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Abstract

In the Neyman-Pearson (NP) classification paradigm, the goal is to learn a classifier from
labeled training data such that the probability of a false negative is minimized while the prob-
ability of a false positive is below a user-specified level α ∈ (0, 1). This work addresses the
question of how to evaluate and compare classifiers in the NP setting. Simply reporting false
positives and false negatives leaves some ambiguity about which classifier is best. Unlike con-
ventional classification, however, there is no natural performance measure for NP classification.
We cannot reject classifiers whose false positive rate exceeds α since, among other reasons, the
false positive rate must be estimated from data and hence is not known with certainty.

We propose two families of performance measures for evaluating and comparing classifiers
and suggest one criterion in particular for practical use. We then present general learning
rules that satisfy performance guarantees with respect to these criteria. As in conventional
classification, the notion of uniform convergence plays a central role, and leads to finite sample
bounds, oracle inequalities, consistency, and rates of convergence. The proposed performance
measures are also applicable to the problem of anomaly detection.

1 Introduction

In the Neyman-Pearson (NP) classification paradigm, the goal is to learn a classifier from labeled
training data such that the probability (with respect to the true, unknown data distribution) of a
false negative is minimized while the probability of a false negative is below a user-specified level
α ∈ (0, 1). Unlike classical NP hypothesis testing, NP classification does not assume knowledge of
the class-conditional densities, but only a finite sample of labeled observations.

This framework is an important alternative to other, more common approaches to classification
that seek to minimize the probability of error or expected Bayes’ cost. One advantage of the NP
paradigm is that in many important applications, such as disease classification or network intrusion
detection, it is more natural to specify a constraint on the false positive probability than to assign
costs to the different kinds of errors. A second and no less important advantage is that, unlike
decision-theoretic approaches, NP classification does not rely in any way on knowledge of a priori
class probabilities. This is extremely important in applications where the class frequencies in the
training data do not accurately reflect class frequencies in the larger population. For example, the
frequencies of diseased and normal patients at a research hospital, where training data might be
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gathered, in all likelihood do not reflect the class frequencies in the population at large. In fact, it
could probably be argued that most classification problems of interest fit this description.

In this paper we consider the problem of evaluating and comparing classifiers in the NP context.
Suppose we train two classifiers (e.g., two support vector machines with different parameter settings)
and compute empirical estimates of the false positive and false negative probabilities for each. Given
α, which classifier should we choose? In some cases there may be an expert who can decide. But
what if no expert is available? Or, what if we want to compare two learning algorithms across
several datasets? Even if an expert is available, experts usually cost money or have limited time,
and their decisions may be subjective or prone to human error. It seems desirable to have an
objective criterion for evaluating and comparing the trained classifiers.

Before proceeding, let us briefly introduce some basic notations. Let f denote a classifier, and
let R0(f) and R1(f) denote the true false positive and false negative probabilities, respectively.
Also let R̃0(f) and R̃1(f) denote estimates of R0(f) and R1(f) (e.g., based on an independent test
sample). Denote by f∗α the classifier that minimizes R1(f) subject to R0(f) ≤ α. This classifier is
analogous to the Bayes classifier in conventional classification. Finally, set βα = R1(f

∗
α).

The approach adopted in this paper is to employ a scalar quantity that reflects the performance
of a classifier and that can be estimated reliably. For example, in conventional classification,
that scalar quantity is usually taken to be the probability of misclassification. By “reflects the
performance” we mean, at the very least, that the global minimizer of the performance measure
should be f∗α.

One candidate for such a performance measure is to assign a classifier f a “score” of R1(f) if
R0(f) ≤ α, and ∞ otherwise. This is clearly minimized by f∗α and it favors any classifier satisfying
the constraint to any classifier that does not. Although such a measure may be appropriate for
classical hypothesis testing, there are at least three reasons why it is impractical when learning
from data.

First, learning rules produce classifiers from random training samples, and hence the false
positive rate of a classifier is itself a random quantity. The performance of an algorithm on one
dataset may not give a fair indication of its performance on others. This contrasts with conventional
classification, where the probability of error for an unfavorable training sample will at least be
somewhat close the typical probability of error for that distribution. In terms of expectation, the
expected “score” of a learning rule will be infinite as long as there is some collection of training
samples (that occurs with nonzero probability) for which R0(f) > α. It seems preferable for a
performance measure to show more leniency to violations of the false positive constraint so that
“rare” training samples do not mislead us about a learning rule’s typical performance.

Second, it is not possible to estimate the performance from data precisely. Estimates of R0(f)
and R1(f) are based on random data and thus will have some chance error. It is generally impossible
to be certain whether a given classifier does or does not satisfy the false positive constraint. In
fact, suppose R̃0(f) and R̃1(f) are estimates based on an independent test sample. If we estimate
the “score” of f with R̃1(f) when R̃0(f) ≤ α and with ∞ otherwise, then the bias of this estimate
is infinite whenever 0 < R0(f) ≤ α.

Third, many practitioners would be content to have the false positive rate slightly exceed the
constraint if the decrease in the false negative rate is substantial. In other words, it might be nice
to explore a small region along the receiver operating characteristic in the vicinity of α. Unlike
cost-sensitive classification, however, which also allows trading off one error for another, we still
require an operating point near α.
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To alleviate these problems we could instead measure performance with cIR0(f)>α + R1(f),
where c > 1 and I is an indicator. Yet the same three arguments used above for the case c = ∞
still apply. For example, suppose we estimate this quantity with a plug-in estimate based on an
independent test sample. This estimate has a very large bias when the true R0 is close to α, even
for large test sample sizes. In fact, if R0(f) = α, the bias does not tend to zero as the test sample
size increases.

In summary, a good performance measure for NP classification should not reject outright a
classifier that appears to violate the false positive constraint. Such a violation may be (1) the
result of a rare training sample on which an otherwise good learning rule performs poorly, (2) the
result of chance error in estimating the false positive rate, and (3) acceptable to a practitioner.

Another possibility, which does show some leniency to classifiers violating the false positive
constraint, is to measure performance with |R0(f)− α|+ |R1(f)− βα| or some other “distance” in
the (R0, R1) plane. Yet this kind of measure too has drawbacks. It requires knowledge of βα which
is unknown, and hence the distance cannot be estimated. In addition, it penalizes classifiers for
having R0(f) < α or R1(f) < βα, which seems unreasonable.

In addition to the question of how to measure performance in NP classification, this paper
addresses a second question that follows naturally from the first: Having settled on a performance
criterion, is it possible to design a learning rule tailored to that criterion?

Previous work on NP classification has not dealt with either of these two questions. Both
Cannon, Howse, Hush, and Scovel [1] and Scott and Nowak [2] prove generalization error bounds
for learning rules f̂α based on (penalized) empirical risk minimization. Yet these bounds are of the
form “with high probability, R0(f̂α) is close to α and R1(f̂α) is close to its optimal value.” The false
positive and false negative probabilities are treated separately, and combining them into a single
performance measure is not discussed. A more extensive comparison with these works is given in
Section 2.4.

In Section 2 we propose two families of criteria for evaluating classifiers in the NP paradigm,
and present learning rules that satisfy performance guarantees with respect to these criteria. The
rules are given by (in one case constrained) penalized empirical risk minimization. The uniform
convergence of certain empirical processes is seen to play a key role in bounding their performance,
as in the theory of statistical learning for conventional classification [3, 4]. Uniform convergence in
turn leads to finite sample bounds, oracle inequalities, consistency, and rates of convergence.

Section 3 gives examples of complexity penalties for NP classification, which are key ingredients
in the proposed learning rules. Generalizations of one of the oracle inequalities are given in Section
4. Some practical aspects of estimating our performance measures from data are presented in
Section 5. Section 6 discusses extensions and applications of the main results, including convex
upper bounds and anomaly detection. The proofs are gathered in an appendix.

2 Main Results

To formalize the problem, let X ⊂ R
d be a space of possible patterns, and let X be a random

variable on X , corresponding to an observed pattern. Let P0 and P1 be two distributions of X.
Let (x, y) denote a realization of X, where y = 0, 1 indicates the data generating distribution Py. A
classifier is a Borel measurable function f : X → {0, 1}. If f is a classifier and (x, y) a realization,
a false positive occurs when f(x) = 1 but y = 0. Similarly, a false negative occurs when f(x) = 0
but y = 1. Let R0(f) = P0(f(X) = 1) and R1(f) = P1(f(X) = 0) denote the false positive and
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Figure 1: Lemma 1 can be understood in terms of properties of the ROC of f∗α. The solid line is
the ROC of a hypothetical f∗α. The dashed line passes through the ROC at α = 0.1 and α′ = 0.3
and has slope (βα − βα′)/(α′ −α). The dotted line is tangent to the ROC at α = 0.1 and has slope
λα. Lemma 1 follows by concavity of the ROC.

false negative probabilities (sometimes called rates) of f .
Let α ∈ (0, 1). In Neyman-Pearson classification one seeks the classifier f∗α for which R1(f) is

minimized subject to R0(f) ≤ α. Throughout this work we assume

A1 X has class-conditional Lebesgue densities h0 and h1.

A2 For each λ > 0, P0(h1(x) = λh0(x)) = P1(h1(x) = λh0(x)) = 0.

Under these assumptions, the Neyman-Pearson lemma [5] states that f∗α is given by a likelihood ratio
test (LRT): f∗α = Ih1(x)>λαh0(x), where λα is the unique number such that

∫
h1(x)>λαh0(x) h0(x) dx =

α. Assumption A2 guarantees the existence of λα and also implies that we may also write f∗α =
Ih1(x)≥λαh0(x). Recall βα = R1(f

∗
α) =

∫
h1(x)<λαh0(x) h1(x) dx denotes the false negative rate of f∗α.

We adopt A1 and A2 because they ensure that the receiver operating characteristic (ROC) of
the LRT is concave. This allows us to bound βα − βα′ in terms of α − α′ using the slope of the
ROC at α. In particular, we have the following.

Lemma 1. If α′ > α, then βα − βα′ ≤ λα(α′ − α). If α′ < α, then βα′ − βα ≥ λα(α− α′).

A geometric proof of the lemma comes from considering properties of the ROC of f∗α [6]. In
particular, the ROC of f∗α is concave and has slope λα at α. The lemma follows from these properties
and the realization that (βα − βα′)/(α′ − α) is the slope of the line passing through the ROC at α
and α′. See Fig. 1. An analytic proof of the lemma is given in the appendix.

Without assumptions A1 and A2 (for example, when X is discrete) the ROC of the LRT
might have discontinuities and could be non-concave. One theoretical fix is the introduction of
randomized classifiers that choose between two non-randomized classifiers based on a coin flip.
This guarantees that the ROC of f∗α is concave for general distributions. However, such classifiers
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are not amenable to our analysis or require computationally implausible learning rules. That said,
the results stated later in this section do extend to more general distributions, provided that α
is such that R0(f

∗
α) = α, i.e., the optimal classifier satisfies the constraint with equality. In this

special case, randomized classifiers are not needed.
Let S = {(X1, Y1), . . . , (Xn, Yn)} denote a training sample. In NP classification, two sampling

plans may be considered [1]. Under the joint sampling plan, the numbers n0 and n1 of examples
from each class are not known until the sample is gathered, and the data are iid realizations of
some joint distribution P on (X,Y ). Under the conditional sampling plan, n0 and n1 are known a
priori, and the data are iid realizations of their respective conditional distributions. The difference
is that in the former case, n0 and n1 are random, whereas in the latter case they are non-random.
We will see later that, in the presented framework, the philosophical differences between the two
sampling plans can be ignored.

The empirical errors with respect to S are defined by R̂0(f) = (1/n0)
∑

i:Yi=0 If(Xi)=1 and

R̂1(f) = (1/n1)
∑

i:Yi=1 If(Xi)=0. A learning rule maps training samples to classifiers. We denote a

learning rule by f̂α, and we also use the same notation to denote the classifier returned when the
training sample is given.

2.1 Comparing classifiers

We propose two families of performance measures, each indexed by a parameter 0 < κ ≤ ∞. They
capture what will be referred to as the net NP error, or simply net error. The first is

Mκ(f) = κ (R0(f) − α)+ + (R1(f) − βα)+ , (1)

where (x)+ := max(x, 0). The second is

N κ(f) = κ (R0(f) − α)+ +R1(f) − βα. (2)

The parameter κ is a tradeoff parameter that controls the penalty for exceeding the constraint. We
allow κ = ∞, which corresponds to strict enforcement of the constraint, although as argued in the
introduction, this case has questionable value. Note that κ is different from a “cost” parameter
used in cost-sensitive classification. If the (·)+ operators were not present, these criteria would be
like cost-sensitive risks. Yet with the (·)+ operators, κ only penalizes false positive rates in excess
of α.

Each of the two families of error measures has its pros and cons. The first family has the
desirable property that, for any value of κ, it is minimized by the optimal classifier f∗α. Yet it also
has a serious drawback: it depends on βα, which depends on the unknown distribution. Thus, it
is useful for theoretical analysis and simulation studies, but it cannot be reliably estimated with
real-world data.

For the second family the story is reversed. Even though βα appears, it is simply a constant
additive term that can be ignored for the purposes of minimization or comparison. Thus, reliable
estimation (up to the unknown constant) based on an independent test sample is possible. On the
downside, minimizing this net error does not result in f∗α for all values of κ. If κ is small, and since
(in contrast to the first family) it pays to take R1(f) below βα, the minimizing classifier might have
R0(f) > α. The following result tells us which values of κ are meaningful.

Proposition 1. If κ ≥ λα then N κ(f∗α) ≤ N κ(f) for all classifiers f .
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Proof. It suffices to consider only the classifiers f∗α′ , α′ ∈ [0, 1], since each of these has optimal false
negative rate for false positive rate α′. There are two cases. If α′ < α, then N κ(f∗α) −N κ(f∗α′) =
βα − βα′ ≤ 0. If α′ > α, then by Lemma 1 we have

N κ(f∗α) −N κ(f∗α′) = κ(α− α′) + (βα − βα′)

≤ κ(α− α′) + λα(α′ − α)

= (λα − κ)(α′ − α)

≤ 0

since κ ≥ λα.

Since λα is in general unknown, an upper bound on λα is needed. The following lemma is one
(perhaps crude) possibility.

Lemma 2. λα ≤ 1/α.

Proof. Taking α′ = 0 in Lemma 1 we have λα ≤ (1 − βα)/α ≤ 1/α.

Thus, if κ ≥ 1/α, the criterion in (2) is meaningful (it is minimized by the target classifier f∗α)
and it can be estimated from data. For practical applications we suggest the NP score

E(f) =
1

α
(R0(f) − α)+ +R1(f) (3)

as the criterion for evaluation and comparison of NP classifiers. In addition to being minimized by
f∗α, it can be accurately estimated from a test sample (see Section 5.1 for details). Furthermore,
it has the appealing property that as α draws closer to 0, a stiffer penalty is exacted on classifiers
that violate the constraint. This makes sense because exceeding α by 0.01, for example, is much
more significant when α = 0.01 than when α = 0.1. Said another way, the NP score in (3) penalizes
the relative error (R0(f) − α)/α.

2.2 Designing classifiers

Having addressed the first of our motivating questions, we now turn to the second. How can one
learn with respect to the error measures put forth above? More precisely, are there learning rules
that obey performance guarantees when performance is measured in terms of these error measures?

The learning problem here is considerably different from decision-theoretic statistical estimation
problems such as conventional classification. There, one seeks to optimize an expected loss, where
the loss measures the cost of making an error. The (·)+ operator is also a kind of loss function, but
in NP classification it operates after the expectation with respect to the random pattern.

We propose two general learning rules whose net NP errors are governed by oracle inequalities.
Before introducing the rules, the following definition is needed. Let F be a set of classifiers, and
let φ0 and φ1 be functions of f ∈ F , the training sample S, and a confidence parameter δ.

Definition 1. We say (φ0, φ1) are a (distribution free) complexity penalty pair for F if and only
if for all distributions and all δ0, δ1 ∈ (0, 1),

PS

({
S : sup

f∈F

(∣∣∣R0(f) − R̂0(f)
∣∣∣− φ0(f, S, δ0)

)
> 0

})
≤ δ0
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and

PS

({
S : sup

f∈F

(∣∣∣R1(f) − R̂1(f)
∣∣∣− φ1(f, S, δ1)

)
> 0

})
≤ δ1,

where PS denotes the probability with respect to the appropriate (joint or conditional) sampling
plan.

Thus, φ0 and φ1 control the rate of uniform convergence of the class-conditional frequencies to
the true class-conditional probabilities. In the results below we do not specify the sampling plan
explicitly. Rather, we assume that (φ0, φ1) are a complexity penalty pair with respect to whatever
the sampling plan happens to be. Examples of complexity penalties for NP classification under
both sampling plans are discussed in Section 3.

Both learning rules that we propose assume a given collection F of candidate classifiers, as well
as a complexity penalty pair for F . Each rule has a separate formulation for the case κ = ∞, and
these formulations happen to coincide, so there are three rules total. For now we consider only the
first two; the case κ = ∞ is treated in Section 4.2. Each learning rule also has two parameters. The
first, ν ∈ R, controls the tradeoff between false positives and false negatives. The second, γ > 0, is
not a tuning parameter; for any given ν, κ, and α, the results below specify the appropriate choice
of γ. It is treated as a variable to simplify the presentation.

The first learning rule, based on a constrained minimization and referred to as NP-CON, is

f̂ c
α = arg min

f∈ bFν
α

R̂1(f) + φ1(f, S, δ1) + γφ0(f, S, δ0). (4)

Here we define F̂ν
α = {f ∈ F : R̂0(f) ≤ α + νφ0(f, S, δ0)}. The following result uses the notation

Fα = {f ∈ F : R0(f) ≤ α}.

Theorem 1. Assume (φ0, φ1) are a complexity penalty pair for F . Fix 0 < κ <∞. Let δ0, δ1 > 0
and let f̂ c

α be the rule NP-CON (4) with ν = 1 and γ ≥ 2(κ+ λα). Then

Mκ(f̂ c
α) ≤ inf

f∈Fα

{
γφ0(f, S, δ0) +R1(f) − βα + 2φ1(f, S, δ1)

}

with probability at least 1 − (δ0 + δ1) with respect to the draw of the training sample S. Moreover,
the same result holds if we replace Mκ by N κ, where now it suffices to have γ ≥ 2κ.

Brief remarks:

• The result only holds for ν = 1. In Section 4 we present a more general oracle inequality for
this rule that applies for all values of ν.

• Recall that γ is not a free parameter. We see that the appropriate choice of γ is 2(κ + λα)
if performance is to be measured by Mκ, and 2κ if measured by Mκ. Since λα is usually
unknown, it may be replaced by the upper bound 1/α of Lemma 2.

The upper bound of Theorem 1 is called an oracle bound. The second term is the (deterministic)
approximation error for the false negative probability. It is the amount of “excess false negative
probability” that results from a particular classifier satisfying the constraint. The first and third
terms bound the (stochastic) estimation errors of the false positive and false negative probabilities,
respectively. In other words, these terms bound the deviation between true and empirical error.
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In general, the approximation and estimation errors will vary in magnitude depending on the
unknown distribution. The oracle inequality says that f̂ c

α performs about as well as the classifier
selected by an oracle to optimize the tradeoff between these error terms. This implies an adaptive
rate of convergence, as discussed in Section 2.3 below.

The second learning rule, based on an unconstrained minimization and referred to as NP-UNC,
is

f̂u
α = arg min

f∈F
κ
(
R̂0(f) − α− νφ0(f, S, δ0)

)

+
+ γφ0(f, S, δ0) + R̂1(f) + φ1(f, S, δ1) (5)

This rules obeys its own oracle inequality.

Theorem 2. Assume (φ0, φ1) are a complexity penalty pair. Let δ0, δ1 > 0 and let f̂u
α be as in (5)

with ν ∈ R and γ = κ(1 + ν). Then

N κ(f̂u
α) ≤ inf

f∈F

{
κ (R0(f) − α)+ + 2κφ0(f, S, δ0) +R1(f) − βα + 2φ1(f, S, δ1)

}

with probability at least 1 − (δ0 + δ1) with respect to the draw of S.

The two rules and corresponding bounds each have their pros and cons. Theorem 2 applies
for all values of ν, whereas Theorem 1 assumes ν = 1. A generalization of Theorem 1 is given in
Section 4, although this bound is somewhat less appealing than the form in Theorem 1. Even if
we compare Theorem 1 and Theorem 2 for ν = 1, the inf in Theorem 2 is over all of F . We can
specialize to Fα and recover the exact bound of Theorem 1. Thus the bound in Theorem 2 is at
least as small as the bound in Theorem 1.

On the other hand, NP-CON has the advantage that Theorem 1 applies to both Mκ and N κ,
whereas Theorem 2 only applies to N κ. Furthermore, as shall be made precise in Theorem 3 below,
NP-CON enjoys a guaranteed bound on its false positive rate. Moreover, this bound applies to all
ν, and when ν = −1, the desired false positive constraint can be guaranteed with high probability.
With NP-UNC, the ν parameter offers some control over the excess false positive rate, but no
bound is known.

2.3 Consistency and rates of convergence

The finite sample bounds presented in this paper yield asymptotic results. Strong consistency
follows easily via the Borel-Cantelli lemma, provided the class F grows with n in a suitable way.
For example, consistency for VC classes or histograms holds under the conditions described in [2].

Rates of convergence also follow naturally.1 For example, if the optimal classifier f∗α belongs
to a set with finite VC dimension, and if the learning rules (with the corresponding VC penalty)
are applied to that VC class, the resulting net NP error decays to zero like O(

√
log n/n), which is

within a log factor of the standard 1/
√
n rate for VC classes (see [3], ch. 14).

More significantly, our oracle bounds give adaptive rates. Faster convergence is automatically
achieved when the distribution is nice in some sense. For example, consider a learning rule based
on F = ∪K

k=1Fk, where each Fk is a VC class with VC dimension ∝ k (for example). Consider the
class of distributions such that

R1(f
k) − βα ≈ k−s

1“Rate” here refers to the decay of the performance measure to zero as the sample size increases, as opposed to
false negative/positive “rates,” which are just probabilities.
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where
fk = arg min

f∈Fk
α

and s > 0. Since the VC penalties are on the order of
√
k log n/n, the oracle inequality (in

Theorem 1, for example) is minimized by choosing k ∝ (n/ log n)1/(2s+1), which yields a rate of
(log n/n)s/(2s+1). Clearly the optimal choice of k depends on s, which is unknown a priori. Yet
because of the oracle inequality, our learning rules perform as if they knew s.

2.4 Relation to previous work

The theoretical foundations of NP classification were laid in [1] and [2]. Cannon et al. [1] consider
learning a classifier from a fixed VC class F [3]. They study the rule

f̂α = arg min
f∈F

{R̂1(f) | R̂0(f) ≤ α+ ε0}. (6)

Under the conditional sampling plan, they are able to show that with high probability (going to
one exponentially fast as n0, n1 → ∞),

R0(f̂α) ≤ α+ 2ε0 and R1(f̂α) ≤ R1(fF ,α) + 2ε1,

for any ε0, ε1 > 0, and where fF ,α = arg minf∈F{R1(f) | R0(f) ≤ α}. Under the joint sampling
plan, they obtain much looser bounds that are impractical for not only their looseness but also
their dependence on the unknown a priori class probabilities.

Scott and Nowak [2] show that if the tolerances ε0 and ε1 are chosen in a certain way as
functions of n0 and n1, then f̂α obeys the same performance guarantee under the joint sampling
plan as under the conditional sampling plan. They also extend the analysis to learning from one
of several candidate VC classes F1, . . . ,FK . For appropriate choices of ε0(k), ε1(k), k = 1, . . . ,K,
they consider the rule that first computes f̂k

α according to (6) for each k, and then selects

f̂α = arg min{R̂1(f) + ε1(k) | f = f̂k
α, k = 1, . . . ,K}.

Here ε0(k) and ε1(k) are essentially a complexity penalty pair. Under both joint and conditional
sampling plans, it is shown that with high probability,

R0(f̂α) ≤ α+ 2ε0(k̂) and R1(f̂α) ≤ min
k=1,...,K

(R1(fF ,α) + 2ε1(k)) (7)

where k̂ is the index of the class of the selected classifier. This might be called a semi-oracle bound,
where the approximation and stochastic components of the excess false negative probability are
balanced, but the excess false negative probability is not balanced with the excess false positive
probability.

The present work improves on this earlier work in three respects. First, we allow for complexity
penalties that are data-dependent or classifier-dependent, as opposed to restricting to VC or finite
classes. Second, we balance the excess false positive rate with the excess false negative rate. The
result in (7) balances the approximation and stochastic components of the excess false negative
probability, but the excess false positive probability is not balanced with these two terms. Third,
our rules have guaranteed performance with respect to the criteria proposed earlier.
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3 Complexity Penalties for NP Classification

In this section we give several examples of complexity penalty pairs (φ0, φ1) under both conditional
and joint sampling plans. The penalties have well known counterparts in conventional classification.
Penalties under conditional sampling are essentially complexity penalties for classes of sets, and are
closely related to concentration of measure inequalities. Furthermore, we show that a complexity
penalty pair under the conditional sampling plan is also a complexity penalty pair under joint
sampling. Thus, it is not necessary to be concerned with the philosophical differences between the
two sampling plans.

3.1 Penalties under the conditional sampling plan

Partition the training sample S into S0 and S1 according to class. Suppose there are ny samples
of class y = 0, 1. Under the conditional sampling plan, (φ0, φ1) is a complexity penalty pair if for
all δy ∈ (0, 1),

P
ny
y

({
Sy : sup

f∈F

(∣∣∣Ry(f) − R̂y(f)
∣∣∣− φy(f, Sy, δy)

)
> 0

})
≤ δy,

y = 0, 1. Thus it suffices to choose φ0 and φ1 independently. Furthermore, the necessary condition
above can be rephrased in terms of complexity penalties for classes of sets. The following definition
was put forth in [7].

Definition 2. Let G be a collection of measurable subsets of X . Given a distribution Q on X ,
let T = {X1, . . . , Xm} denote an iid sample from Q. We say φ is a (distribution free) complexity
penalty for G if and only if for all distributions Q and all δ ∈ (0, 1),

QT

({
T : sup

G∈G

(∣∣∣Q(G) − Q̂(G)
∣∣∣− φ(G,T, δ)

)
> 0

})
≤ δ.

Here Q̂(G) = (1/m)
∑m

i=1 IXi∈G is the empirical probability of G.

Let Gy be the collection of all sets of the form Gy
f = {x : f(x) = 1 − y} ranging over f ∈ F . If

φy is a complexity penalty for the class of sets Gy, y = 0, 1, then (φ0, φ1) is a complexity penalty
pair according to Definition 1. When applying Definition 2, we take Q = Py, T = Sy, m = ny,
δ = δy, and φy(f, Sy, δy) = φ(Gy

f , T, δ). In summary, a complexity penalty pair for NP classification
is nothing more than a pair of penalties for sets.

Several examples of complexity penalties for sets are given in [7]. We briefly recall some basic
examples.

1. VC penalty: Suppose F has VC dimension 2 ≤ V < ∞. Then Gy also has VC dimension
V [3]. Let G be either G0 or G1. According to one version of the VC inequality [3], for any
ε > 0 and for any distribution Q,

QT

(
sup
G∈G

∣∣∣Q(G) − Q̂(G)
∣∣∣ > ε

)
≤ 8mV e−mε2/32.

Thus,

φ(G,T, δ) =

√
32
V logm+ log(8/δ)

m

10



defines a complexity penalty for G. The reader is reminded VC penalties were originally
introduced as penalties for sets [8].

2. Occam’s Razor penalty: Suppose F is countable and let {πk}k≥1 be a prior for F : πk ≥ 0
and

∑
k πk = 1. Let G be either G0 or G1. By Chernoff’s bound [9], for any fixed Gk ∈ G and

any ε > 0 we have

QT

(∣∣∣Q(Gk) − Q̂(Gk)
∣∣∣ >

√
log(1/πk) + log(2/δ)

2m

)
≤ πkδ.

By the union bound

φ(G,T, δ) =

√
log(1/πk) + log(2/δ)

2m

defines a complexity penalty for G.

3. Rademacher penalty: Let G be either G0 or G1, and assume that G satisfies the property
that G ∈ G ⇒ G ∈ G, where G denotes the compliment of G. Let σ1, . . . , σn be Rademacher
random variables, i.e., independent random variables taking on the values 1 and -1 with equal
probability. Denote Q̂(σi)(G) = 1

n

∑n
i=1 σiIXi∈G. Define the conditional Rademacher average

ρ̂(G, T ) = E(σi)

[
sup
G∈G

Q̂(σi)(G)

]
,

where the expectation is with respect the Rademacher random variables. As discussed in [7],

φ(G,T, δ) = 2ρ̂(G, T ) +

√
2 log(2/δ)

m

defines a complexity penalty for G.

4. Union penalty: Suppose F = ∪K
k=1Fk, where perhaps K = ∞, and (φk

0, φ
k
1) is a complexity

penalty pair for each k. Let {πk}k≥1 be a prior. Then

φy(f, Sy, δy) = φk
y(f, Sy, δyπ

k)

defines a complexity penalty pair for F , where on the right hand side k is such that f ∈ Fk.

3.2 Penalties under the joint sampling plan

The definition of complexity penalty is such that a simple conditioning argument gives us penalties
under the joint sampling plan for free.

Proposition 2. If (φ0, φ1) are a complexity penalty pair for F under the conditional sampling
plan, then they are also a complexity penalty pair for F under the joint sampling plan.

Proof. Define the event

Ω0 =

{
S : sup

f∈F

(∣∣∣R0(f) − R̂0(f)
∣∣∣− φ0(f, S, δ0)

)
> 0

}
.

11



By the law of total probability we have

PS(Ω0) =
n∑

m=0

PS(S ∈ Ω0 |n0 = m)PS(n0 = m)

≤
n∑

m=0

δ0PS(n0 = m)

= δ0.

A similar argument applies to φ1.

4 Generalizations of Theorem 1

We present two generalizations of Theorem 1. The first extends NP-CON to the case ν ≥ −1, while
the second extends both NP-CON and NP-UNC to the case κ = ∞.

4.1 NP-CON with ν ≥ −1

Theorem 1 is a special case of the following result. This more general result was deferred until
now because its interpretation when ν 6= 1 is somewhat less transparent. Introduce the notation
Fν

α = {f ∈ F : R0(f) ≤ α − (1 − ν)φ0(f, S, δ0)}. Note that F1
α coincides with Fα which was

introduced with the statement of Theorem 1.

Theorem 3. Let (φ0, φ1) be a complexity penalty pair, and let δ0, δ1 > 0. Define the oracle bound

B(F , S, ν, γ, δ0, δ1) = inf
f∈Fν

α

{
γφ0(f, S, δ0) +R1(f) − βα + 2φ1(f, S, δ1)

}
.

Let f̂ c
α be as in (4) with ν ≥ −1. If γ ≥ (κ+ λα)(1 + ν), then

R0(f̂
c
α) ≤ α+ (1 + ν)φ0(f̂

c
α, S, δ0)

and
Mκ(f̂ c

α) ≤ B(F , S, ν, γ, δ0, δ1)
with probability at least 1− (δ0 + δ1) with respect to the draw of S. The same statement holds if we
replace Mκ by N κ, where now it suffices to take γ ≥ κ(1 + ν).

The interpretation of the oracle when ν 6= 1 is essentially the same as the case ν = 1. To gain
some insight, assume that F = ∪K

k=1Fk, where φ0 and φ1 are constant on each Fk. That is, for
any S, φ0(f, S, δ0) = εk0 and φ1(f, S, δ1) = εk1 for f ∈ Fk. This happens, for example, when F is a
union of VC classes.

Further assume that the approximation error of the false negative probability decays (as a
function of k) at a rate that is independent of α. Formally, define

βk
α = inf

f∈Fk

R0(f)≤α

R1(f).

12



Assume there exist constants c and c and a function τk tending to zero such that, for all α ∈ (0, 1)
and all k,

cτk ≤ βk
α − βα ≤ cτk.

Under these assumptions, and denoting α(k, ν) = α− (1 − ν)εk0, we have

B(F , S, ν, γ, δ0, δ1) = min
1≤k≤K

[
βk

α(k,ν) − βα + 2εk1 + γεk0

]
.

By Lemma 1,

βk
α(k,ν) − βα = βk

α(k,ν) − βα(k,ν) + βα(k,ν) − βα

≤ cτk + λα(k,ν)(1 − ν)εk0.

Using τk ≤ 1
c (β

k
α − βα), and introducing C = (c/c) and Ck = γ + λα(k, ν)(1 − ν), we conclude

B(F , S, ν, γ, δ0, δ1) ≤ min
1≤k≤K

[
C(βk

α − βα) + 2εk1 + Ckε
k
0

]

= min
1≤k≤K

[
C inf

f∈Fk
α

(R0(f) − βα) + εk1 + Ckε
k
0

]

= inf
f∈Fα

[Ckφ0(f, S, δ0) + C (R0(f) − βα) + 2φ1(f, S, δ1)] .

Thus, up to constants, the oracle bound when ν 6= 1 has the same interpretation as when ν = 1.

4.2 Absolute certainty: κ = ∞
Both NP-CON and NP-UNC have extensions, which happen to coincide, to the case κ = ∞. The
basic idea is to take ν = −1 and set γ = 0 in Equations (4) or (5).

Consider the learning rule

f̂ i
α = arg min

f∈ bF−1
α

R̂1(f) + φ1(f, S, δ1). (8)

Taking ν = −1 and set γ = 0 in the proof of Theorem 3 gives the following.

Corollary 1. Let (φ0, φ1) be a complexity penalty pair, and let δ0, δ1 > 0. Let f̂ i
α be as in (8).

Then
R0(f̂

i
α) ≤ α

and

R1(f̂
i
α) − βα ≤ inf

f∈F−1
α

{
R1(f) − βα + 2φ1(f, S, δ1)

}

with probability at least 1 − (δ0 + δ1) with respect to the draw of S.

The interpretation of the oracle bound in this case is the same as for Theorem 3.
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5 Practical Matters

The NP score
Eκ(f) = κ (R0(f) − α)+ +R1(f),

κ ≥ 1/α, is envisioned not only as a theoretical tool but a performance criterion for the evaluation
of NP learning algorithms with real data. This section examines some practical aspects of working
with this error quantity.

5.1 Error estimation

Suppose we are given a classifier f and a test sample S̃ (independent of the training sample). How
should we estimate the error Eκ(f) = κ (R0(f) − α)+ +R1(f)? Our proposal is to do the obvious:

compute the sample-based frequencies R̃0(f) and R̃1(f) and plug in to obtain the estimate

Ẽκ(f) = κ
(
R̃0(f) − α

)

+
+ R̃1(f). (9)

As seen below, this estimator implements the maximum likelihood principle and, although biased,
it has a smaller mean squared error (MSE) than if the (·)+ operator was not present.

Let us recast the problem in more general terms. Consider the problem of estimating θ = θ0+θ1,
where θ0 = κ (p0 − α)+ and θ1 = p1, and p0 and p1 are the success probabilities of two Bernoulli
trials. We observe ny outcomes of the respective Bernoulli trials, of which ky are assumed to be
successes, y = 0, 1. Moreover, k0 and k1 are independent.

The maximum likelihood estimate of θ is κ (k0/n0 − α)+ + k1/n1. This is seen as follows. Since
k0 and k1 are independent, the MLE of θ is the sum of the MLE’s of θ0 and θ1. Clearly k1/n1 is
the MLE of θ1. The MLE of p0 is also clearly k0/n0. Since θ1 is simply a transformation of the
parameter p0, the claim follows from the invariance property of the MLE.

Observe that θ̂0 = κ (k0/n0 − α)+ is biased. Fig. 2 (a) shows a plot of the bias of θ̂0 as a
function of p0 for α = 0.1 and n0 = 100. The bias is greatest when p0 is near α, although it
is still quite small, and this maximum bias will decrease for larger n0. Furthermore, when bias
and variance are considered together, it becomes apparent that the (·)+ operator actually makes θ
easier to estimate. In particular, the following is true.

Proposition 3.

E[(θ̂ − θ)2] ≤ κ2 p0(1 − p0)

n0
+
p1(1 − p1)

n1
.

Note that the right-hand side is just the MSE of the standard unbiased estimator of κ(p0−α)+p1.
Fig. 2 (b) is a plot of the MSE of θ̂0 (with κ = 1 for simplicity) as a function of p0 together with
a plot of the MSE of the MLE of p0 − α. The two graphs coincide for p0 much larger than α, but
the former MSE is clearly less when p0 is near or below α.

5.2 Model selection

If Eκ is used as a criterion for model/parameter selection (for any learning algorithm, not necessarily
the rules previously studied in this paper), the actual value of R0(f̂α) will be less than the estimated
value on average. Since having R0(f̂α) ≤ α is so important in NP classification, this conservative
bias may actually be helpful in designing the classifier. This remark also applies to other error
estimates, including those based on training data such as cross-validation or bootstrap.
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Figure 2: (a) The bias of the MLE of (R0(f) − α)+ as a function of R0(f). Here α = 0.1 and
n0 = 100. (b) The mean squared error (solid line) of the MLE of (R0(f) − α)+ as a function of
R0(f). Here α = 0.1 and n0 = 100. The dashed line represents the MSE the MLE of R0(f), for
comparison.

5.3 Confidence intervals

Hoeffding’s inequality and related concentration inequalities for bounded random variables may be
applied to Ẽκ(f) to obtain distribution free confidence intervals [3, 10]. If one is interested in a
confidence interval for R̃0(f) = p̂0, one may also appeal to the central limit theorem (CLT) and
use the standard error estimate

√
p̂0(1 − p̂0)/n0. A common rule of thumb states that for the

CLT approximation to apply to the binomial bin(n0, p0) one needs n0p0 ≥ 5. If it can be assumed
that p0 ≈ α, then this gives a lower bound on the class zero test sample size n0. If α = 0.1, for
example, than at least 5/α = 50 class zero test examples are need to apply the standard error-based
confidence interval. Recently Langford has argued that the CLT approach is suspect for standard
classification because the (unknown) probability of error could be very close to zero [10]. In NP
classification, since α is known, this argument can be circumvented.

6 Extensions

In this concluding section we briefly discuss some extensions of our main results.

6.1 Criteria for Anomaly Detection

The proposed error measures can be easily applied to the problem of evaluating and comparing
set estimates for anomaly detection. In anomaly detection, one is given training data from one
distribution, and the objective is to construct a set where data following this distribution tend to
be located. In one formulation, the goal is to construct a small region containing at least 100α%
of the total probability mass of the normal data, where α is set by the user.

Performance can be measured in at least two ways. In the minimum volume set paradigm
[11, 12], the objective is to find the set with minimum volume, where volume is calculated according
to some (user-specified) reference measure, such as Lebesgue. The performance is summarized in
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terms of the volume of the estimate and the closeness of the mass of the estimate to α. A second
approach measures performance by counting false positives and false negatives on a new dataset
that contains both normal and abnormal data.

In both cases, there is a second measure that comes in to play, in addition to the data-generating
probability measure. Let us call these the inlier and outlier measures, Q0 and Q1. Then the problem
is equivalent to Neyman-Pearson classification at the false positive constraint 1 − α, where 1 −Q0

corresponds to the false positive probability and Q1 corresponds to the false negative probability.
Thus, the quantity

1

1 − α
(α− Q0(G))+ + Q1(G)

is an objective criterion for comparing two set estimates. It is minimized by the set that is optimal
with respect to Q0 and Q1, can be estimated from test data, and places a stronger penalty on
violations of the mass constraint when α is larger.

6.2 Convex upper bounds

Much attention has been paid lately to the minimization of differentiable convex upper bounds
on the probability of misclassification. We briefly remark on a property that may be of interest
when attempting to apply this principle to NP classification. In particular, supposed that the
non-differentiable convex function (·)+ is replaced by the differentiable convex function

ψθ(x) =
1

θ
ln(1 + exp(θx)), θ > 0,

which majorizes (·)+ and tends to it in the limit as θ → ∞. Consider the modified net NP error
criterion

N κ
θ (f) = κψθ(R0(f) − α) +R1(f) − βα.

Is this error measure useful for NP classification? Is it minimized by f∗α for any κ? The answer is
a qualified yes.

Proposition 4. If κ = 2λα, then N κ
θ (f∗α) ≤ N κ

θ (f) for all classifiers f .

The problem of course is that λα is unknown in practice. Whereas before we only needed an
upper bound on λα, minimizing the modified error appears to require exact knowledge of λα. As
a side note, the factor of 2 occurs because it is equal to 1/ψ′

θ(0). The derivative could easily be
changed and the factor would change accordingly, but knowledge of λα would still be required.

6.3 Scaling the penalties

In practice it may be desirable to scale the penalties φ0 and φ1 by arbitrary constants γ0, γ1 > 0.
Consider NP-CON for example and the net error Mκ. Theorem 1 holds when γ1 ≥ 1 and γ0 =
γ ≥ 2(κ + λα) If instead we allow γ0 and γ1 to be arbitrary, then Theorem 1 still holds but with
an additional constant

C =

(
max

{
2(κ+ λα)

γ0
,

1

γ1
, 1

})2

out in front. This fact follows easily by applying the elementary inequality

a0A0 + a1A1 +A2 ≤ max

{
1

a0
,

1

a1
, 1

}
(A0 +A1 +A2)
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twice at appropriate places in the proof.
Similar remarks hold for the other oracle bounds. In conclusion, scaling the penalties (which can

lead to improved performance on real world data) only affects the oracle inequalities by constants
and therefore does not change consistency properties or rates of convergence derived from them.
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A Proofs

Recall that conditions A1 and A2 are assumed throughout.

A.1 Proof of Lemma 1

Set G0,α = {x : f∗α(x) = 0} and G1,α = G0,α = {x : f∗α(x) = 1}. Define G0,α′ and G1,α′ similarly.
Recall that h1(x) ≤ λαh0(x) on G0,α. We have

βα − βα′ =

∫

G0,α

h1(x)dx−
∫

G
0,α′

h1(x)dx

=

∫

G0,α\G0,α′

h1(x)dx

≤ λα

∫

G0,α\G0,α′

h0(x)dx

= λα

∫

G
1,α′\G1,α

h0(x)dx

= λα

(∫

G
1,α′

h0(x)dx−
∫

G1,α

h0(x)dx

)

= λα(α′ − α).

This proves the first part of the lemma. The second part follows a similar argument.

A.2 Proofs of Oracle Inequalities

Given δ0, δ1 > 0, define

Ω0 =

{
S : sup

f∈F

(∣∣∣R0(f) − R̂0(f)
∣∣∣− φ0(f, S, δ0)

)
> 0

}

and

Ω1 =

{
S : sup

f∈F

(∣∣∣R1(f) − R̂1(f)
∣∣∣− φ1(f, S, δ1)

)
> 0

}
.

The basic strategy for proving the oracle inequalities is to show that they hold when S ∈ Ω0 ∩ Ω1,
which, by Definition 1, occurs with probability at least 1− (δ0 + δ1). But first, a couple of lemmas.
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Lemma 3. If S ∈ Ω0 and f ∈ F̂ν
α, then R0(f) ≤ α+ (1 + ν)φ0(f, S, δ0).

Proof. This follows from R̂0(f) ≤ α+ νφ0(f, S, δ0) and the definition of Ω0.

Lemma 4. Let ν ≥ −1. If S ∈ Ω0 and f ∈ F̂ν
α, then βα −R1(f) ≤ λα(1 + ν)φ0(f, S, δ0).

Proof. Let S ∈ Ω0 and f ∈ F̂ν
α. Observe

R0(f) ≤ R̂0(f) + φ0(f, S, δ0) ≤ α+ (1 + ν)φ0(f, S, δ0) =: α′,

which implies R1(f) ≥ βα′ . By Lemma 1, we have

βα −R1(f) ≤ βα − βα′ ≤ λα(α′ − α) = λα(1 + ν)φ0(f, S, δ0).

A.3 Proof of Theorem 3

Assume S ∈ Ω0 ∩ Ω1. We consider three separate cases: (1) R1(f̂
c
α) < βα and R0(f̂

c
α) > α, (2)

R1(f̂
c
α) ≥ βα and R0(f̂

c
α) > α, and (3) R1(f̂

c
α) ≥ βα and R0(f̂

c
α) ≤ α. Note that the case in which

both R0(f̂
c
α) ≤ α and R1(f̂

c
α) < βα is impossible.

In the first case, we have

Mκ(f̂ c
α) = κ(R0(f̂

c
α) − α)

≤ κ(1 + ν)φ0(f̂
c
α, S, δ0) + βα −R1(f̂

c
α) +R1(f̂

c
α) − βα

≤ (κ+ λα)(1 + ν)φ0(f̂
c
α, S, δ0) +R1(f̂

c
α) − βα

≤ γφ0(f̂
c
α, S, δ0) + R̂1(f̂

c
α) − βα + φ1(f̂

c
α, S, δ1)

= inf
f∈ bFν

α

{
γφ0(f, S, δ0) + R̂1(f) − βα + φ1(f, S, δ1)

}

≤ inf
f∈ bFν

α

{γφ0(f, S, δ0) +R1(f) − βα + 2φ1(f, S, δ1)}

≤ inf
f∈Fν

α

{γφ0(f, S, δ0) +R1(f) − βα + 2φ1(f, S, δ1)} .

The first two inequalities follow from Lemmas 3 and 4. The next two inequalities follow from
γ ≥ (κ+λα)(1+ ν) and from S ∈ Ω1 (used twice). The final inequality follows from S ∈ Ω0, which
implies Fν

α ⊂ F̂ν
α.

For the second case we have

Mκ(f̂ c
α) = κ(R0(f̂

c
α) − α) +R1(f̂

c
α) − βα

≤ κ(1 + ν)φ0(f̂
c
α, S, δ0) +R1(f̂

c
α) − βα

≤ γφ0(f̂
c
α, S, δ0) +R1(f̂

c
α) − βα.

Now proceed as in the first case.
For the third case, note

Mκ(f̂ c
α) = R1(f̂

c
α) − βα

≤ κ(1 + ν)φ0(f̂
c
α, S, δ0) +R1(f̂

c
α) − βα

and proceed as in the second case.
To prove the theorem for the net error N κ, the strategy above can be used but with a simplifi-

cation. The first case above need not be considered, which allows γ to be smaller.
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A.4 Proof of Theorem 2

Below we use the elementary fact (x+ y)+ ≤ (x)+ + (y)+ for any x, y, which follows by convexity

of (·)+. Assume S ∈ Ω0 ∩ Ω1. Then

N κ(f̂u
α) = κ

(
R0(f̂

u
α) − α

)

+
+R1(f̂

u
α) − βα

≤ κ
(
R̂0(f̂

u
α) − α+ φ0(f̂

u
α , S, δ0)

)

+
+ R̂1(f̂

u
α) − βα + φ1(f̂

u
α , S, δ1)

≤ κ
(
R̂0(f̂

u
α) − α− νφ0(f̂

u
α , S, δ0)

)

+
+ κ(1 + ν)φ0(f̂

u
α , S, δ0) + R̂1(f̂

u
α) − βα + φ1(f̂

u
α , S, δ1)

= inf
f∈F

{
κ
(
R̂0(f) − α− νφ0(f, S, δ0)

)

+
+ κ(1 + ν)φ0(f, S, δ0) + R̂1(f) − βα + φ1(f, S, δ1)

}

≤ inf
f∈F

{
κ (R0(f) − α)+ + 2κφ0(f, S, δ0) +R1(f) − βα + 2φ1(f, S, δ1)

}
.

A.5 Proof of Proposition 3

The MSE of the combined estimator θ̂ = θ̂0 + θ̂1 is

E[(θ̂ − θ)2] = E[(θ̂0 − θ0)
2] + E[(θ̂1 − θ1)

2] + E[(θ̂0 − θ0)(θ̂1 − θ1)]

= E[(θ̂0 − θ0)
2] + E[(θ̂1 − θ1)

2]

where in the last step we use independence and unbiasedness of θ̂1. Thus, it suffices to bound the
MSE’s of θ̂0 and θ̂1 separately. It is well known that MSE(θ̂1) = p1(1 − p1)/n1.

Writing out the definition of MSE we have

E[(θ̂0 − θ0)
2] = κ2

n0∑

k=0

((
k

n0
− α

)

+

− (p0 − α)+

)2

bin(n0, p0, k)

≤ κ2
n0∑

k=0

((
k

n0
− p0

)

+

)2

bin(n0, p0, k)

≤ κ2
n0∑

k=0

(
k

n0
− p0

)2

bin(n0, p0, k)

= κ2 p0(1 − p0)

n0
,

where in the second step we use the fact (a)+ − (b)+ ≤ (a− b)+. This concludes the proof.

A.6 Proof of Proposition 4

It suffices to consider only the classifiers f∗α′ , α′ ∈ [0, 1], since each of these has optimal false negative
rate for false positive rate α′. There are two cases. If α′ < α, then

N κ
θ (f∗α) −N κ

θ (f∗α′) = κ(ψθ(0) − ψθ(α
′ − α)) + (βα − βα′)

≤ κψ′
θ(0)(α− α′) + λα(α′ − α)

= (λα − 1
2κ)(α

′ − α)

= 0,
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where the inequality follows from the fact that ψ is convex and increasing, and from Lemma 1.
Similarly, if α′ > α, then

N κ(f∗α) −N κ(f∗α′) = κ(ψθ(0) − ψθ(α
′ − α)) + (βα − βα′)

≤ κψ′
θ(0)(α− α′) + λα(α′ − α)

= (λα − 1
2κ)(α

′ − α)

= 0.
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