STAT 331 Fall '05: MIDTERM SOLUTIONS

1. Short Questions

a.

$$
\begin{aligned}
E[V] & =\int_{0}^{4} \frac{4}{3} \pi r^{3} f(r) d r \\
& =\int_{0}^{4} \frac{\pi}{6} r^{4} d r \\
& =\frac{\pi}{6}\left[\frac{r^{5}}{5}\right]_{0}^{4} \\
& =\frac{512 \pi}{15} \approx 107 .
\end{aligned}
$$

Some people computed $E[V]=\frac{4}{3} \pi E\left[R^{3}\right]$, but keep in mind it is generally not true that $E[g(X)]=g(E[X])$ unless g is linear.
b. Let X be the total number of errors in the sequence of n information bits, and let

$$
X_{i}= \begin{cases}1 & \text { if the } i \text { th information bit is decoded incorrectly } \\ 0 & \text { otherwise }\end{cases}
$$

so that $X=\sum_{i=1}^{n} X_{i}$. Denote $\tilde{p}=P\left(X_{i}=1\right)$, so that $X_{i} \sim \operatorname{Ber}(\tilde{p})$ and $X \sim \operatorname{bin}(n, \tilde{p})$. Then

$$
\begin{aligned}
P(\text { an error }) & =1-P(\text { no error }) \\
& =1-P(X=0) \\
& =1-(1-\tilde{p})^{n},
\end{aligned}
$$

so it remains to find \tilde{p}. Note that $X_{i}=1$ if and only if 3 or more of the five repeated bits are corrupted. Thus

$$
\begin{aligned}
\tilde{p} & =P(3,4, \text { or } 5 \text { flipped bits out of } 5) \\
& =\binom{5}{3} p^{3}(1-p)^{2}+\binom{5}{4} p^{4}(1-p)+\binom{5}{5} p^{5} \\
& =0.0579
\end{aligned}
$$

where I have plugged in $p=0.2$. In conclusion, $P($ an error $)=1-(0.94)^{n}$.
c. Let X be the point where the stick is broken. Then $X \sim \operatorname{unif}[0,1]$. The probability of interest is

$$
\begin{aligned}
P(X \in[0,1 / 3] \cup[2 / 3,1]) & =F(1 / 3)-F(0)+F(1)-F(2 / 3) \\
& =1 / 3+1 / 3 \\
& =2 / 3
\end{aligned}
$$

where $F(x)=x$ is the CDF of X. Note: Many people looked at the random variable $Y=\max (X, 1-X)$, the length of the longest piece, and computed $P(Y \geq 2 / 3)$. This is fine in principle. However, you cannot simply say that $Y \sim \operatorname{unif}[1 / 2,1]$ without any justifcation. While true, this must shown by, for example, finding the CDF of Y and identifying it as that of a uniform.
d.

$$
\begin{aligned}
P(1 \leq Y \leq 3) & =P(\ln 1 \leq X \leq \ln 3) \\
& =F_{X}(\ln 3)-F_{X}(\ln 1) \\
& =\Phi\left(\frac{\ln 3-1}{\sqrt{2}}\right)-\Phi\left(\frac{\ln 1-1}{\sqrt{2}}\right) \\
& =\Phi(0.0679)-\Phi(-0.7071) \\
& =\Phi(0.0679)-(1-\Phi(0.7071)) \\
& =0.528-(1-.761) \\
& =0.289
\end{aligned}
$$

2. Poker hands

a.

$$
\binom{49}{2}=1176
$$

b. One pair?

$$
\frac{\binom{44}{2}-11\binom{4}{2}}{\binom{49}{2}}=0.748
$$

where the subtraction is to discount the possibility of drawing a new pair, which would boost the hand to two pairs.
c. Two pair?

$$
\frac{\binom{3}{1}\binom{44}{1}+11\binom{4}{2}}{\binom{49}{2}}=0.168
$$

where the first term on top accounts for drawing another jack, and the other term on top for drawing a new pair. Remeber, drawing a 3 would bump the hand up in status.
d. Three of a kind?

$$
\frac{\binom{2}{1}\binom{44}{1}}{\binom{49}{2}}=0.075
$$

where the number on top is the number of ways to draw one three and one non-three/jack. Drawing two jacks would yield a full house.

3. Median Absolute Deviation

a.

$$
\begin{aligned}
E[|X-\mu|] & =\int_{-a}^{a}|x| \cdot \frac{1}{2 a} d x \\
& =2 \int_{0}^{a} \frac{x}{2 a} d x \\
& =\frac{1}{a} \int_{0}^{a} x d x \\
& =\frac{1}{a}\left[\frac{1}{2} x^{2}\right]_{0}^{a} \\
& =\frac{a}{2} .
\end{aligned}
$$

By comparison, the standard deviation is

$$
\sqrt{\frac{(2 a)^{2}}{12}}=\frac{a}{\sqrt{3}}>\operatorname{MAD}(X)
$$

b.

$$
\begin{aligned}
E[|X-\mu|] & =\int_{-\infty}^{\infty}|x| f(x) d x \\
& =2 \int_{0}^{\infty} x f(x) d x \\
& =\frac{2}{\sqrt{2 \pi \sigma^{2}}} \int_{0}^{\infty} x e^{-\frac{x^{2}}{2 \sigma^{2}}} d x \\
& =\frac{2}{\sqrt{2 \pi \sigma^{2}}}\left[-\sigma^{2} e^{-\frac{x^{2}}{2 \sigma^{2}}}\right]_{0}^{\infty} \\
& =\sqrt{\frac{2}{\pi}} \sigma<\sigma=\operatorname{STD}(X)
\end{aligned}
$$

4. MGF

a.

$$
\begin{aligned}
M(t) & =\sum_{x=1}^{\infty} e^{x t} \cdot \frac{1}{\ln 2} \cdot \frac{1}{x 2^{x}} \\
& =\frac{1}{\ln 2} \sum_{x=1}^{\infty} \frac{1}{x}\left(\frac{e^{t}}{2}\right)^{x} \\
& =-\frac{1}{\ln 2} \ln \left(1-\frac{e^{t}}{2}\right),
\end{aligned}
$$

for $t<\ln 2$.
b.

$$
\mu=M^{\prime}(0)=\frac{1}{\ln 2}
$$

and

$$
\sigma^{2}=M^{\prime \prime}(0)-\mu^{2}=\frac{2}{\ln 2}-\left(\frac{1}{\ln 2}\right)^{2}
$$

