Stat310 HW8 Solutions (100'):

(8')
6.5-4 (a) $\bar{x}-\bar{y}=1511.714-1118.400=393.314$;
(b) $s_{x}^{2}=49,669.905, s_{v}^{2}=15,297.600, \quad r=\lfloor 8.599\rfloor=8, \quad t_{0.025}(8)=2.306$, so the confidence interval is [179.148, 607.480].
(8')
6.5-8 (a) $\bar{x}=2.584, \bar{y}=1.564, \quad s_{x}^{2}=0.1042, \quad s_{y}^{2}=0.0428, \quad s_{p}=0.2711, t_{0.025}(18)=2.101$. Thus a 95% confidence interval for $\mu_{x}-\mu_{V}$ is [0.7653, 1.2747].
(b)

Figure 6.5-8: Box-and-whisker diagrams, wedge on (X) and wedge off (Y)
(c) Yes.
(10')
6.5-11
(a) $\overline{x_{1}-x_{2}}=0.447, s^{2}=2.991,0.447 \pm 1.833 \times \sqrt{2.991 / 10}=[-0.56,1.45]$
(b) $\overline{y_{1}-y_{2}}=1.115, s^{3}=1.665,1.115 \pm 1.833 \times \sqrt{1.665 / 10}=[0.37,1.86]$
(c) For males, No; for females, Yes
(d)

(8')
6.5-12 (a) $\bar{d}=0.07875 ;$
(b) $[\bar{d}-1.7140 .25492 / \sqrt{24}, \infty)=\mid-0.0104, \infty)$;
(c) not neccssarily.
(8')
6.6-2 For these 9 weights, $\bar{x}=20.90, s=1.858$,
(a) A point estimate for σ is $s=1.858$.
(b) $\left[\frac{1.858 \sqrt{8}}{\sqrt{17.54}}, \frac{1.858 \sqrt{8}}{\sqrt{2.180}}\right]=|1.255,3.560|$
or
$\left[\frac{1.858 \sqrt{8}}{\sqrt{21.595}}, \frac{1.858 \sqrt{8}}{\sqrt{2.623}}\right]=[1.131,3.245] ;$
(c) $\left[\frac{1.858 \sqrt{8}}{\sqrt{15.51}}, \frac{1.858 \sqrt{8}}{\sqrt{2.733}}\right]=[1.334,3.179]$
or
$\left[\frac{1.858 \sqrt{8}}{\sqrt{19.110}}, \frac{1.858 \sqrt{8}}{\sqrt{3.298}}\right]=[1.202,2.894]$.
($\left.8^{\prime}, 8^{\prime}, 8^{\prime}\right)$
$6.6-8$ (a) $s_{x}^{2} / s_{y}^{2}=0.0040 / 0.0076=0.5263 ;$
(b) $\left[\frac{1}{F_{0.025}(9,8)} \frac{s_{x}^{2}}{s_{y}^{2}}, F_{0.025}(8,9) \frac{s_{x}^{2}}{s_{y}^{2}}\right]=\left[\left(\frac{1}{4.36}\right)(0.5263), 4.10(0.5263)\right]=[0.121,2.158]$.
6.6-10 A 90% confidence interval for $\sigma_{\alpha}^{2} / \sigma_{v}^{2}$ is

$$
\left[\frac{1}{F_{0.05}(15,12)}\left(\frac{s_{z}}{s_{\eta}}\right)^{2}, F_{0.05}(12,15)\left(\frac{s_{x}}{s_{y}}\right)^{2}\right]=\left[\frac{1}{2.62}\left(\frac{0.197}{0.318}\right)^{2}, 2.48\left(\frac{0.197}{0.318}\right)^{2}\right] .
$$

So a 90% confidence interval for σ_{x} / σ_{y} is given by the square roots of these values, namely [0.383, 0.976].
6.6-12 (a) $\left[\frac{1}{3.115}\left(\frac{604.489}{329.258}\right), 3.115\left(\frac{604.489}{329.258}\right)\right]=[0.589,5.719]$;
(b) $[0.77,2.39]$.
(8’)
$6.7-2\left[0.71-1.645 \sqrt{\frac{(0.71)(0.29)}{200}}, 0.71+1.645 \sqrt{\frac{(0.71)(0.29)}{200}}\right]=|0.66,0.76|$.
$\left(8^{\prime}, 10^{\prime}\right)$
$6.7-8$ (a) $\hat{p}=\frac{388}{1022}=0.3796$;
(b) $0.3796 \pm 1.645 \sqrt{\frac{(0.3796)(0.6204)}{1022}}$ or $[0.35 .46,0.4046]$.
$6.7-10$ (a) $0.58 \pm 1.645 \sqrt{\frac{(0.58)(0.42)}{500}}$ or $[0.544,0.616]$;
(b) $\frac{0.045}{\sqrt{\frac{(0.58)(0.42)}{500}}}=2.04$ corresponds to an approximate 96% contidence level.
(8')
6.7-18 (a) $\hat{p}_{A}=170 / 460=0.37, \quad \hat{p}_{\mu}=141 / 440=0.32$,
$0.37-0.32 \pm 1.96 \sqrt{\frac{(0.37)(0.63)}{460}+\frac{(0.32)(0.68)}{440}}$ or $[-0.012,0.112] ;$
(b) yes, the interval includes zero.

