
Some Examples of Borel’s “Paradox”

by Dennis Cox

Here, we introduce Borel’s paradox with a simple example, and provide

a couple of exercises to elucidate it further.

First, a brief introduction to conditional probability and conditional dis-

tributions. With conditional probability, we restrict the sample space to a

collection of outcomes of interest, and re-adjust the probabilities. The basic

idea is that we are given some information (that our outcome is in some

subset) and we want to update the probabilities to account for this. The

formula is

P (A|B) =
P (A ∩B)

P (B)
, provided P (B) > 0, (1)

where A and B are two events (subsets of the sample space), and B is the

event that has been given to have occurred. Thus if we know B has occurred,

then we update our probability that A occurs by looking only at the outcomes

in A that are in B (i.e., A∩B), and we renormalize so that all probabilities

total up to 1 by dividing by the probability of B.

Here is a simple example. Suppose we flip a coin twice. The probability

of two heads is

P ({HH}) = 1/4,
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since there are 4 equally likely outcomes:

Sample space Ω = {TT, TH,HT,HH}.

However suppose we are given the additional information that at least one

flip is a head. Then

P ( 2 Heads | at least 1 Head ) =
P ({HH})

P ({TH,HT,HH})

= 1/3.

Intuitively, this makes sense: if we know at least one head has occurred, our

chance of 2 heads should go up. (Note: Many people feel intuitively that the

chance of 2 heads given at least 1 head should be 1/2. If you feel this way,

you should ask yourself why this is incorrect).

This extends to computing conditional distributions of discrete random

variables. Continuing with the coin flipping, suppose we flip 3 times and

define random variables

Y = total number of heads in first two flips

X = total number of heads in second two flips.

Then the conditional distribution of X given the value of Y will depend

on the value of Y . Denoting the conditional probability mass function as

fX|Y (x|y), we have given Y = 0:

fX|Y (0|0) = P [X = 0|Y = 0] = P ({TTT})/P ({TTT, TTH}) = 1/2,

fX|Y (1|0) = P [X = 1|Y = 0] = P ({TTH})/P ({TTT, TTH}) = 1/2,

fX|Y (2|0) = 0.
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Note that for the latter, even though it is possible to get 2 heads in second 2

flips, it can’t happen unless we get a H on the second flip. In a similar way,

we can compute fX|Y (x|1):

fX|Y (0|1) = P [X = 0|Y = 1] = P ({HTT})/P ({THT, THH,HTT,HTH}) = 1/4,

fX|Y (1|1) = P ({HTH, THT})/P ({THT, THH,HTT,HTH}) = 1/2,

fX|Y (2|1) = P ({THH})/P ({THT, THH,HTT,HTH}) = 1/4.

This all works as long as P (B) > 0 in (1). As events of probability

0 shouldn’t occur “very” often, we might be tempted to say that we can

ignore this possibility, but when we look at conditional distributions given

continuous random variables, we are confronted with the problem. Of course,

continuous random variables don’t really happen in the real world (or if they

did, we wouldn’t be able to record them anyway), but they arise theoretically

as limits of discrete random variables. Think of a continuous probability den-

sity function as approximating the probability mass function for a rounded

off random variable obtained by some measurement process - e.g., draw a

person at random and measure his/her height. We will have to record it

to some finite number of decimal places, so the best we can say is the true

height is in some range x±∆x/2. Assuming the probability density function

for height of a random person is f(x), and X represents the height of the

random person, we have

P [X ∈ (x−∆x/2, x+∆x/2)] =
∫ x+∆x/2

x−∆x/2
f(ξ)dξ = f(x)∆x+ o(∆x) ≈ f(x)∆x,

provided f is continuous at x.
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Now suppose we measure both height and weight of our random person,

denoted X and Y , respectively. Then, we have a bivariate probability density

function fXY which (assuming continuity again) satisfies

P [X ∈ (x−∆x/2, x+∆x/2) and Y ∈ (y −∆y/2, y +∆y/2)]

= =
∫ x+∆x/2

x−∆x/2
=

∫ y+∆y/2

y−∆y/2
fXY (ξ, η)dηdξ

≈ fXY (x, y)∆x∆y.

As long as P [Y ∈ (y −∆y/2, y +∆y/2)] > 0, we can compute

P [X ∈ (x−∆x/2, x+∆x/2) | Y ∈ (y −∆y/2, y +∆y/2)]

=
P [X ∈ (x−∆x/2, x+∆x/2) and Y ∈ (y −∆y/2, y +∆y/2)]

P [Y ∈ (y −∆y/2, y +∆y/2)]
(2)

≈
fXY (x, y)∆x∆y

fY (y)∆y
(3)

= fX|Y (x|y)∆x. (4)

Here, the conditional probability density function

fX|Y (x|y) =
fXY (x, y)

fY (y)
,

is defined in a similar way to the conditional probability mass function.

Note that in the expression in (2) we will need some additional assumption

like that fY is bounded away from zero in an appropriate neighborhood of y

in order that the remainder term is o(∆x).

With this formal definition of conditional densities, we can proceed to

compute conditional densities, but often we can reason what the conditional

density should be without resorting to long calculations. For example, sup-

pose we have an explorer who goes to a “random” spot on the globe - say that
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the probability she is in any particular region is proportional to the area of

the region. (We shall suppose the earth is a perfect sphere for this exercise.)

Thus, her location is “uniformly” distributed on the earth. (If this seems

too flippant, consider the problem of an object from outter space striking

the earth - it would be reasonable a priori to assume a uniform distribution

for the strike point). Now, suppose we are given the additional information

that she is on the equator (which is 0 degrees latitude). Given this new in-

formation, what is the conditional distribution of her position (as would be

determined by her longitude, with is between -180 and +180 degrees)?

Intuitively, it would seem that she is equally likely to be anywhere along

the equator, so, for instance, the probability that she is in South America is

the probability that her longitude is between -49 and -80 degrees (approxi-

mately; check it out on the globe), which is 31/360
.
= 0.08.

How can we verify this formally? We will parameterize the earth’s surface:

let (θ, λ) be longitude and latitude, respectively (in radians), where 0 ≤ θ <

2π and −π/2 ≤ λ ≤ π/2. Note that λ = φ − π/2 where φ is the angle of

a point from the North Pole (when you consider the rays from the center of

the earth through the North Pole and the center to the given point on the

surface of the earth), and we usually use φ in spherical coordinates. Then

the element of surface area is

dA(θ, λ) = cos(λ)dθdφ.

Since the total area (in solid angle) is 4π, we have the joint density

f(θ, λ) =











1

4π
cos(λ) if 0 ≤ θ < 2π and − π/2 ≤ λ ≤ π/2,

0 otherwise.
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This is the density for the uniform distribution on the sphere. The (marginal)

density for λ is

f(λ) =
∫ 2π

0

f(θ, λ)dθ

=
1

2
cos(λ), −π/2 ≤ λ ≤ π/2.

Thus, we obtain the conditional distribution for longitude given a value of

latitude to be

f(θ|λ) =
1

4π
cos(λ)

1

2
cos(λ)

=
1

2π
, 0 ≤ θ < 2π,

and so, the conditional distribution of longitude given latitude is a uniform

distribution, no matter what the given value of latitude is, which seems

intuitively correct.

However, now let’s consider the conditional distribution of latitude given

a value of longitude. First, the marginal distribution of longitude is uniform

(in fact, latitude and longitude are independent as their joint density factors

into the product of their marginal densities):

f(θ) =
1

2π
, 0 ≤ θ < 2π.

Hence,

f(λ|θ) =
1

2
cos(λ), −π/2 ≤ λ ≤ π/2.

Here is the “paradox”: Suppose we are given the information that our random

explorer is on the prime meridian (0 degrees longitude), which is 1/2 of a

great circle (the equator is an entire great circle). What is the conditional
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distribution of the latitude given that longitude is 0? It has this cosine

distribution, which means there is less chance of finding her in a neighborhood

of the poles than in a corresponding neighborhood of the equator. But it

seems like geometrically, this should be the same as in the equator case -

uniform. In fact, if we are given that she is at 0 or 180 degrees, which forms

a great circle, it should be uniform, shouldn’t it?

Exercises:

1. Of course, we can’t know the explorer’s position exactly - there is

always some measurement error. Consider the problem of conditioning on

latitude or longitude 0 degrees when we simply know the location up to the

nearest degree (i.e., within ±1/2 degree) for both coordinates. Argue that

the formal result give approximately correct values in that case, although

there are issues near the poles.

2. Here is another example: Let (U, V ) be uniformly distributed on the

unit square, i.e. they have joint (Lebesgue) probability density

fUV (u, v) = 1, 0 < u < 1, 0 < v < 1.

(a) LetX = V −U . Find the joint density of U andX and the conditional

density of U given X = x.

(b) Let Y = V/U . Find the joint density of U and Y and the conditional

density of U given Y = y.

(c) Note that the events [U = V ] and [X = 0] and [Y = 1] are all the
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same. However,

fU |X(u|0) 6= fU |Y (u|1).

Explain.
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