STAT/ELEC 331 HW 9

Problems in addition to those from the book

- The moment generating function (MGF) can be used to find the moments of a distribution. But it can also be used to determine the distribution of a function of a random variable/vector. This is because the MGF uniquely determines the distribution of a random variable (a fact we did not prove). We used this fact when showing that a linear transformation of a Gaussian was again Gaussian. In this problem we'll apply the MGF to the Poisson distribution.
 - **a.** Let X_1, \ldots, X_n be a random sample from a Poi (λ) distribution. Using the MGF, identify the distribution of $X = \sum_{i=1}^n X_i$.
 - **b.** Using the Central Limit Theorem and the previous result, explain how to approximate a $\text{Poi}(\lambda)$ distribution using the normal distribution. **HINT:** Determine or approximate the distribution of the sum of *n* independent $\text{Poi}(\lambda/n)$ variates in two different ways.
 - c. Suppose $X \sim \text{Poi}(24.9)$. Use the result of b. and the table for the standard normal CDF to approximate the probability $P(X \ge 30)$.
 - **d.** Extra credit: (1 point) Use a computer or calculator to compute the probability in c. exactly. How close is the approximation?

2. Sampling uniformly in a sphere

In the problem we'll explore two ways of generating points uniformly at random inside the unit sphere in 3 dimensions, $\{(x_1, x_2, x_3) : x_1^2 + x_2^2 + x_3^2 \le 1\}$.

- **a.** Briefly describe a method based on rejection sampling. What is the expected number of iterations of the rejection algorithm needed to obtain one sample in the unit sphere?
- **b.** If you also have access to a normal random number generator, an alterative simulation method is possible. To generalize the method discussed in class we need a way to similate a point on the surface of the sphere. For this we can take $\mathbf{W} = \mathbf{Z}/|\mathbf{Z}|$, where \mathbf{Z} is a vector whose coordinates are independent standard normals (you don't need to show this). Using this fact, extend the method discussed in class. In particular, find a way to generate R such that $R\mathbf{W}$ has the desired distribution.
- c. Using the second method of simulation (from b.), estimate the probability of the event $\sum_{i=1}^{3} |X_i|^{2/3} \leq 1$. In MATLAB, the following commands are useful: rand, randn.
- **d.** Imagine extending this procedure to d dimensions. Go online and find the formula for the volume of a sphere in d dimensions. What happens to the ratio of the volume of the unit sphere to the volume of the circumscribed cube as a function of d? (It might help to plot the ratio). Which of the two methods of simulation seems preferable for large d from a computational point of view?
- **3.** Let X be a random variable and assume the CDF of X is continuous and strictly increasing (so that it has an inverse). Show that $F(X) \sim \text{unif}[0, 1]$.
- 4. Suppose I want to generate samples from a truncated normal as defined in homework 6. One appealing approach is to generate samples from a $N(0, \sigma^2)$ and keep the ones whose absolute value is less that or equal to γ . Is this a valid approach? Why or why not?