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Bayesian Inference 

Bayesian inference is a collection of statistical methods which are based on Bayes’ formula.  

Statistical inference is the procedure of drawing conclusions about a population or process based on 

a sample.  Characteristics of a population are known as parameters.  The distinctive aspect of 

Bayesian inference is that both parameters and sample data are treated as random quantities, while 

other approaches regard the parameters non-random.  An advantage of the Bayesian approach is 

that all inferences can be based on probability calculations, whereas non-Bayesian inference often 

involves subtleties and complexities.  One disadvantage of the Bayesian approach is that it requires 

both a likelihood function which defines the random process that generates the data, and a prior 

probability distribution for the parameters.  The prior distribution is usually based on a subjective 

choice, which has been a source of criticism of the Bayesian methodology.  From the likelihood and 

the prior, Bayes’ formula gives a posterior distribution for the parameters, and all inferences are 

based on this. 

 

Bayes’ formula:  There are two interpretations of the probability of an event A, denoted P(A): (1) 

the long run proportion of times that the event A occurs upon repeated sampling; (2) a subjective 

belief in how likely it is that the event A will occur.  If A and B are two events, and P(B) > 0, then 

the conditional probability of A given B is P(A|B) = P(AB)/P(B) where AB denotes the event that 

both A and B occur.  The frequency interpretation of P(A|B) is the long run proportion of times that 

A occurs when we restrict attention to outcomes where B has occurred.  The subjective probability 

interpretation is that P(A|B) represents the updated belief of how likely it is that A will occur if we 
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know B has occurred.  The simplest version of Bayes’ formula is P(B|A) = P(A|B)P(B)/(P(A|B)P(B) 

+ P(A|~B)P(~B)) where ~B denotes the complementary event to B, i.e. the event that B does not 

occur.  Thus, starting with the conditional probabilities P(A|B), P(A|~B), and the unconditional 

probability P(B) (P(~B) = 1 – P(B) by the laws of probability), we can obtain P(B|A). Most 

applications require a more advanced version of Bayes’ formula. 

 

Consider the “experiment” of flipping a coin.  The mathematical model for the coin flip applies to 

many other problems, such as survey sampling when the subjects are asked to give a “yes” or “no” 

response.  Let θ denote the probability of heads on a single flip, which we assume is the same for all 

flips.  If we also assume that the flips are statistically independent given θ (i.e. the outcome of one 

flip is not predictable from other flips), then the probability model for the process is determined by 

θ and the number of flips.  Note that θ can be any number between 0 and 1.  Let the random 

variable X be the number of heads in n flips.  Then the probability that X takes a value k is given by  

P(X=k|θ) = Cn,k θk(1- θ)n-k ,  k = 0, 1, …, n. 

Cn,k is a binomial coefficient whose exact form is not needed.  This probability distribution is called 

the binomial distribution.  We will denote P(X=k|θ) by f(k|θ), and when we substitute the observed 

number of heads for k, it gives the likelihood function.   

To complete the Bayesian model we specify a prior distribution for the unknown parameter θ.  If 

we have no belief that one value of θ is more likely than another, then a natural choice for the prior 

is the uniform distribution on the interval of numbers from 0 to 1.  This distribution has a 

probability density function g(θ) which is 1 for 0 ≤ θ ≤ 1 and otherwise equals 0, which means that 

P(a ≤ θ ≤ b) = b-a for 0≤a<b≤1. 
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The posterior density of θ given X=x is given by a version of Bayes’ formula: h(θ|x) = 

K(x)f(x|θ)g(θ), where K(x)-1 = ∫ f(x|θ)g(θ)dθ is the the area under the curve f(x|θ)g(θ) when x is 

fixed at the observed value.   

A quarter was flipped n=25 times and x=12 heads were observed.  The plot of the posterior density 

h(θ|12) is shown in Figure 1.  This represents our updated beliefs about θ after observing 12 heads 

in 25 coin flips.  For example, there is little chance that θ ≥ .8; in fact, P(θ ≥ .8 | X=12) = 0.000135, 

whereas according to the prior distribution, P(θ ≥ .8) = 0.200000.   
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Figure 1: Posterior density for the heads probability θ given 12 heads in 25 coin flips.  The 

dotted line shows the prior density. 

 

Statistical Inference:  There are three general problems in statistical inference.  The simplest is 

point estimation: what is our best guess for the true value of the unknown parameter θ?  One 

natural approach is to select the highest point of the posterior density, which is the posterior 

mode.  In this example, the posterior mode is θMode = x/n = 12/25 = 0.48.  The posterior mode 

here is also the maximum likelihood estimate, which is the estimate most non-Bayesian 

statisticians would use for this problem. The maximum likelihood estimate would not be the 

same as the posterior mode if we had used a different prior.  The generally preferred Bayesian 

point estimate is the posterior mean: θMean = ∫ θ h(θ|x) dθ = (x+1)/(n+2) = 13/27 = 0.4815, 

almost the same as θMode here. 

 

The second general problem in statistical inference is interval estimation. We would like to find 

two numbers a<b such that P(a<θ<b|X=12) is large, say 0.95.  Using a computer package one 

finds that P(0.30 < θ < 0.67|X=12) = 0.950.  The interval 0.30 < θ < 0.67 is known as a 95% 

credibility interval.  A non-Bayesian 95% confidence interval is 0.28 < θ < 0.68, which is very 

similar, but the interpretation depends on the subtle notion of “confidence.” 

 

The third general statistical inference problem is hypothesis testing: we wish to determine if the 

observed data support or lend doubt to a statement about the parameter.  The Bayesian approach 

is to calculate the posterior probability that the hypothesis is true.  Depending on the value of this 

posterior probability, we may conclude the hypothesis is likely to be true, likely to be false, or 
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the result is inconclusive.  In our example we may ask if our coin is biased against heads, i.e. is θ 

< 0.50?  We find P(θ<0.50|X=12) = 0.58.  This probability is not particularly large or small, so 

we conclude that there is not evidence for a bias for (or against) heads. 

 

Certain problems can arise in Bayesian hypothesis testing.  For example, it is natural to ask 

whether the coin is fair, i.e. does θ = 0.50?  Because θ is a continuous random variable, 

P(θ=0.50|X=12) = 0.  One can perform an analysis using a prior that allows P(θ = 0.50) > 0, but 

the conclusions will depend on the prior.  A non-Bayesian approach would not reject the 

hypothesis θ = 0.50 since there is no evidence against it (in fact, θ = 0.50 is in the credible 

interval). 

 

This coin flip example illustrates the fundamental aspects of Bayesian inference, and some of its 

pros and cons.  L. J. Savage (1954) posited a simple set of axioms and argued that all statistical 

inferences should logically be Bayesian.  However, most practical applications of statistics tend 

to be non-Bayesian.  There has been more usage of Bayesian statistics since about 1990 because 

of increasing computing power and the development of algorithms for approximating posterior 

distributions. 

 

Technical Notes:  All computations were performed with the R statistical package, which is 

available for free from the website http://cran.r-project.org/.  The prior and posterior in the 

example belong to the family of Beta distributions, and the R functions dbeta, pbeta, and qbeta 

were used in the calculations. 
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