or multifractal processes� The knowledge of the
whole multifractal spectrum will then allow more precise statistics than the knowledge
of one scaling or �burst� exponent H only� Secondly� �physically� relevant models with
multifractal properties are needed for a better understanding of TCP tra�c� These issues
will be addressed in forthcoming papers �RL� LR��

Conclusions�

TCP tra�c is clearly multifractal with excellent scaling of the comparably large scaling
region of four to �ve orders of magnitude� There are good numerical estimators for the
multifractal spectrum of a measure� From this spectrum important information about the
scaling structure and burstiness can be obtained which remains hidden to an analysis re�
lying on the Hurst exponent only H� It has been shown that the monofractal assumption�
which is implicitly used when modeling with FBM� does not apply�
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Figure �
 The scaling behavior of Zi �bytes per packet� for the �combined� tra�c observed
at Berkeley demonstrated in log�log plots of SZ

m�q� against m� where from top to bottom
q runs through ������ �� 	��� 	� � � � ��	��� ��� The ordinate is log� S

Z
m�q�� In the �gure

on the top m � ��� ��� ���� � � � � ���� and the abscissa is log��m����� In the �gure on the
bottom m � �� �� �� � � � � ��� and the abscissa is log��m��
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Figure �
 The piecewise increments of the log�log plot in Fig�
ure � �top�� i�e� m�q� � log� S

Z
�m�q�� log� S

Z
m�q� as de�ned in

���� against log�m � Note that we display the whole available
range m � �� �� �� � � � � ���� This demonstrates impressively
that the graphs are indeed very close to being linear� Any av�
erage of the m�q� provides a valuable estimate of  �q�� Nev�
ertheless�  �q� has been calculated via a least square �tting
in the �scaling region� m � �	� � � � � ����
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Figure 
 Approximations fG
m��� to fG on the scales �m �

m�N � m � ��� � � � � �� �compare Subsection 	�	� for the same
data as in Fig� � and Fig� �� For comparison� the Legendre
transform fL��� �bold� of  �q� is shown as well� Note that
fL��� is concave by de�nition� The negative values of fL���
correspond to H�older exponents � which are so rare that they
will not be observable when looking at one realization of the
process only �compare �	� as well as the remarks in Subsec�
tion ��	��
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 The spectra fG
m��� and fL��� as in Fig� � however� with a separate analysis

for the outgoing tra�c� displayed on the top� and for the incoming tra�c� shown on the
bottom�
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Figure ��
 Scaling behavior of the centered data Xi � Zi � %IEZ for the same source as
in Fig� � and Fig� �� demonstrated in log�� log� plots of the partition sum SX

m�q� �top��
On the bottom� the stepwise increments �Xm �q� � ��X�m� q� � log� S

X
�m�q� � log� S

X
m�q�

�compare ����� are� It is clear that one cannot talk of scaling for negative q� But also
for positive q we �nd high variations of up to ���'� Here� the cumulation parameter m
varies from ��� ��� � � � � ����� In Fig� �� a close�up on the range m � �� �� � � � � ��� is shown�
This is discussed further in Subsection ��	�
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Berkeley, centered: Bytes per packets
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Berkeley, centered: Time per packets
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Figure ��
 The Legendre transform of ��q� and �T �q� which were obtained by least square
�tting of Fig� �� and �� in the scaling region m � �� � � � � ��� The complete curves have
been calculated despite of poor scaling in the range q � � which corresponds to the
decreasing part of the spectra� The di�erence between incoming and outgoing tra�c
shows only with the aspect �bytes per packets�� From an analysis of the interarrival times�
the two tra�c look alike� In particular� the LRD parameter H �peak of the spectra� lie in
the range ���	�� ������ In this context it is important to mention that the spectra show a
clear edge at the maximum which is related to the linearity of ��q� for q starting around
�� up to high values�
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Berkeley, time per packet
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Figure �	
 Scaling of the aspect Ti �time per packet� for the tra�c observed at Berkeley�

On top the usual log�log plot of the partition sum ST
m�q� �

P
�T

�m�
k �q of the cumulated data

T
�m�
k � On the bottom� the step wise increments Tm�q� �  �T�m� q� � log ST

�m�q��logS
T
m�q�

are shown� Scaling is excellent in the region �
� � � � � ��
� Though T �q� is nearly linear�
especially for positive q� it provides a correct and informative spectrum �see �������
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Figure ��
 Comparing di�erent ways of cumulating data into time intervals of approxi�
mately equal size� Again� we show the stepwise increments  ���m �q� of the partition sum
log� S

���
m �q� as a function of log��m�� It is clear that the �rst method of cumulation

�yielding the data set B� shows the best scaling behavior� All three methods give nearly
indistinguishable least square estimates of the partition function  �q��
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Berkeley, combined traffic
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Figure ��
 The Legendre spectra fL��� for all �aspects� of the data tra�c at Berkeley�
The most variation in H�older exponents is found with Bk �bytes per time�� Note again
the symmetry between the spectra of Pk and Ti �Fig� ����
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Berkeley, packets per time
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Figure ��
 At Berkeley� the incoming tra�c shows characteristically di�erent spectra fL
than the outgoing tra�c and the combined tra�c� This becomes apparent when studying
any aspect� Note the symmetry of the spectra of the aspects Pk and Ti ��packets per time�
and �time per packet��� These aspects provide samplings of measures which are inverse
to each other �MR� RM�� RM	�� Theory says that their spectra must be related through
the formula fP ��� � �fT ������ which is perfectly met here�
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CNET outgoing, bytes per packet
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CNET incoming, bytes per packet
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Figure ��
 The di�erence between incoming and outgoing tra�c at CNET� hence between
incoming and outgoing tra�c� is again very striking� Here� we display approximations
fG

m��� to the fG spectrum obtained on various levels of aggregation m for the aspect Z
�bytes per packets�
 on top the strongly left�sided spectra for the outgoing tra�c� on the
bottom the right�sided spectra for incoming tra�c� The spectra of the combined tra�c
are very similar to the ones of the incoming tra�c� which is why they are not shown�
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CNET, bytes per packet
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Figure ��
 The characteristic di�erence between incoming� outgoing and combined tra�c
at CNET is best visible in an analysis of Z� i�e� �bytes per packets� �on top�� demonstrated
here with the spectra fL� For the outgoing tra�c fL exists of a considerably broad
increasing part� having no decreasing part �dashed�� Such spectra have been termed �left�
sided� �M�� MEH� ME� RM��� For the incoming as well as the combined tra�c the fL
spectrum found is �right sided� and comparably narrow� This is in excellent agreement
with Fig� ��� For a comparison we also display the fL spectrum of B �bytes per time�
on the bottom� Also here we �nd a left sided spectrum for the outgoing tra�c and right
sided spectra for the others�
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CNET outgoing, bytes per packet, centered
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CNET outgoing, bytes per packet

q=4

q=3.5

q=3

q=2.5

q=2

q=1.5

q=1

q=0.5

q=0

q=-0.5

q=-1

q=-1.5

q=-2

q=-2.5

q=-3

q=-3.5

q=-4

tau(Z,m,q)

log m-5.50

-5.00

-4.50

-4.00

-3.50

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

5.00 10.00 15.00

Figure �
 The superior scaling of non�centered data is most obvious when looking at the
aspect B �bytes per packet� for the outgoing tra�c at CNET� Here� as in the remaining
�gures� we show for various aspects A the statistical scaling of moments� i�e� �A

�

m �q� �
��A��m� q� � log� S

A�

�m�q� � log� S
A�

m �q� for the centered aspect A
� �here on top� as well

as the multifractal scaling of moments� i�e� Am�q� � log� S
A
�m�q�� log� S

A
m�q� for the non�

centered data A �here on the bottom�� �For the ease of notation we write Z � instead of
X here��



�� FIGURES

Berkeley, bytes per packet, centered
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Figure ��
 Statistical versus multifractal scaling of moments for the data considered in
Fig� �� Choosing the scaling region to be �� � � � � ��� or ���� � � � � ��� yields the same estimate
for the partition function  �q� of the non�centered data� but introduces a drastic change in
the estimation of ��q�� the partition function of the centered data� �See Subsection ��	��
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Figure ��
 As with the aspect Z �bytes per packet� the statistical approach is found to be
less robust than the multifractal analysis when studying the interarrival times of packets�
�See Fig� � and ����
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Figure ��
 For the tra�c at CNET labs� the same conclusions as above hold when com�
paring the statistical and the multifractal scaling of moments� Note that the partition
functoin  �q� found here is linear for q � � in agreement with the right sided spectrum
shown in Fig� ���


