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Ronald Aylmer Fisher

1890-1962 (Born in England, Died in Australia)

1911- helped found Eugenics Society (Cam.
Univ)

1912 BA in astronomy (Cam. Univ)

1913-1919- mathematics teacher (vision too
bad to fight, subsistence farming)
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1919-1933?-Rothemstad biologist/statistician

(ANOVA, exp design, “Statistical Methods for

Research Workers”

1931,1936- visitor at Iowa State

1933- Professor of Eugenics, conflict with Ney-

man, E Pearson

1943- Professor of Genetics

1957- retired, moved to Australia (1959)



Outline:

1. Theoretical Statistics before 1922

• Pearson’s curves and the method of mo-

ments

• Neglected for several reason

2. Fisher’s Contributions

• Brings rigour to mathematical statistics

• Bridges key conepts, resulting in...
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Fisher’s Contributions in 1922:

• The problems of statistics: specification,

estimation and sampling distribution

• Sufficiency, ancillarity and factorization

• Maximum Likelihood Estimation , invari-

ance

• (Fisher) consistency

• Efficiency (partially)

• Contrasts to methods of Bayes and Pear-

son
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Definitions for Clarity:

specification-the distribution of our sample (xi ∼
f (x, θ))

estimation-estimating parameters of our distri-

bution (T (x))

sampling distribution-the distribution of our es-

timator (T (x) ∼ G, Fisher’s est’s usually based

on MLE, Pearson’s on MOM)

efficiency -comparison of variance of estimator

with the variance of the most efficient (lowest

variance) estimator (V ar(T1(x))
V ar(T2(x))

, ie Fisher infor-

mation)
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Some order in Pearson’s Approach

• advantages:

– 8 types of curves fit using first four mo-

ments

– worked well in most practical situations

• disadvantages:

– existence problems (cauchy dist)

– inefficiency increases with distance from

normality (see figure in paper)
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Statistical tools before 1922 (keyword is ad

hoc):

• Pearson’s curves (1895), goodness of fit

(1900) (specification)

• MOM, Bayes’ 1763 paper still influential

(cited), other methods (estimation)

• Many scattered ideas (regression, correla-

tion, ANOVA, normality/probability,...)

• Student’s 1908 work on the t-distribution,

understanding of the chi-square distribu-

tion (samp dist)
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Statistical Tools Missing or Incomplete Before

1922:

• data reduction, relationship to estimation

in a formal framework

• criterion for efficiency (Fisher, 1920)

• basic concepts (Bayes methods okay? Dis-

tinction between parameters and statistics?

Relationship between statistics and proba-

bility?)

• Clear framework for specification, estima-

tion and sampling distribution

• Distribution of regression coefficients

8



Fisher Begins with ’The Neglect of Theoretical

Statistics’

“...in spite of the immense amount of

fruitful labour... the basic principles [of

TS] are still in a state of obscurity,...

fundamental problems have been ignored

and fundamental paradoxes left unre-

solved.”

Hopes to work on basic principles, which has

been hindered due to 1) the idea that it is

impossible to quantify error and 2) verbal con-

fusion between parameters and statistics.
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Sec. 2, “The Purpose of Mathematical Statis-

tics”

Statisticians should:

1. reduce data as much as possible without

losing the relevant information (sufficient

and ancillary statistics)

2. construct a hypothetical infinite population

of which the data are a random sample (ie

as your sample tends to infinity, the his-

togram/FP converges to the true distribu-

tion)

3. relate this to probability theory via a distri-

bution specifed by few parameters
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Sec. 3, “The Problems of Statstics”

The reduction of data leads to 3 types of prob-

lems:

1. Specification (“a matter entirely for the

practical statistician”)

2. Estimation (focus of article, MLE)

3. Sampling Distribution (“very little progress

has been made”, chi-square and t-distributions)
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After specifying the distribution (“We must

confine ourselves to those forms which we know

how to handle”), estimation and sampling dis-

tribution are related-

• want easy to compute estimates whose sam-

pling distributions are known
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Sec. 4, “Criteria of Estimation”

Def. A statistic is consistent (Fisher consis-

tent) if, when calculated from the whole pop-

ulation, it is equal to the parameter describing

the probability law.

Ex. Consider estimating the mean of a normal

distribution, Tn = x̄n is Fisher consistent, but

Tn = x̄n + 1
n is not.
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Ex. When estimating σ from a normal sample

(µ unknown), here are two consistent estimators-

which is better?

σ̂1 =
1

n

√
π

2

n∑
i=1

|xi − x̄|

σ̂2 =

√√√√1

n

n∑
i=1

(xi − x̄)2
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Which is better? Both are Fisher consistent.

Need another criterion.

• σ̂1 is easier to compute

• σ̂2 is more efficient (V ar(σ̂1)
V ar(σ̂2)

= 1.14), ie we

need 14% more data when using σ̂1 in order

to get the same variance as σ̂2

• small annoyance- lack of uniqueness for ef-

ficient statistics?
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Sec. 5, “Examples of the Use of the Crite-

rion of Consistency” (criticisms of Pearson’s

techniques)

• only efficient in normal case

• only works when first 4 moments are fi-

nite, etc. (distributions not satisfying this

cannot be determined)

• ie, fails for Cauchy distribution, since x̄ has

the same distribution as x (Fisher says we

must consider median, and should not dis-

card any data)
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Def. A statistic is sufficient if it summarizes

the whole of the relevant information supplied

by the data. If θ is to be estimated and T1 is

sufficient, then for any other statistic T2, we

have that T2 given T1 is independent of θ.

• Fisher uses a bivariate normal to argue that

sufficient statsitics are efficient.
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Def. A region is isostatistical if each sample

from this region gives a statistic with the same

value
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Sec. 6, “Formal Solution of Problems of Esti-

mation”, aka Method of Maximum Likelihood

Since sufficiency is not adequate as a crite-

rion to provide estimators, Fisher proposes the

MLE as a method of obtaining a sufficient es-

timate. Let

P (x ∈ A) =
∫
A

f (x | θ) dx

then for n independent observations,

P (n1 x’s ∈ A1, · · · , np x’s ∈ Ap)

=
n!

Πp
i=1ni!

Πp
i=1

{∫
Ai

f (xi | θ) dxi

}ni
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Maximizing this quantity (or equivalently its

log) with respect to θ gives estimates θ̂.

In his first attempt, Fisher used a Bayesian ap-

proach, but makes clear to differentiate MLE

from the Bayesian approach. The main reser-

vation about Bayesian methods was the lack

of invariance (later Jeffreys found an invariant

prior) see paper for example and discussion.
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If we assume that the asymptotic distribution

of the MLE is normal, then

• the asymptotic variance of the MLE is the

reciprocal of the Fisher information (proof)

• notes that a similar proof use for MOM was

incorrect (MOM is actually inefficient)
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Sec. 7, “Satisfaction of the Criterion of Suf-

ficinecy” or Sufficiency and Maximum Likeli-

hood

• derived the form of the limiting normal dist

for the MLE

• earlier showed that a sufficient estimate

has the smallest-variance normal distn in

large samples

• if the MLE is sufficient we have a great

estimator (proof is incorrect)
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Example:

Suppose x1, · · · , xn ∼ Exp(β). Then the likeli-

hood equation is:

L (β | x) =
n∏

i=1

β−1 exp

{
−

1

β
xi

}

= β−n exp

−1

β

n∑
i=1

xi


and

∑n
i=1 xi is sufficient. So we can estimate

using (equivalently) the log likelihood, taking

its derivative and solving for β,

d

dβ

l (β | x) = −n logβ −
1

β

n∑
i=1

xi

 = 0

−n

β
+

1

β2

n∑
i=1

xi = 0

β̂ = x̄n
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and if we want the sampling distribution, we

know that
n∑

i=1

xi ∼ Gam

(
1

β
, n

)

so

E (x̄n) =
1

n
E

 n∑
i=1

xi


=

1

n
nβ

= β

and

V (x̄) =
1

n2
V
(∑

xi

)
=

1

n2
nβ2

=
β2

n

Now we can compare our estimate with others.



Sec. 8-13 Are mainly applications showing his

methods superior to Pearson’s

• focus on efficiency

• MOM efficiency decreases as distributions

become less normal

• special case where MOM has zero efficiency

• many examples (mostly using Pearson’s curves),

also a case where it is impractical to use

MLE, but a highly efficient, simple to cal-

culate estimate can be found
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What’s wrong with the 1922 paper?

• criticisms

• existence of sufficient statistic, MLE not

demonstrated

• optimality of MLE not explicit

• MLE when no maximum (uniform, etc)

• bad proof of factorization (sufficiency not

fully developed)

• Fisher consistency not adopted
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Conclusions:

• a groundbreaking, unifying paper

• not fully appreciated

• some errors, still gaps remaining
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