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Chapter 4

Fundamental Concepts of
Statistics.

In this chapter, we introduce some of the basic ideas of statistics making heavy
use of the probability machinery that has been developed.

4.1 Basic Notions of Statistics.

In this section, we shall try to answer the question, “What is Statistics?” Accord-
ing to the Encyclopedia Britannica, “Statistics is the art and science of gathering,
analyzing, and making inferences from data.” The various activities subsumed
under Statistics go by formal nomenclatures such as Design of Experiments,
Descriptive Statistics, Data Analysis, Inference, and Decision Theory. In this
overview, we shall describe each of these general areas and how mathematical
methods come into play. We will also mention other tools, such as computational
methods, knowledge outside of statistics, and intuition, which are indispensable
to the practice of Statistics.

4.1.1 Gathering, Summarizing, and Describing Data.

The first activity in the Encyclopedia Britannica is “gathering data.” In some
sense, data is the raw material of statistics. What is it? How do we gather or
collect it? The answer to the second question depends on the first, and also on
what we wish to do with the data after it is collected.

In Table 4.1.1 we give an example of a data set. This is in fact a subset of
a larger data set. We present only the subset for the purposes of discussion at
this point. Many data sets, like this one, can be viewed as a matrix. The rows
correspond to cases or observations, and the columns correspond to variables.
We will sometimes refer to the cases as observational units. In this example, each
case corresponds to a patient in a study of the effectiveness of an anti-siezure drug
for epileptics. The variable i (in the first column) is the number of the patient
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i Y1 Y2 Y3 Y4 Grp. X Age
1 5 3 3 3 0 11 31
2 3 5 3 3 0 11 30
3 2 4 0 5 0 6 25
4 4 4 1 4 0 8 36
5 7 18 9 21 0 66 22

29 11 14 9 8 1 76 18
30 8 7 9 4 1 38 32
31 0 4 3 0 1 19 20
32 3 6 1 3 1 10 30
33 2 6 7 4 1 19 18

Table 4.1: Example Data Set.

from the original data set (which contained 59 patients, of which we selected 10).
It is not a particularly useful data set. Some of the patients (those in Group 0,
as indicated by the column “Grp.”) were given a placebo, and the others (Grp.
= 1) were given the experimental treatment. The variable X is the number of
seizures the patients had in the 8 weeks prior to the study. They were observed
for a total of 8 weeks after beginning the study, with the results broken down by
2 week periods. The variables Y1 through Y4 are the numbers of seizures in each
of the 2 week periods after the study began.

This example data set has 8 variables. Many data sets have only 1 variable,
but many one variable data sets are obtained by selecting out a single variable
from a subset of the cases in a larger data set.

There are two general types of variables, and each of these is further broken
down into sub-types:

(i) categorical or qualitative variables are those for which there are a set of dis-
crete possible values. These may be either nominal, when there is no order-
ing, or ordinal, if there is an ordering among the categories. For instance,
the racial or ethnic class of a patient is a nominal categorical variable. An
ordinal variable would result if subjects in a survey were asked to reply to a
question with “Poor,” “Fair,” “Good,” or “Excellent.” The possible values
of a categorical variable may be numeric, but that in some sense would only
result from coding.

(i) A quantitative variable is one which is inherently numeric. Such a variable
may be either discrete (e.g. when a result of counting) or continuous (e.g.
when a result of measurement). Further, a quantitative variable may have
one of two scales: interval (when differences are meaningful, but there is
no natural zero point) or ratio (when ratios are meaningful, and there is a
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natural zero point). The sign of an interval measurement is more or less
arbitrary, whereas a ratio measurement should always be positive.

In our example data set of Table 4.1.1, the Group variable is a nominal cate-
gorical variable (even though it is numeric). If we had recorded the sex of the
patients, that would also be a nominal categorical variable. The other variables
are quantitative variables. The Yi’s and X are clearly discrete, resulting from
counting. Now Age appears discrete (as it only takes on whole number values),
but we would generally prefer to think of it as a continuous variable which has
just been rounded off (actually truncated – patient No. 1 is between 31.0000 and
31.9999.... years old; in truncation, the fractional part is thrown away).

In the ideal world, researchers needing statistical assistance would seek the
advice of a trained statistician before collecting the data. The data in the example
have the advantage of malice of forethought – the patients were assigned to a
group (treatment or control, i.e. placebo) randomly.

4.1.2 Statistical Models.

One of the most important steps in addressing a statistical problem is the for-
mulation of a model. We shall give a formal definition here, but we do not claim
that this encompasses all “models” that arise in practice, only the models that
are amenable to the mathematical methods described in this text. A statistical
model consists of a measurable space (Ω,F), a collection of probability measures
IP on (Ω,F), and a collection of possible observable random vectors X. It is
assumed that one of the probability measures in IP is the “correct” or “true” one
(or an approximation to the “true” one which is good enough for the purpose
at hand), and that one can choose to observe a realization of one of the random
vectors in X. Choice of which element of X to observe is the experimental de-
sign problem. Many times the statistician does not have such a choice, as in a
consulting problem where a client has already collected the data, in which case
X consists of just one random vector. The random vector may also have nonran-
dom components. Note that each X in X will have an induced distribution under
each probability measure in IP, and we usually just concentrate on these induced
measures, especially if there is only one possible observable. As an example, sup-
pose the underlying measurable space is a collection of laboratory mice which are
treated with some chemical which will possibly cause cancer. The mice are to
be given some amount of the chemical and then observed for a period of time.
Then it is determined whether or not they have cancer. Let us assume the cancer
researcher has already determined the amount of chemical to give and the length
of time to wait after giving the chemical before testing for cancer, but she wishes
to know how many mice she needs to test. In this case, the measurable space
is a collection of mice, and the experiment consists of selecting mice at random,
treating them with the chemical, and observing whether or not they develop can-
cer within the given period of time. The unknown probability distribution then
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takes into account the probability of selecting mice, the probability of their sub-
sequent development of cancer if they are selected, and the chance of observing
that cancer (there is some chance it may be missed, or some other condition may
be misdiagnosed as cancer). The exact specification of the probability measure
and so forth is not required for the mathematical analysis (although we should
be careful that the mice are truly selected at random from some well defined
population of mice if we want to guarantee that the sample is representative of
that population; more on this later). The space of observables is a collection X

= {(n,X) : n ∈ IN, X ∈ IN} where X is a binomial random variable with n trials
and unknown “success probability” p ∈ [0, 1], which is the probability of cancer
in a single mouse. X is the number of mice in the sample who develop cancer.
(Alternatively, one could consider that observable (n, Y1, Y2, . . . , Yn) where the
Yi’s are independent Bernoulli random variables defined by Yi = 1 iff mouse i
develops cancer. Then X above is given as the sum X =

∑n
i=1 Yi. We shall see

that it is good enough (“sufficient”) to consider the simpler observable (n,X).)
Here, the sample size n is a nonrandom component of the observation. The design
problem consists of choosing n. Of course, a larger value of n will result in more
“accurate inferences”, but there is a finite amount of money available for the
entire experiment. Often, the client will ask for the minimum value of n required
to achieve a given “accuracy of inference”, and then use that value if it is feasible
or take the largest value she can afford. Determination of the value required to
achieve a given “accuracy of inference” depends on the kind of inferences to be
done, whether or not there is a reasonable estimate or guess at the value of p, or
whether or not it is acceptable to use a “worst case” value of p. These issues are
discussed at greater length in sections ???.

We will generally assume the experimental design is already decided upon so
that there is only a single observable random n-vector X and a collection possible
distributions IPX. For instance, in the above example the cancer researcher may
have already decided on the sample size n and may already have collected the data
so we need only concern ourselves with the collection of binomial distributions
{B(n, p) : 0 ≤ p ≤ 1}. Then, at least as far as the mathematics of the inference
goes, we can forget about the underlying measurable space and the probability
measures thereon and simply concentrate on X and its distributions. It has been
common practice in statistics to choose for IPX a parametric family meaning a
collection {Pθ : θ ∈ Θ} where θ is a natural index or label for the probability
measure. Here, the parameter space Θ, is the collection of all possible values
of the parameter θ. In general, Θ is a “nice” subset of some finite dimensional
space IRp. For instance, in our mouse cancer example with n fixed, we may index
the possible distributions with the parameter p (probability of cancer for a single
mouse) and the parameter space is [0, 1].

When our parameter is multidimensional, we may only be interested in some
components of the parameter vector (called “parameters of interest”) and the
other parameters (referred to as “nuisance parameters”) are not of interest. For
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example, suppose we observe X1, X2, . . ., Xn which we model as i.i.d. N(µ, σ2)
where both µ and σ2 are unknown. We may be interested only in µ, but to
completely specify the model, it is necessary to include σ2. In this case, µ is the
parameter of interest, and σ2 is a nuisance parameter.

In the mouse cancer example, if we assume the observations of cancer or no
cancer on each of the mice are independent and that the probability of cancer
is the same from mouse to mouse (note that these are assumptions about the
underlying measurable space and the possible probability measures on it), then
there is really no other choice than this parametric family {B(n, p) : 0 ≤ p ≤ 1}.
In many cases, however, such knowledge is not available. For instance, if instead
of determining “cancer” or “no cancer” on each of our mice we made a measure-
ment such as “mass of cancerous liver cells”. (This may be done by sacrificing the
mice, cutting out the livers, removing all tumors, and weighing their total mass.)
Then our model is necessarily more complicated. We may model the measured
masses as realizations of i.i.d. random variables with a distribution of the form

Law[Xi] = (1 − p)δ0 + pP (4.1)

where p ∈ [0, 1] is the probability of developing cancer (so that if the mouse has
no cancer then the observed mass is 0) and P is a probability distribution (for
the tumor mass given that there is cancer) which is supported on the nonnegative
IR. Since the tumor mass may in principle take any value in the continuum of
positive real numbers, we would ordinarily assume P has a Lebesgue density of
the form

dP

dm
(x) = g(x) , where g(x) = 0 for x ≤ 0. (4.2)

For various reasons, we may decide that a reasonable choice of possibilities for g
is the exponential family

g(x) = λ−1e−x/λ , x > 0, (4.3)

where λ > 0 is unknown. Here, λ has the interpretation as the mean tumor mass
for mice with cancer. Now our parametric family has densities {fθ : θ = (p, λ) ∈
Θ} where the parameter space Θ = [0, 1] × (0,∞) and the dominating σ–finite
measure is

µ = δ0 + m . (4.4)

For many reasons, we will usually want our family to have a σ–finite dominating
measure µ, in which case we say the family of probability measures is dominated
and will write IPX ≪ µ. Note that the statistical model is well defined by the
family of densities and the dominating measure since we can determine the par-
ticular probability distributions therefrom. Note also that the parameterization
is not unique. For instance, instead of using the mean λ of the exponential, we
could use the reciprocal mean α = 1/λ, 0 < α < ∞, or the log mean ξ = log(λ),
−∞ < ξ < ∞. Since the parameter is just a label for the distribution, choice
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of a particular parameterization is often a matter of mathematical convenience.
This will be discussed at greater length elsewhere.

In the above, we assumed the distribution for tumor mass given that the mouse
had cancer was an exponential distribution with unknown mean λ. Of course, it
is extremely doubtful that the exact density function has this form. There are
two points to be made. First, we may wish to assume that the density g in (4.2) is
completely unknown, except possibly for very general assumptions, like that it is
continuous on (0,∞) and decreasing (or maybe unimodal). Such a model is called
nonparametric since there is no nice way of labelling or “parameterizing” such
densities with a finite dimensional parameter. (However, we can “parameterize”
any family of probability distributions – just use the probability distribution itself
as “parameter”. It has become traditional in statistics to speak of parametric
families when referring to a model with a “nice” finite dimensional parameter
even though everything is in principle parametric.) For whatever questions the
researcher is interested, we may then want to use nonparametric methods which
are appropriate and valid for such models. An alternative approach is to consider
robustness. Based on past experience with similar chemicals, the researcher may
believe that the exponential densities represent a reasonable approximation to
the true density. Robust methods work well for the nominal (exponential) density
and for other distributions which are “nearby”. We shall give examples of robust
and nonparametric procedures in sections ???.

4.1.3 Statistical Inference.

So far, we have talked about “inference” without saying what it is. Webster’s
New World Dictionary, Third College Edition, defines “infer” as “to conclude
or decide from something known or assumed; derive by reasoning; draw as a
conclusion.” “Inference” then means “the act or process of inferring,” or “a
conclusion or opinion arrived at by inferring.” In the case of statistical inference,
what is known is the data and what is assumed is the model. We then try to
reason to a conclusion, which would be the inference for that occasion (as opposed
to the general subject of inference). In the mouse cancer example, the researcher
may be interested in inferring the true value of the probability of cancer (referred
to as an estimation problem), or in inferring whether or not the true value is
above or below .001 (referred to as a hypothesis testing problem). The main
point of statistical inference is to use the data to find out what the “truth” is in
a scientific setting. Notice that this is in some sense dependent on the statistical
model, as in the example where we refer to a probability which is a parameter
in the model. Often a client will be interested in drawing some inferences but
not have enough experience or knowledge of statistics to express the problem in
a formal way. In these cases a good statistical consultant will try to understand
the client’s informal questions (“informal” means from the statistical point of
view; they may be very “formal” from the client’s point of view) and formulate a
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model which facilitates a statistical statement of the question and is reasonably
accurate for the data at hand. (Again, robustness becomes an issue here since no
model can be reasonably expected to be exactly correct. George Box, a famous
statistician, says “All models are false, but some are useful.” We take “useful”
to mean both that it fits the data and allows one to make the desired inferences.)

In the above, we talked about “accuracy of inference”. There is no universally
accepted way of defining this, but there are widely used methods for the two
types of inference we talked about. For the mouse cancer example, if we want
to estimate p, the probability of cancer for a single mouse, then we want to
compute some function of the data, say p̂(X) which is called an estimator. When
a particular realization x is plugged in, we obtain the estimate p̂(x). (Note: an
estimate p̂(x) ∈ IR in this case but an estimator p̂ : IN −→ [0, 1] is a function.) Of
course, we require that p̂ be measurable. The most common way (but certainly
not the only way) of measuring accuracy is with mean squared error

MSE(p, p̂) = Ep[(p̂(X) − p)2] . (4.5)

Here, Ep means computing expectation using the (binomial) probability measure
determined by the particular value p. Note that MSE is a function of both the
value p (which is assumed to be the “true” value for the purposes of computing
MSE) and the estimator p̂. MSE has a decomposition into “bias squared plus
variance”

MSE(p, p̂) = Bias2(p, p̂) + Varp(p̂(X)) , (4.6)

where the bias is given by

Bias(p, p̂) = Ep[p̂(X)] − p . (4.7)

Note in (4.6) we use Varp to compute variance using the distribution with para-
meter p. It is common (but by no means unanimously accepted) to require that
the estimator be unbiased, meaning that Bias(p, p̂) = 0 for all parameter values
p ∈ [0, 1]. In that case, MSE reduces to variance by (4.6).

For the problem of testing hypotheses there is given a value p0 and one wishes
to decide which of two statements is correct:

H0 : p ≤ p0 vs. H1 : p > p0 , (4.8)

One approach would be to estimate p with say p̂(X), and decide H0 is true if
p̂(X) ≤ p0, and otherwise decide H1 is true. However, the conceptual framework
of hypothesis testing is sufficiently different from estimation to require seperate
consideration. One distinguishes one of the two statements as being the null
hypothesis H0, and controls the probability of incorrectly deciding it is false. This
probability of rejecting H0 if in fact it is true is made to be small (“rejecting”
H0 means deciding it is false). The other statement H1 is called the alternative
hypothesis. Thus, the strategy is that if we reject the null hypothesis, we do so
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only if there is “strong evidence” against it since there will be little chance of
rejecting it if it is true. Thus, in some sense, we have given the “benefit of the
doubt” to H0. For this reason, one usually chooses for the null hypothesis the
statement which one wishes to reject, since if that is done we can be reasonably
sure of making the right decision, whereas accepting the null hypothesis may still
leave some doubt. We will amplify on these issues in chapter ???.

Now we formalize the above. We are given a bound α on the probability
of falsely rejecting H0 called a level of significance, and we wish to have a test
function φ : IN −→ {0, 1} where φ(X) is our decision (i.e. the subscript on H)
such that

Pp[φ(X) = 1] ≤ α , for all p ≤ p0 . (4.9)

(Here, we have subscripted the probability with the parameter p. Since we have
written X for the r.v., this probability is a measure on the underlying space of
mice, but since we are only concerned with the distribution of X, knowledge of p
is sufficient for all calculations so we need not concern ourself with other aspects
of the unknown probability measure.) Thus, the probability of wrongly rejecting
H0 is ≤ α. Here, α is specified. For any given value p, we can compute the power
of the test which is

γ(p) = Pp[φ(X) = 1] = Ep[φ(X)] . (4.10)

Note that the latter equation follows since φ is just an indicator function, namely
the indicator of the critical region C = {x : φ(x) = 1}. Thus, we may be
concerned with the power at a particular alternative value p1 > p0 and use this
to compare various tests of the hypotheses. Thus, for hypothesis testing, we
assess the “accuracy of the inference” by the power function.

In the context of hypothesis testing for the mouse cancer example, we intro-
duce a notion intended for mathematical convenience that sometimes has prac-
tical uses, namely randomized procedures. Suppose the cancer researcher uses a
sample of n = 10 mice and wishes to test the hypotheses

H0 : p < .8 vs. H1 : p ≥ .8 .

Suppose also that the level of significance α = .05 is required. (Incidentally, this
is the most commonly used level of significance, and has become the “default”
value, although there is no particularly good reason for this.) It is intuitively
clear even if the student is unfamiliar with such testing problems that evidence
against H0 in favor of H1 is a value of X which is too large, so the critical region
should take the form

C = {x : x ≥ x0 } .

Here, x0 is to be determined so that (4.9) holds, i.e. that

Pp[X ≥ x0] ≤ .05 , for all p ≤ .8 . (4.11)



4.1. BASIC NOTIONS OF STATISTICS. 231

Since X takes nonnegative integer values, we may consider only these values for
x0. Notice that in general Pp[X ≥ x0] is a increasing function of p. This is not
easy to show, but is intuitively obvious. Hence, the l.h.s. of (4.11) is maximized
at p = .8, so we need only ensure that (4.11) holds for this value of p. Now we
have from a table of binomial probabilities and an obvious result (since n = 10)
that

P.8[X ≥ 10] = .134

P.8[X ≥ 11] = 0

Thus, in order to satisfy (4.11), we should take the critical region to be [X ≥ 11]
and reject H0 with probability 0. One sees how H0 is given too much “benefit of
the doubt”. One technical way to rectify this is to allow us to do the following:
if X = 10 is observed (which happens with probability .134) then reject H0 with
probability .05/.134 = .373. That is, perform some other random experiment
with possible outcomes 0 or 1 where 1 has a probability of .373, and reject H0 if
1 occurs on this auxiliary experiment. For instance, one may generate a uniform
random number in [0, 1] on a computer and reject H0 if X = 10 and this uniform
random number is ≤ .373. Obviously, our client would probably not like this
statistical procedure, but not much else can be done with such a small number
of observations in respect to the question being asked.

A simple way to mathematically represent such a randomized test of hypothe-
ses is to let the test function take values between 0 and 1. Henceforth, we define
a test function as a measurable function φ on the range of values of the random
observable X into [0, 1], and φ(x) represents the conditional probability of reject-
ing H0 given that X = x is observed. Then the total probability of rejecting H0

is
Ep[φ(X)] = γ(p) . (4.12)

Notice that we have a two stage experiment here. The first stage is to observe
X according to its (unknown) binomial distribution, and the second stage is
to generate a Bernoulli random variable Z (a r.v. taking the values 0 or 1)
with conditional probability P [Z = 1|X = x] = φ(x). We then decide in favor
of the hypothesis HZ . Of course, if φ(x) only takes values in {0, 1} (i.e. is a
nonrandomized test), then there is no point in performing the experiment to get
Z since it is just a degenerate r.v.

4.1.4 Statistical Decision Theory.

Both of the above kinds of inference problems (estimation and hypothesis test-
ing) may be fit within a single framework called (statistical) decision theory. The
statistical decision problem is often thought of as a game between two oppo-
nents, Nature and the Statistician. Nature chooses a probability measure from
a parameterized family {Pθ : θ ∈ Θ} on the measurable observation space (Ξ,G)
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with the choice being unknown to the Statistician. There is given a measurable
action space (A,D) of allowable decisions or actions, and the Statistician must
choose a decision rule δ : (Ξ,G) −→ (A,D) from a class ∆ of allowable decision
rules. There is also given a loss function L : Θ×A −→ [0,∞] such that L(θ, ·) is
extended Borel measurable for each fixed θ ∈ Θ. If Nature chooses θ0, then there
is generated an observation x of X, a Ξ valued random element with distribution
Pθ0 . If the Statistician uses the rule δ, then he loses L(θ, δ(x)). The risk is the
expected loss

R(θ, δ) = Eθ[L(θ, δ(X))] . (4.13)

This is a function of θ (the parameter of the probability distribution chosen by
Nature) and δ (the decision rule chosen by the statistician). If the game is played
repeatedly (with the same value of θ and the same decision rule), then the risk is
the long run average loss. Note that the integrand in (4.13) is Borel measurable
since for each θ ∈ Θ it is a composition L(θ, ·)◦δ of two measurable functions (see
Proposition 1.2.3). Also, the integral is defined since the integrand is nonnegative.
Therefore, R is a function on Θ×∆ taking values in [0,∞]. One can allow more
general loss functions, but we need not consider them here.

As with the hypothesis testing situtation, it will sometimes be useful to con-
sider randomized decision rules. This means that the Statistician specifies not
a mapping δ : (Ξ,G) −→ (A,D) but rather a family of conditional distributions
{Pδ|X(B|x) : B ∈ D, x ∈ Ξ}. The interpretation is that we make a two stage
experiment: after first observing X = x, we generate a decision δ ∈ A according
to the conditional distribution Pδ|X(·|x). Then the risk in (4.13) is computed by
integrating over both the randomness in X and the randomness in δ, viz.

R(θ, δ) =
∫

Ξ

∫

A
L(θ, a) dPδ|X(a|x) dPX(x) . (4.14)

We have used a as a dummy variable of integration to represent a particular
value of the random element δ. In general, we may still require that δ belong
to an allowable class ∆ of randomized decision rules. A nonrandomized decision
rule is one for which all conditional distributions are degenerate, i.e. if δ0(x) is a
nonrandomized decision rule then the corresponding randomized decision rule is

Pδ|X(B|x) = IB(δ0(x)) , (4.15)

where we have written the unit point mass measure δδ0(x)(B) as an indicator to
avoid confusion with too many δ’s.

Decision rules are compared by comparing their risk functions. Let Θ1 ⊂ Θ.
a decision rule δ1 is as good as another decision rule δ2 on Θ1 iff

R(θ, δ1) ≤ R(θ, δ2) , for all θ ∈ Θ1 , (4.16)

and we write δ1 � δ2 on Θ1. It will usually be the case that Θ1 = Θ, in which
case we will drop the mention of Θ1. We say δ1 is better than δ2 on Θ1 if δ1 � δ2
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on Θ1 and for some θ ∈ Θ1, R(θ, δ1) < R(θ, δ2). We write δ1 ≺ δ2 on Θ1 for this.
Two decision rules are called equivalent on Θ1 if each is as good as the other on
Θ1, and we write δ1 ∼ δ2 on Θ1 in this case. We will be interested in optimal
decision rules. A Θ1–uniform minimum risk ∆–rule is a rule δ∗ in ∆ which is
as good as any other rule in ∆ on Θ1. This is clearly the best optimality one
could hope for if Θ1 = Θ (given that the decision rules must come from ∆), but
it is frequently impossible to attain. This happens because some rules are better
for some parameter values and other rules are better for other parameter values.
One of the reasons for constraining the decision rule to lie in a particular ∆ is
so that there will exist a uniform minimum risk ∆-rule, and if one does not exist
for one ∆, then it has been a common practice to make ∆ even smaller to obtain
such a best rule. Of course, this practice is highly questionable.

Now we show how the previous discussions of inference with the mouse cancer
example are encompassed within decision theory. Nature “chooses” a probability
p that an individual mouse who has undergone the treatment develops cancer.
Consider the point estimation problem. The action space is [0, 1], the same as the
parameter space. A decision rule is an estimator, which is simply a measurable
map p̂ : {1, 2, ..., n} −→ [0, 1]. If we use squared error loss, given by

L(p, p̂) = (p̂− p)2 , (4.17)

then the risk is MSE. This choice of loss function is arbitrary but mathematically
convenient. If it is required that the estimator be unbiased, then the class ∆ of
allowable decision rules is the class of measurable functions p̂ satistifying the
unbiasedness constraint

Ep[δ(X)] = p for all p ∈ [0, 1].

If an unbiased estimator has smallest variance (risk under squared error loss)
among unbiased estimators for all parameter values, then it is called a uniform
minimum variance unbiased estimator. In Chapter ?? we shall be concerned with
finding such UMVUE’s.

To see why unbiasedness is used, recall that one estimator p̂1 is better than
another p̂2 if MSE(p, p̂1) ≤ MSE(p, p̂2) for all p ∈ [0, 1]. Now let p̂2 be the “dumb”
estimator

p̂2(x) = 1/2 . (4.18)

Obviously, R(1/2, p̂2) = 0, and no other estimator can have risk this small at p
= 1/2 unless it is almost surely equal to p̂2. On the other hand, p̂2 does not have
good risk for values of p very far from 1/2. The point of requiring unbiasedness
then is to rule out such foolish estimators which cannot be improved on for specific
values of the parameter. This is an example of constraining the class of decision
rules so as to find a uniformly best rule in the constrained class. However, we shall
see that requiring the estimator to be unbiased also rules out good estimators
sometimes.
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The hypothesis testing problem is a little more complicated. The action space
is very simple: {0, 1} corresponding to choosing H0 or H1. A nonrandomized
decision rule is a test φ : {1, 2, ..., n} −→ {0, 1}. The collection of allowable
tests ∆ are those satisfying the level of significance constraint in (4.11). The loss
function is so called 0 − 1 loss

L(p, φ) =

{

1 if φ = i and Hi is true,
0 otherwise.

(4.19)

That is, the loss is 1 if the right decision is made, and is 0 if the wrong decision
is made. One can see then that the risk is

R(p, φ) =

{

γ(p) if p ≤ p0,
1 − γ(p) if p > p0.

That is, the risk for a given p is the probability of making the wrong decision for
that p. Since the risk has already been constrained to be small for values of p
in H0, we generally only concentrate on values of p in H1, so we want the power
function to be large in H1 so that the risk is small. Note that a randomized test
is simply a randomized decision rule. A test which maximizes the power over H1

subject to the level α constraint is called a uniformly most powerful test of level
α or UMP level α test. Such a test is a H1–uniform minimum risk significance
level α rule, in the language of decision theory. Again, if one considers tests
irrespective of the level α constraint, then there is a test which has no risk when
H0 is true (namely, always accept H0) and another test with no risk when H1

is true (always reject H0). Thus, the level α constraint is a convenient way of
constraining the class of decision rules so that one can sometimes find UMP tests.

Decision theory provides a nice mathematical framework within which to eval-
uate various procedures for statistical inference. It is also a subject of some in-
terest in its own right. For instance, if making economic decisions for a business,
one may be able to determine a loss (or profit) function for a decision rule in the
face of uncertainty that can be formulated in terms of a parameterized family
of probability measures. However, in applied statistics, decision theory is often
times misleading. In the inference examples above, there is no good reason for
choosing the particular loss functions, nor is it clear that even computing the risk
is such a great idea, although it does provide some basis for comparing different
inference methods. Other difficulties arise. For instance, it is assumed that the
observable has a distribution in a prespecified parametric family. How does one
choose this family? Is it an accurate representation of reality? Is the decision
rule selected for doing the inference insensitive to departures of the true state of
Nature from our idealization as a parametric model of probability distributions?
What if we use the data in the choice of the parametric model? How does this
affect the validity of the inferences? Some of these questions are very deep and
it is fair to say that no one has given entirely satisfactory answers. In actually
applying statistics to real world problems, it can be very misleading to confine
oneself to thinking in terms of decision theory.



4.1. BASIC NOTIONS OF STATISTICS. 235

4.1.5 Bayesian Decision Theory.

The decision theory problem can be simplified by adding some more structure:
suppose we believe that Nature chooses the parameter as well as the data at ran-
dom, and we know that the distribution she uses for selecting θ is π, a probability
measure on Θ. The distribution π is called the prior distribution for θ. We can
formulate a new problem of minimizing the Bayes risk which is given by

r(δ) =
∫

Θ
R(θ, δ) dπ(θ).

That is, we average the risk over the prior. In the problem of finding a uniform
minimum risk estimator, we try to minimize R(θ, δ) over δ simultaneously for all
values of θ, which is typically impossible, unless we restrict the set of allowable
decision rules δ. For the Bayesian problem we have a single function of δ we wish
to minimize, which is a much more manageable problem, and in general can be
accomplished without restrictions on δ, as we now show.

Assume we have a dominated family as in

PX|θ(·|θ) ≪ µ σ-finite, f(x|θ) =
dPX|θ(·|θ)

dµ
(x).

Note that we have changed our notation from fθ(x) to f(x|θ) in order to reflect
the fact that now θ is a random object, and we are conditioning on it. Also, we
are using θ to denote both the random object and various values it might take (a
very dangerous thing to do!), since we have already taken Θ for the parameter
space. The student will have to be careful when interpreting the symbol θ – it
should be clear from context what is meant. Inserting the definition of the risk
function R(θ, δ) (as the expected loss over the observations) and using Fubini’s
theorem, we obtain

r(δ) =
∫

Θ

∫

Ξ
L(θ, δ(x))f(x|θ) dµ(x) dπ(θ)

=
∫

Ξ

∫

Θ
L(θ, δ(x))f(x|θ) dπ(θ) dµ(x). (4.20)

Now, define the inner integral using

ρ(x, a) =
∫

Θ
L(θ, a)f(x|θ) dπ(θ). (4.21)

Here, a is any allowable action, but plugging in δ(x) for a and integrating dµ(x)
gives r(δ). Now suppose for each fixed x ∈ Ξ we can find an action a that
minimizes ρ(x, a). This minimizer will depend on x, of course, so denote it as

δ⋆(x) : ρ(x, δ⋆(x)) ≤ ρ(x, a), ∀a ∈ A. (4.22)

Then, assuming measurability of δ⋆, we see immediately that r(δ⋆) ≤ r(δ) for
any other decision rule δ.
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Example 4.1.1 Consider the problem of point estimation of p in the B(n, p)
model (n known) under squared error loss. The function ρ in (4.21) is given by

ρ(x, a) =
∫ 1

0
(p− a)2f(x|p) dπ(p),

where

f(x|p) =

(

n
x

)

px(1 − p)n−x.

Expanding the (p − a)2 term in the integral expression for ρ(x, a) and observing
that it is a quadratic function of a, it is easy to see that the Bayes estimator
under squared error loss is given by

δ⋆(x) =

∫ 1
0 pf(x|p)dπ(p)
∫ 1
0 f(x|p)dπ(p)

=
∫ 1

0
pf(x|p)dπ(p|x),

where π(·|x) is the conditional distribution of the parameter p given X = x. The
conditional distribution of the parameter given the data is known as the posterior
distribution. In general, the optimal Bayes estimator under squared error loss is
the posterior mean, as we see in this particular example.

4.1.6 Data Analysis.

We briefly mention two other points of view which can be useful, although much
of what we say in the remainder of the text is within the context of decision
theory since the other topics do not lend themselves so nicely to mathematical
analysis.

It could be said that statistics is the art and science of “data analysis” in its
most general meaning. That is, other scientists generate data from their experi-
ments or observatons and consult with the statistician to help them understand
the data, determine whether it supports their hypotheses or not, and/or use the
data to make predictions. Almost all of modern statistics is based on probability
models for the data, even though presumably Nature does not roll dice to deter-
mine events in this world (recall probability models were developed as models for
games of chance). However, Nature often seems to act as if she rolls dice. It is
not clear whether this is an intrinsic property of nature (as quantum physicists
think) or of probability models. The main point is that probability models seem
to work for a wide variety of problems, if applied by a skilled person. Even in
those statistical analyses where a probability model is not required, it is often
useful to think of the data as generated by some random mechanism. One should
always question “where does the randomness come from?” In the mouse can-
cer example, the randomness may come from the fact that the scientist actually
selected the mice for the study by taking a random sample from a well defined
population of mice. This is the best of all circumstances, although it is not clear
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one can ever truly attain it since generation of the random numbers used to deter-
mine the sample is always questionable. (Computer generated random numbers
are known to not truly be random, although they work well for most purposes.
If the numbers were generated by rolling a die, how can we be sure that the roll
of a die is a truly random experiment, and if so that that die is fair and the
different rolls are independent?) More often than not, such sound experimental
practices are not followed and one analyzes the data and draws the conclusions
conditionally under the assumption that the probability model is correct, or at
least close enough.

In the examples of inference given above we were mostly interested in “confir-
matory” results rather than “exploratory” analysis. Often times, the statistician
is asked to look for connections and patterns in the data. This is usually called
exploratory data analysis or EDA. While this activity does not require one to
assume a probability model for the data, there are at least two ways in which
such an assumption is useful. For one, there always arises the question whether
or not such structure as may be found is “truly” present or could have resulted
from chance alone. For instance, if one sees an apparent difference between the
cancer rates of mice treated with a chemical and a control group which is not
treated, is it possible that the two groups’ cancer rates are really the same but the
apparent difference is caused by chance? A second use of probability models in
EDA is for conceptualization of structures one might find. For instance, we may
plot a histogram to get a convenient “picture” of the data, to see for instance if
there are two or more “subpopulations” (as would be indicated by a multimodal
histogram). A histogram may be also interpreted as an estimate of the underly-
ing density, if we assume the observations are say i.i.d. with a Lebesgue density.
This allows us for instance to compare various ways of selecting the width of the
histogram class intervals (or bins) by looking at the mean squared error, whereas
there is no obvious way to do this without assuming a probability model. It also
allows us to assess the “accuracy” of the histogram as an estimate, and this can
be helpful in assessing whether or not apparent multimodality is “really there”.

Data analysis in the sense of looking of “looking at the data” is also useful
after the inferences are drawn. In applied statistics, such techniques are often
referred to as diagnostics. For instance, in the mouse cancer example we may look
at the data as a function of observation number to see if there is an effect from
time suggesting the data are not really i.i.d. Some of the same questions arise
as in exploratory data analysis, such as if an observed trend is found could this
be an illusion and such a trend was really generated by chance alone. Ideas from
hypothesis testing (hence also decision theory) can be applied to such questions.

Finally, we mention descriptive statistics, which is usually taken to mean
“summarizing” or “describing” the data. While in principle this is done under
the presumption the data is just a “bunch” of numbers without any underlying
probability distribution, probabilistic and decision theoretic ideas can be help-
ful. For instance, one can summarize the data by grouping it into classes and
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determining class frequencies, which amounts to the same thing as forming a
histogram, in which case the ideas above regarding the histogram as a nonpara-
metric estimate of the probability density function are pertinent. One may also
summarize the data by giving sample mean, sample variance, and/or sample
quantiles, all of which have a probabilistic interpretation as estimates of func-
tionals of an underlying distribution and hence can be studied from the point of
view of decision theory.
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Exercises for Section 4.1.

4.1.1 Verify equation (4.6).

4.1.2 Suppose X is B(n, p) for n given and p ∈ [0, 1] unknown. For each of the
following estimators of p, calculate the bias, variance, and MSE.

(i) p̂1(x) = x/n.

(ii) p̂2(x) = (x+
√
n/2)/(n+

√
n)

Is either of these estimators better than the other? Is either of these estimators
as good as the other?

4.1.3 A test function φ : (Ξ,G) −→ [0, 1] is defined as the conditional prob-
ability of rejecting H0 given X (where X : (Ω,F) −→ (Ξ,G) is the random
observable). Let θ ∈ Θ denote the parameter.

Show that the probability of rejecting H0 if θ is true is the power

γ(θ) = Eθ[φ(X)]

4.1.4 Suppose X : (Ω,F) −→ (Ξ,G) is a random observable with Law[X] ∈
{Pθ : θ ∈ Θ}. The problem of set estimation (or interval estimation if Θ ⊂ IR)
involves finding a set S(X) which contains the true θ with high probability. More
specifically, a 1 − α confidence set satisfies

Pθ[θ ∈ S(X)] ≥ 1 − α , for all θ ∈ Θ . (4.23)

Here, α ∈ (0, 1) is given. The l.h.s. of (4.20) is called the coverage probability.
Suppose Θ ⊂ IRp for some p. S∗ is a minimum volume 1 − α confidence set if it
satisfies (4.23) and for any other 1 − α confidence set S(X),

Eθ[m
p(S∗(X))] ≤ Eθ[m

p(S(X))] , for all θ ∈ Θ .

Show how this notion of optimality of a confidence set can be expressed in terms
of decision theory.

Remark: In practice, confidence sets are usually attached to point estimates
as a measure of accuracy rather than as a separate kind of estimate in and of
itself.
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4.2 Sufficient Statistics.

In this section, we study statistics (more properly, σ–fields) which contain all
pertinent information about a parameter. Here, a statistic is a mapping T =
h(X) of the observable which doesn’t depend on the unknown parameter.
For instance, if X is real valued and θ is an unknown location parameter, then
X − θ is not a statistic, but if θ0 is a fixed, known real number, then X − θ0 is a
statistic. Since a statistic T is a function of X, it follows that σ(T ) ⊂ σ(X). If
σ(T ) 6= σ(X), i.e. if the inclusion is proper, then we will have lost “probabilistic”
information if we only know T but not X (i.e. there will be events E ∈ σ(X) for
which we will not know if E occurred or not). However, we may not have lost
“statistical information” in that (intuitively speaking), we may still be able to do
as well making inferences about an unknown parameter knowing only T . Further,
since T is in some sense “simpler” than X (i.e. σ(T ) is smaller than σ(X)), if our
only interest is in statistical inference, we have achieved some reduction of the
data by going to T and forgetting X. The following definition will make precise
what we have been saying, in that a statistic T is sufficient precisely when it
contains as much “statistical information” about the unknown parameter as the
original observable.

Definition 4.2.1 Let X : (Ω,F) −→ (Ξ,G) be a random observable from a
model IP = {Pθ : θ ∈ Θ}. A statistic T = T (X) is called sufficient for IP (or for
θ) iff there is a version of {Lawθ[X|T = t] : t ∈ T (Ξ)} which is independent of
θ, i.e.

Lawθ[X|T = t] = Lawθ′[X|T = t]

for all θ, θ′ ∈ Θ, and we will write simply Law[X|T = t].

✷

Intuitively, the reason T contains as much “statistical information” about the
parameter as X is that we can recover a probabilistic replica of X when we know
T , using a two stage experiment. Given an observed value t of T , we generate
a random object (say X∗) from the conditional distribution Law[X|T = t] (note
that we don’t need to know θ to do this), and by the two stage experiment
theorem (Theorem 1.5.10), X∗ has the same distribution as X, so we can use X∗

as if it were X. We will make these notions more precise using decision theory
shortly, but first it is instructive to consider some examples.

Example 4.2.1 Let X1, . . . , Xn be i.i.d. with common distribution in {Pθ :
θ ∈ Θ} and assume the common c.d.f. is continuous. We claim that the order
statistics Y = Sort(X) are sufficient. By Theorem 2.5.1,

Lawθ[X|Y = y] =
1

n!

∑

π∈Perm
δπ̃y .
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Notice that the r.h.s. doesn’t depend on θ. Thus, if we were only given the
ordered sample, then we could reconstruct a probabilistic replica of the original
sample by randomly permuting the ordered sample. Notice that we have not
“reduced” the data much by going to the order statistics since they have the
same dimensionality as the original data vector, but belong to a smaller subset
of IRn, namely IP n.

✷

Example 4.2.2 Let X1, . . . , Xn be i.i.d. with common distribution Unif [a, b]
where a < b are unknown. We know from the previous example that the order
statistics are sufficient, but here (with these specific distributional assumptions)
we can make a further reduction. It is reasonable to think that the only observa-
tions which contain information about a and b are the minimum and maximum.
Now by equation (2.121),

Law(a,b)[X(2), . . . , X(n−1)|(X(1), X(n)) = (x(1), x(n))] (4.24)

= Law[X(2), . . . , X(n−1)|(X(1), X(n)) = (x(1), x(n))]

since the l.h.s. has the same distribution as the order statistics from a random
sample of size n− 2 from Unif [x(1), x(n)]. Thus, given (X(1), X(n)) = (x(1), x(n)),
we can generate a probabilistic replica of the remaining order statistics X(2), . . . ,
X(n−1), and as in Example 4.2.1, generate a probabilistic replica of the original
sample.

Reasoning more formally, if A ⊂ IRn then by the law of successive conditioning
(Theorem 1.5.7 (g)),

P(a,b)[X ∈ A|(X(1), X(n))] =

E(a,b)[P(a,b)[X ∈ A |Sort(X)] | (X(1), X(n)) ] . (4.25)

From Example 4.2.1, we know

P(a,b)[X ∈ A |Sort(X) = (x(1), x(2), . . . , x(n)) ]

= P [X ∈ A |Sort(X) = (x(1), x(2), . . . , x(n)) ] .

Now we use the last result in Theorem 1.5.6 to compute the conditional expec-
tation on the r.h.s. of (4.25). This gives

P(a,b)[X ∈ A | (X(1), X(n)) = (x(1), x(n)) ] =

∫

IRn−2
P [X ∈ A |Sort(X) = (x(1), x(2), . . . , x(n)) ]

dP(X(2),...,X(n−1))|(X(1),X(n))[(x(2), . . . , x(n−1))|(x(1), x(n))]

In the last formula, we used (4.24) to eliminate the dependence on the unknown
parameter (a, b) in the conditional distribution w.r.t. which the integral is taken,
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i.e. the conditional distribution of (X(2), . . . , X(n−1)) given (X(1), X(n)) = (x(1),
x(n)). Since the r.h.s. of the last display is independent of the unknown para-
meter, it follows that T = (X(1), X(n)) is sufficient for (a, b). Note that in this
case, unlike Example 4.2.1, we have achieved some reduction in dimensionality (if
n > 2) in going from the original n-dimensional observable to the 2-dimensional
sufficient statistic.

✷

Example 4.2.3 Let X1, . . . , Xn be i.i.d. from N(µ, 1) where µ ∈ IR is unknown.
We will show that the sample mean

X̄ =
1

n

n
∑

i=1

Xi

is a sufficient statistic for µ. Note that the joint distribution Lawµ[ X1, . . . ,
Xn, X̄] has a singular normal distribution on IRn+1 since it satisfies the linear
constraint defining X̄. One can find the joint distribution Lawµ[ X1, . . . , Xn−1,
X̄] on IRn easily enough, obtain its Lebesgue density, and obtain the conditional
density of X1, . . . , Xn−1, given X̄, show it is independent of µ, and observe that
the joint conditional distribution of X1, . . . , Xn−1, Xn, can be obtained from that
of X1, . . . , Xn−1, since Xn is a function of X1, . . . , Xn−1, and X̄. However, we
use a trick which gives a simpler proof. We claim that the random n-vector

Y = (X1 − X̄, . . . , Xn − X̄) (4.26)

is independent of X̄. To this end, notice that the random (n+ 1)-vector

W = (Y , X̄) = AX

where the (n+ 1) × n matrix A is given by

A =































1 − 1/n −1/n −1/n . . . −1/n
−1/n 1 − 1/n −1/n . . . −1/n
−1/n −1/n 1 − 1/n . . . −1/n
. . . .
. . . .
. . . .

−1/n −1/n −1/n . . . 1 − 1/n
1/n 1/n 1/n . . . 1/n































=

[

I − (1/n)J
(1/n)1′

]

where 1 denotes an n-vector of all 1’s and J denotes an n × n matrix of all 1’s.
Note that 11′ = J . Also, 1′1 = n, which also implies that J1 = (11′)1 = 1(1′1)
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= n1, by the associative law of matrix multiplication. Then since X ∼ N(µ1, I),
we have by Y ∼ N(µA1, AIA′). This follows by a moment generating function
calculation (left as an exercise). Let 0 be an n-vector of all 0’s. Now

Eµ[W ] = µA1 = µ

[

1 − (1/n)J1
(1/n)1′1

]

=

[

0
µ

]

Also,

Covµ[W ] = AIA′ = AA′ =

[

(I − (1/n)J)2 (I − (1/n)J)1
1′(I − (1/n)J) (1/n)21′1

]

=

[

(I − (1/n)J)2 0
0′ 1/n

]

It is not important to what follows, but one can check that

(I − (1/n)J)2 = I − (1/n)J (4.27)

Since Covµ[Y , X̄] = 0 and they have a joint normal distribution, they are inde-
pendent (Exercise 4.2.6 (c)) as claimed.

From this and Exercise 4.2.2, it follows that

Lawµ[Y |X̄ = x̄] = Lawµ[Y ] = N(0, I − (1/n)J)

Since X = Y + X̄1,

Lawµ[X|X̄ = x̄] = Lawµ[Y + X̄1|X̄ = x̄]

Now by Exercise 1.5.12,

Lawµ[(Y , X̄)|X̄ = x̄] = Lawµ[Y |X̄ = x̄] × δx̄

= N

([

0
x̄

]

,

[

I − (1/n)J 0
0′ 0

])

The last equation is clear since δx̄ = N(x̄, 0). Now since X = B(Y , X̄) where B
is n× (n+ 1) and is given by B = [ I 1 ], we have by Exercise 4.2.6 (a),

Lawµ[X|X̄ = x̄] = N(x̄1, I − (1/n)J)

which is independent of µ. Hence, X̄ is sufficient for µ, as claimed. Notice that for
this problem, we have reduced the “statistical information” to a one dimensional
sufficient statistic.

✷
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4.2.1 Rao–Blackwell Theorem.

Now we turn to the problem of a decision theoretic justification of the notion that
a sufficient statistic contains all of the “statistical information”. Given a class
∆ of allowable decision rules and a loss function L(θ, a) where a is an element
of the action space A, we say ∆0 ⊂ ∆ is a ∆–essentially complete class if for
every δ ∈ ∆ there is a δ0 ∈ ∆0 such that δ0 � δ. Thus, when looking for optimal
decision rules, it is enough to look in the subclass of rules ∆0 (for given one
outside of the ∆–essentially complete class ∆0, we could find one in ∆0 as good).
We say ∆0 ⊂ ∆ is a ∆–complete class iff it is ∆-essentially complete and for every
δ ∈ ∆ \ ∆0 there is a δ0 ∈ ∆0 such that δ0 ≪ δ. (Note: we will not distinguish
between decision rules that are equal except on a set of X values which has Pθ

measure 0 for all θ. When we say δ ∈ ∆ \ ∆0 we mean there is no δ1 ∈ ∆0 such
that δ(X) = δ1(X) except on a set which has Pθ measure 0 for all θ.) Thus, we
know any optimal decision rule must be in a complete class. We say a decision
rule δ(X) is based on a statistic T iff it is a function of T , i.e. δ(X) = δ1(T ) for
some measurable δ1 (or what is the same, σ(δ(X)) ⊂ σ(T ).).

Our previous discussion shows that the class of decision rules based on a
sufficient statistic T is a ∆-essentially complete class, provided we are allowed to
randomize. Thus, if δ(X) is an allowable decision rule and we only know T = t,
then we can generate a probabilistic replica X∗ using the conditional distribution
Law[X|T = t] (which doesn’t require knowledge of θ), and compute δ(X∗). Then
the risk of this new rule (call it δ∗) is

R(θ, δ∗) = Eθ[E[L(θ, δ∗)|T ]]

by the law of successive conditioning and this

= Eθ[E[L(θ, δ(X∗))|T ]] = Eθ[L(θ, δ(X∗))] = Eθ[L(θ, δ(X))] = R(θ, δ)

since Lawθ[X
∗] = Lawθ[X] for all θ.

In fact, we can use sufficient statistics to improve decision rules under certain
assumptions. Assume the action space A is a convex subset of IRk for some k. We
say the loss function L is convex iff L(θ, ·) is a convex function on A for every
θ ∈ Θ. We say the loss function L is strictly convex iff L(θ, ·) is a strictly convex
function on A for every θ ∈ Θ. We say the space of allowable decision rules ∆ is
closed under conditional expectation if for any δ ∈ ∆ we have E[δ(X)|T ] ∈ ∆ for
any sufficient statistic T (if T is not a sufficient statistic, then E[δ(X)|T ] may
depend on θ). Here, when we write E[δ(X)|T ] ∈ ∆, we mean that if h(t) =
E[δ(X)|T = t], then the decision rule h ◦ T ∈ ∆. Note that h ◦ T is a function
defined on observation space taking values in the space of allowable actions.

Theorem 4.2.1 (Rao-Blackwell Theorem.) Suppose a decision problem has
convex action space, convex loss L, and allowable decision rules ∆ closed under
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conditional expectation. If T is a sufficient statistic, the the class of nonrandom-
ized rules ∆0 = {E[δ|T ] : δ ∈ ∆} is a ∆-essentially complete class. Furthermore,
if L is strictly convex, then ∆0 is a ∆-complete class.

Proof. (a) Given δ, put δ∗(T ) = E[δ(X)|T ]. By the conditional version of
Jensen’s inequality (Theorem 2.4.3),

R(θ, δ∗) = Eθ[L(θ, E[δ(X)|T ]]

≤ EθE[L(θ, δ(X))|T ]

= EθL(θ, δ(X)) = R(θ, δ)

so δ∗ � δ.
If L is strictly convex, then strict inequality holds in the above unless Law[δ(X)|T ]

is degenerate with Lawθ[T ]-probability 1. Thus, δ∗ ≪ δ unless Law[δ(X)|T ] is
degenerate with Lawθ[T ]-probability 1 for all θ ∈ Θ, i.e. Law[δ(X)|T = t] is a
unit point mass at some f(t) say, with Lawθ[T ]-probability 1 for all θ ∈ Θ. Thus,
we see that δ(X) is already a function of T , namely f(T ), except on an event
which has Pθ measure 0 for all θ. But we may redefine δ(X) on this set so that
it is a function of T , and thus in ∆0.

✷

Remarks 4.2.1 (a) The process of applying conditional expectation w.r.t. a
sufficient statistic to a decision rule is sometimes known as Rao-Blackwellization.
Thus, the theorem shows that in the context of a convex loss and convex action
space, nothing is lost by Rao-Blackwellization. If the loss is strictly convex and
the decision rule is not already a function of the sufficient statistic, then one
uniformly improves the decision rule (in that the risk is made smaller at all
values of θ) through Rao-Blackwellization, so it is unwise to use a decision rule
which is not a function of a sufficient statistic in this case.

(b) Referring back to the estimation problem discussed in Section 1, assume
Θ is an interval in IR. The class of unbiased estimators is closed under condi-
tional expectation. Indeed, if δ(X) is unbiased and δ∗(T ) is obtained by Rao-
Blackwellization, then by the law of successive conditioning,

Eθ[δ
∗(T )] = EθE[δ(X)|T ] = Eθ[δ(X)] = θ .

(c) Under the same setup as (b), it is easy to see that that squared error
loss is strictly convex, so one improves the variance of an unbiased estimator by
Rao-Blackwellization. For instance, suppose that we wish to estimate µ from a
random sample which is from the N(µ, 1) distribution. Then we already know
from Example 4.2.1 that the order statistics are sufficient. It is easy to see that
X1 is an unbiased estimator of µ. From Theorem 2.5.1, if h(x) = x1 is projection
of a vector x onto its first coordinate, then

E[X1|Sort(X)] =
1

n!

∑

π∈Perm
h(π̃Sort(X)) (4.28)
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=
1

n!

n
∑

i=1

∑

π:h(π̃y)=yi

h(π̃Sort(X))

=
1

n!

n
∑

i=1

(n− 1)!X(i)

=
1

n

n
∑

i=1

X(i) =
1

n

n
∑

i=1

Xi = X̄ ,

which is the sample mean. Note that we used that for each i there are (n − 1)!
permutations π such that h(π̃Sort(X)) = X(i), so each Xi appears (n−1)! times
in the summation over π. Of course, the same result would be obtained if we
Rao-Blackwellized using the statistic X̄ which we know from Example 4.2.3 is
sufficient.

In general, we see that if we believe the data are i.i.d. from a continuous
distribution, then we need only know the order statistics to do inferences, and in
fact any procedure which is not a function of the order statistics can be improved
on, at least from the point of view of risk under a convex loss. Thus, if someone
proposes a procedure for such data which depend on the order, we should be
suspicious. In general one will find such procedures which depend on the order
of the data proposed only for the purpose of computational efficiency in large
data sets. When such a rule is proposed, it is usually necessary to show that for
such large data sets the order dependent procedure is not much different from a
procedure which is independent of order.

✷

4.2.2 The Factorization Theorem.

In Examples 4.2.1 through 4.2.3, we found sufficient statistics somewhat labori-
ously by “guessing” that a particular statistic was sufficient and computing the
conditional distribution of the data given the statistic. We would like to have
a method for finding sufficient statistics which is more automatic, and does not
require calculation of Law[X|T = t]. The next result provides this.

Theorem 4.2.2 (Fisher-Neyman Factorization Theorem.) Assume the ob-
servation space (Ξ,G) is Euclidean, say Ξ ⊂ IRn, and suppose {Pθ : θ ∈ Θ} is
dominated by a σ–finite Borel measure µ. Then a IRk valued statistic T = T (X)
is sufficient for θ if and only if there are a nonnegative Borel functions g(·, θ)
and h such that the densities factor

fθ(x) = g(T (x), θ)h(x) , (4.29)

i.e. all of the functional dependence of the density on the parameter can be
concentrated in a factor that depends only on T .
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Partial Proof. We will prove here the theorem only in the case where the
observable is discrete (so that ordinary conditional probability calculations can
be made). This will hopefully provide some insight into the result. The general
proof is given in the final subsection of this section. Suppose that fθ(x) is the
density w.r.t counting measure on {x1, x2, . . . } = Ξ which may be finite or
infinite. For any statistic T , the set of possible values is also discrete, say {t1, t2,
. . . }. If the factorization (4.29) holds then

Pθ[T = tj ] =
∑

{i:xi∈T−1(tj )}

Pθ[X = xi]

=
∑

{i:xi∈T−1(tj )}

fθ(xi) =
∑

{i:xi∈T−1(tj )}

g(T (xi), θ)h(xi)

=
∑

{i:xi∈T−1(tj )}

g(tj, θ)h(xi) = g(tj, θ)
∑

{i:xi∈T−1(tj )}

h(xi)

Hence, assuming Pθ[T = tj] > 0, which is the only case we care about, we have

Pθ[X = xk|T = tj ] =
Pθ[X = xk&T = tj ]

Pθ[T = tj ]
.

Now the event whose probability is in the numerator can be simplified

[X = xk & T = tj] =











[X = xk] if T (xk) = tj,

∅ otherwise.

Note that the value of θ doesn’t enter into this. Assuming T (xk) = tj then for
all θ,

Pθ[X = xk|T = tj] =
g(T (xk), θ)h(xk)

g(tj, θ)
∑

{i:xi∈T−1(tj)} h(xi)

=
h(xk)

∑

{i:xi∈T−1(tj)} h(xi)

which doesn’t depend on θ. This shows existence of the factorization implies
sufficiency of T , for the discrete case.

Conversely, assume T is sufficient. Then if tj = T (xi), we have

fθ(xi) = Pθ[X = xi] =
∑

k

Pθ[X = xi|T = tk]Pθ[T = tk]

= Pθ[X = xi|T = tj ]Pθ[T = tj ] = P [X = xi|T = tj ]Pθ[T = tj ]

where we have used sufficiency of T at the last step. Now writing

g(tj, θ) = Pθ[T = tj ]
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h(xi) = P [X = xi|T = tj ]

(recall tj = T (xi) so the latter depends only on xi), we have

fθ(x) = g(T (x), θ)h(x)

for all x ∈ Ξ. This completes the proof for the discrete case.

✷

Corollary 4.2.3 Let {Pθ : θ ∈ Θ} be an exponential family on a Euclidean space
(Ξ,G) with dominating Borel measure µ and densities

fθ(x) = exp[η(θ)′T (x) − B(θ)]h(x) .

Then T is sufficient for θ.

Proof. Take g(T (x), θ) = exp[η(θ)′T (x)−B(θ)] in the factorization theorem.

✷

Now we revisit Examples 4.2.1 through 4.2.3 and show how the same results
may be obtained via the factorization theorem. For Example 4.2.1, assume X1,
X2, . . . , Xn are i.i.d. with Lebesgue density fθ. Then the joint density is

fθ,X(x) =
n
∏

i=1

fθ(xi) =
n
∏

i=1

fθ(x(i))

where (x(1), x(2), . . . , x(n)) = Sort(x) = T (x). The last equation follows since it
makes no difference which order we take the product in by commutativity and
associativity of ordinary multiplication. Thus,

fθ,X(x) = fθ,X(T (x))

and we may take the factor h ≡ 1 in the factorization theorem.
For Example 4.2.2 where the Xi’s are i.i.d. Unif [a, b] and the unknown pa-

rameter is θ = (a, b), we have

fθ,X(x) =
n
∏

i=1

(b− a)−1I(a,b)(xi) .

Now the product on the r.h.s. is nonzero just in case all xi’s are between a and
b, and this is the same as min{x1, x2, . . . , xn} = x(1) and max{x1, x2, . . . , xn}
= x(n) between a and b, so

fθ,X(x) = (b− a)−nI(a,b)(x(1))I(a,b)(x(n)) ,
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and so with T (x) = (x(1), x(n)) we may take g(T (x), θ) = fθ(x) and h ≡ 1 in the
factorization theorem.

Finally, for Example 4.2.3 where the Xi’s are i.i.d. N(µ, 1) where θ = µ is the
unknown parameter, we have that the joint Lebesgue density is

fθ = (2π)−n/2 exp

[

−1

2

n
∑

i=1

(xi − µ)2

]

= exp

[

nµ

(

1

n

n
∑

i=1

xi

)

− n

2
µ2

]

(2π)−n/2 exp

[

−1

2

n
∑

i=1

x2
i

]

which is an exponential family with η(µ) = nµ and T (x) = (1/n)
∑

xi. Thus,
T (X) = X̄ is sufficient.

The student will get the experience of applying the factorization theorem to
find sufficient statistics in several of the exercises at the end of the section. In
general, if one has a “nice” p-dimensional parameter and the parameterization
is identifiable, then one will be able to get a p-dimensional sufficient statistic,
although there are many exceptions to this rule. One should always seek to
reduce the sufficient statistic to one as “small” as possible in the sense of having
the smallest possible generated σ–field. Thus, for an exponential family one
should seek to put it into minimal form before reading off the sufficient statistic.
We will next consider formalizing these notions.

4.2.3 Minimal Sufficiency.

Definition 4.2.2 If T is a sufficient statistic for a family IP, then T is minimal
sufficient if and only if for any other sufficient statistic S, T = h(S) IP-a.s.

By IP-a.s., we mean P -a.s. for all P ∈ IP. By Theorem 1.5.1, T = h(S) is
essentially the same as σ(T ) ⊂ σ(S) (actually σ̄(T ) ⊂ σ̄(S) where σ̄(T ) denotes
the completion of σ(T ) w.r.t. IP).

✷

Our next result provides useful criteria for checking for minimal sufficiency.

Proposition 4.2.4 Let IP be a family of statistical models on a Euclidean space.

(a) Suppose IP0 ⊂ IP is a submodel, and that every IP0 null set is also a IP
null set (i.e. P (N) = 0 for all P ∈ IP0 ⇒ P (N) = 0 for all P ∈ IP). If T is
minimal sufficient for IP0 and sufficient for IP, then T is minimal sufficient for
IP.

(b) Suppose IP is finite with densities fi, 0 ≤ i ≤ k, and suppose

{x : fi(x) > 0} ⊂ {x : f0(x) > 0} , 1 ≤ i ≤ k . (4.30)
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Then the vector of likelihood ratios

T (x) =

(

f1(x)

f0(x)
,
f2(x)

f0(x)
, . . . ,

fk(x)

f0(x)

)

is minimal sufficient for IP.
(c) If h is one to one and bimeasurable, and if T is minimal sufficient, then

h(T ) is minimal sufficient.

Proof. (a) Suppose T is minimal sufficient for IP0 and sufficient for IP. Then
U sufficient for IP ⇒ U sufficient for IP0 (check the definition of sufficiency for
IP0) ⇒ T = h(U) for some h. Since T is sufficient for IP and is a function of any
other sufficient statistic, it follows that T is minimal sufficient for IP.

(b) Let T be the vector of likelihood ratios given in the statement of part (b)

with ith component Ti = fi(x)/f0(x). According to the factorization theorem, if
U is sufficient, then fi(x) = gi(U(x))h(x), and so

Ti(x) =
fi(x)

f0(x)
=

gi(U(x))

g0(U(x))
,

which shows that T is a function of U . To show that T is sufficient, note that

fi(x) = Ti(x)f0(x) = gi(T (x))h(x)

where gi(t) = ti is a projection map (ti is the ith component of t) and h = f0.
Hence, T is sufficient by the factorization theorem.

(c) Now, σ(h(T )) = σ(T ) since h is one to one so Pθ[X ∈ B|h(T )] = Pθ[X ∈
B|T ] = P [X ∈ B|T ], and we can find a version of the conditional distribution of
X given h(T ) which doesn’t depend on θ, i.e. h(T ) is sufficient. If T is minimal
sufficient, then for U sufficient we have T = h1(U) for some h1 and so h(T ) =
h(h1(U)) = (h ◦ h1)(U). This shows h(T ) is minimal sufficient.

✷

Proposition 4.2.5 Let IP be an exponential family on a Euclidean space with
densities

fθ(x) = exp
[

η(θ)′T (x) − B(θ)
]

h(x) , (4.31)

where η and T are p-dimensional. Suppose there exists {θ0, θ1, . . . , θp} = Θ0 ⊂
Θ such that the vectors

ζ
i

= η(θi) − η(θ0) , 1 ≤ i ≤ p

are linearly independent in IRp. Then T = T (X) is minimal sufficient for θ. In
particular, if (4.31) is full rank, then T is minimal sufficient.
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Proof. By Remark 2.3.1 (c), {x : fθ(x) > 0} doesn’t depend on θ. Taking
the finite subfamily Θ0, the vector of likelihood ratios as in Proposition 4.2.4 (b)
has i’th component

Ri =
fθi

(x)

fθ0(x)

= exp
[

ζ ′
i
T (x) − (B(θi) − B(θ0))

]

.

Now ζ ′
i
T (x) = logRi − (B(θ0)−B(θi)), so ZT is a one to one function of R where

Z is the p× p matrix with i’th row equal to ζ
i
, and ZT is minimal sufficient by

Proposition 4.2.4 (c). The assumptions of linear independence of the ζ
i
guarantee

that Z is nonsingular, so it follows that T is minimal sufficient.
If the family is full rank, then there is a θ0 such that there is a neighbor-

hood B(η(θ0), ǫ) contained in η(Θ), and one can find p values η(θ1), η(θ2), . . . ,
η(θp) in B(η(θ0), ǫ) such that the corresponding ζi as defined above are linearly
independent.

✷

Example 4.2.4 Suppose Pθ with θ = (b, s), b ∈ IR and s > 0, is the location-
scale family generated by the Lebesgue density

f(x) = Ce−x4

, x ∈ IR,

that is

fθ(x) = Cs−1 exp

[(

x− b

s

) ]

.

Here, C is a positive constant which makes f integrate to 1. Suppose X1, X2,
. . . , Xn are i.i.d. from fθ. The joint density is

fθ(x) = exp

[

− 1

s4

∑

x4
i +

4b

s4

∑

x3
i − 6b2

s4

∑

x2
i

+
4b3

s4

∑

xi − n
b4

s4
− n log s − n logC

]

Take θ0 = (0, 1) and then

η(θ) − η(θ0) =
1

s4











s4 − 1
4b

−6b2

4b3











Now let si = 21/4 for i = 1, 2, 3, 4 and bi = i− 1, i = 1, 2, 3, 4. The the matrix Z
in Proposition 4.2.5 is

Z =
1

2











1 0 0 0
1 4 −6 4
1 8 −24 32
1 12 −54 108
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Direct computation shows det(Z) = −576/16 6= 0. Hence, T = (
∑

X4
i ,
∑

X3
i ,

∑

X2
i ,
∑

Xi) is minimal sufficient. Note that T is 4 dimensional whereas θ is 2
dimensional. Also, the family is not full rank (Exercise 4.2.13).

✷

Example 4.2.5 We consider an instance where Proposition 4.2.4 is not applica-
ble. Suppose X1, X2, . . . , Xn are i.i.d. Unif [θ − 1/2, θ + 1/2], θ ∈ IR. Then the
joint density w.r.t. mn is

fθ(x) =
n
∏

i=1

I(θ−1/2,θ+1/2)(xi)

= I(θ−1/2,θ+1/2)(x(1))I(θ−1/2,θ+1/2)(x(n))

where x(1) and x(n) are the minimum and maximum of the xi. Thus, T =
(X(1), X(n)) is sufficient. If U is any sufficient statistic, then by the Fisher-Neyman
factorization theorem,

fθ(x) = g(U(x), θ)h(x) .

Now for any x ∈ IRn satisfying max{xi} − min{xi} = x(n) − x(1) < 1, we must
have h(x) > 0 since fθ(x) > 0 for some θ (namely θ = (x(n) + x(1))/2). For such
an x, fθ(x) > 0 if and only if θ ∈ (x(n) − 1/2, x(1) + 1/2), so

x(n) = inf{θ + 1/2 : g(U, θ) > 0}

x(1) = sup{θ − 1/2 : g(U, θ) > 0}
which shows (X(1), X(n)) is a function of U(X).

✷

4.2.4 Proof of Factorization Theorem.

Here we prove the general case of Theorem 4.2.2. First, assume T satisfies the
factorization in (4.29), and we will show T is sufficient. We will need the following
Lemma, which is proved below:

Lemma 4.2.6 Suppose IP = {Pθ : θ ∈ Θ} is a family of measures dominated by
a σ–finite measure µ. Then there is a {θ1, θ2, . . .} ⊂ Θ and a sequence of positive
real numbers a1, a2, . . . with

∑

n an = 1 such that

Q =
∑

n

anPθn

is a probability measure satisfying Q(A) = 0 if and only if Pθ(A) = 0 for all
θ ∈ Θ.
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In most examples, one can show directly the existence of such a Q. (See
Exercises 4.2.10 and 4.2.11.) Clearly Q≪ µ since µ(A) = 0 ⇒ Pθ(A) = 0 for all
θ ∈ Θ. Also, by an obvious and easy extension of Proposition 1.4.5(b) (Exercise
4.2.8),

dQ

dµ
(x) =

∑

n

an
dPθn

dµ
(x)

=

[

∑

n

ang(T (x), θn)

]

h(x) = γ(T (x))h(x) ,

where we have used (4.29) at the last step. By the chain rule for Radon-Nikodym
derivatives,

dPθ

dQ
(x) =

[

dPθ

dµ
÷ dQ

dµ

]

(x) (4.32)

=
g(T (x), θ)h(x)

γ(T (x))h(x)
=

g(T (x), θ)

γ(T (x))
= g̃(T (x), θ) , Q− a.s.

We will now show that a version of LawQ[X|T = t] is a version of Lawθ[X|T =
t](A) for all θ, where by LawQ[X|T = t] we mean the conditional distribution of
X given T under Law[X] = Q, i.e. the conditional distribution of X given T = t
computed under the assumption that the true distribution for X is Q.

Fix a Borel set A ⊂ IRn, and a θ ∈ Θ. Define a Borel measure ν on IRn by

dν = IAdPθ (4.33)

Let ν̃ and P̃θ be ν and Pθ restricted to σ(T ), as in the proof of Theorem 2.3.4.
Then as in the proof of that theorem,

dν̃

dP̃θ

= Eθ[IA(X)|T ] = Pθ[X ∈ A|T ] , P̃θ a.s. (4.34)

Let Q̃ be the restriction of Q to σ(T ). Since g̃(T (·), θ) in (4.32) is already σ(T )
measurable,

dP̃θ

dQ̃
= g̃(T (·), θ) =

dPθ

dQ
, Q̃ a.s. (4.35)

To explain (4.35), we can obtain the measures of σ(T ) measurable sets by inte-
grating over the set the σ(T ) measurable function g̃(T (·), θ), so it must be the
Radon-Nikodym derivative over σ(T ). By the chain rule again,

dν̃

dQ̃
=

dν̃

dP̃θ

dP̃θ

dQ̃
= Eθ[IA(X)|T ]g̃(T (·), θ) , Q̃ a.s. (4.36)

and also (see (4.33))

dν

dQ
(x) =

dν

dPθ

dPθ

dQ
(x) = IA(x)g̃(T (x), θ) , Q̃ a.s.
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Using the same reasoning as in (4.34),

dν̃

dQ̃
= EQ[IA(X)g̃(T, θ)|T ] , Q̃ a.s. (4.37)

= g̃(T, θ)EQ[IA(X)|T ] , Q̃ a.s.

where Theorem 2.3.7(h) was used at the last step. Here, we use EQ[·|T ] to mean
computation of conditional expectation under Law[X] = Q. Combining (4.36)
and (4.37) gives

PQ[X ∈ A|T ]g̃(T, θ) = Pθ[X ∈ A|T ]g̃(T, θ) , Q̃ a.s. (4.38)

Since Q-a.s. is the same as Pθ-a.s. for all θ, we may replace Q̃-a.s. in (4.38)
(which implies Q-a.s.) by Pθ-a.s., all θ. Also, for all θ, g̃(T, θ) > 0, Pθ-a.s. since
dPθ/dQ = g̃(T, θ). Hence, for all θ,

Pθ[X ∈ A|T ] = PQ[X ∈ A|T ] , Pθ a.s.

Thus, a regular conditional probability distribution PQ[X ∈ ·|T = t] is also a
version of the regular conditional probability distribution Pθ[X ∈ ·|T = t], and
T is sufficient.

Now for the converse, suppose T is sufficient and let Q be as above. Denote

p(B, t) = P [X ∈ B|T = t]

Then, for all θ, all A ∈ σ(T ), and all B ∈ Bn,

∫

A
p(B, T (x)) dPθ(x) = Pθ(A ∩B) , (4.39)

by the defining property (ii) of conditional expectation. (Here, we are using
(Ξ,G, Pθ) as the underlying probability space. Note that p(B, T (x)) is a version
of P [B|T ](x) = E[IB|T ](x) on this probability space. Hence,

∫

A P [B|T ]dPθ =
∫

A IBdPθ = Pθ(A∩B) for all σ(T ) measurable subsets A of Ξ.) Since Q =
∑

aiPθi
,

it follow by taking the infinite convex combination of both sides of (4.39) (and
applying Exercise 1.2.35)

∫

A
p(B, T (x)) dQ(x) = Q(A ∩ B) .

This shows that p(B, t) can serve as a version of the conditional distribution for
X given T = t under Law[X] = Q. Let P̃θ and Q̃ denote the restrictions of Pθ

and Q to σ(T ) as above. Let

hθ(x) =
dP̃θ

dQ̃
(x) .
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Since hθ is σ(T ) measurable, by Theorem 2.3.1 it is a function of T , so there is a
g(·, θ) defined on the range space of T such that

hθ(x) = g(T (x), θ) .

We will show that g(·, θ) is also a version of dPθ/dQ. To this end, put A = Ξ in
(4.39) to obtain

Pθ(B) =
∫

Ξ
p(B, T (x)) dPθ(x) =

∫

p(B, T (x)) dP̃θ(x) . (4.40)

The last equation follows since p(B, T (·)) is σ(T ) measurable, so we may integrate
w.r.t. Pθ restricted to σ(T ) (see the proof of equation (1.61) in Theorem 1.5.2).
Now using the Radon-Nikodym derivative of P̃θ w.r.t. Q̃ and Proposition 1.4.2
(a), the last displayed quantity in (4.40) is equal to

∫

p(B, T (x))g(T (x), θ) dQ̃(x) =
∫

EQ[IB(X)|T = T (x)]g(T (x), θ) dQ̃(x) ,

where we have used that p(B, t) is a version of PQ[X ∈ B|T = t]. By Theorem
1.5.7 (h), this equals

∫

EQ[g(T (x), θ)IB(X)|T = T (x)] dQ̃(x)

=
∫

g(T (x), θ)IB(X) dQ(x) =
∫

B
g(T (x), θ) dQ(x) ,

where the second to last equation follows from the definition of conditional ex-
pectation. Thus, Pθ(B) the last displayed quantity, which shows that g(·, θ) is a
version of dPθ/dQ.

From this claim and the chain rule (Proposition 1.4.2 (c)),

dPθ

dµ
(x) =

[

dPθ

dQ

dQ

dµ

]

(x) = g(T (x), θ)
dQ

dµ
(x)

which shows that the factorization (4.29) holds with h = dQ/dµ.

✷

Proof of Lemma 7. Without loss of generality, we can assume the dominat-
ing measure µ is finite rather than just σ–finite (Exercise 4.2.9). Let CQ be the
collection of all probability measures Q on Ξ of the form

∑

aiPθi
where the ai ≥ 0

and
∑

ai = 1. Then CQ is also dominated by µ and for any Q ∈ CQ given by Q =
∑

aiPθi
, let q =

∑

ai(dPθi
/dµ) = dQ/dµ denote the Radon-Nikodym derivative

of Q w.r.t. µ. We will show that there is a Q∗ ∈ CQ for which Q∗(A) = 0 ⇒ Q(A)
= 0 for all Q ∈ CQ, which implies the lemma since IP ⊂ CQ.
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Let C be the collection of all subsets C of Ξ for which there is some Q ∈ CQ
such that q > 0 µ-a.e. on C and Q(C) > 0. Note that C is closed under countable
unions since if C1, C2, . . . , are all in C and Q1, Q2, . . . , are the corresponding
measures in CQ, then Q =

∑

2−iQi is in CQ and Q has µ-density q =
∑

2−iqi which
is > 0 µ-a.e. on C =

⋃

i Ci. Also, if C ∈ C and C1 ⊂ C, then clearly C1 ∈ C.
Let µ(Ci) tend to sup{µ(C) : C ∈ C} < ∞ since µ is finite, and let Qi denote

elements of CQ for which their densities qi > 0 µ-a.e. on Ci and Qi(Ci) > 0.
Put C∗ =

⋃

i Ci and q∗ =
∑

2−iqi. Denote by Q∗ =
∑

2−iQi. Then C∗ ∈ C and
Q∗ ∈ CQ as noted above, and clearly µ(C∗) = sup{µ(C) : C ∈ C} (since µ(C∗) ≥
µ(Ci) ↑ sup{µ(C) : C ∈ C} and µ(C∗) ≤ sup{µ(C) : C ∈ C} because C∗ ∈ C).
Let A be such that Q∗(A) = 0, and let Q ∈ CQ. We will show that Q(A) >
0 leads to a contradiction, and hence we must have Q(A) = 0, which gives the
claim above about Q∗.

Let C = {x : q(x) > 0}. Note that A can be decomposed into three disjoint
subsets as in

A = [A ∩ C∗]
⋃

[A ∩ C∗c ∩ Cc]
⋃

[A ∩ C∗c ∩ C] . (4.41)

We will show that the Q measure of the first two subsets of A is 0. Now A ∩ C∗

⊂ A so Q∗(A ∩ C∗) = 0, and hence µ(A ∩ C∗) = 0 (because 0 = Q∗(A ∩ C∗) =
∫

A∩C∗ q∗(x)dµ(x) implies q∗IA∩C∗ = 0 µ-a.e. by Proposition 1.2.6 (b), but A∩C∗

⊂ C∗ and q∗ > 0 on C∗ µ-a.e., so we must have IA∩C∗ = 0 µ-a.e., i.e. µ(A ∩ C∗)
= 0). Since Q ≪ µ, we have Q(A ∩ C∗) = 0. Also Q(A ∩ C∗c ∩ Cc) = 0 since
q = 0 on Cc.

Finally, Q(A∩C∗c ∩C) > 0 would imply µ(A∩C∗c ∩C) > 0 (by Q≪ µ) and
hence that

µ[C∗
⋃

(A ∩ C∗c ∩ C)] = µ[C∗] + µ[A ∩ C∗c ∩ C] > µ[C∗] .

Now A∩C∗c ∩C ∈ C since it is a subset of C, and so also C∗⋃(A∩C∗c ∩C) ∈ C
since C is closed under unions. But the last displayed equation is a contradiction
to the definition of C∗ since its µ measure is largest among elements of C.

✷



4.2. SUFFICIENT STATISTICS. 257

Exercises for Section 4.2.

4.2.1 (a) Suppose X ∼ N(µ, V ) is an n-dimensional normal random vector. Let
A be an m × n matrix. Show that Y = AX has a normal distribution on IRm

and determine the parameters.
(b) Let X and Y be random vectors. Let ψ(X,Y )(u, v) = E[exp[u′X + v′Y ]] be

the joint moment generating function. Assume ψ(X,Y ) is finite in a neighborhood
of the origin. Show that X and Y are independent if and only if the joint m.g.f.
factors into the product of the marginals, i.e. ψ(X,Y )(u, v) = ψX(u)ψY (v).

(c) Suppose X and Y are random vectors which have a joint normal distrib-
ution. Show that X and Y are independent if and only if Cov[X, Y ] = 0.

4.2.2 Show that Law[X|Y = y] = Law[X] for Law[Y ]-almost all y if and only
if X and Y are independent.

4.2.3 Let Y1, Y2, ..., Yn be independent Bernoulli random variables with success
probabilities

pi = Pη[Yi = 1] =
eη1+η2xi

1 + eη1+η2xi

where (η1, η2) ∈ IR2 is unknown and x1, x2, ..., xn are known constants. Show
that the joint distribution of the Yi’s can be written as an exponential family
with η = (η1, η2) as the natural parameter.

Hints: The density of Yi w.r.t. counting measure on {0, 1} is

f(yi) = pyi

i (1 − pi)
(1−yi)

Also, one can show

η1 + η2xi = log

(

pi

1 − pi

)

4.2.4 For Examples 2.3.1 and 2.3.2, find sufficient statistics which are as “min-
imal” as you can make them.

4.2.5 For each of the families in Exercise 2.3.10, (a) through (d), find a sufficient
statistic which is as “minimal” as you can make it.

4.2.6 For each of the families in Exercises 4.2.4 and 4.2.5, find a minimal suffi-
cient statistic.

4.2.7 Let P = {Pi : 0 ≤ i ≤ k} be a finite family as in Proposition 4.2.4 (b).
Let

µ =
k
∑

i=0

Pi

Show that µ is σ–finite and P ≪ µ. Thus, we may assume that a finite family of
models is dominated, as was done implicitly in Proposition 4.2.4 (b).
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4.2.8 Let ν1, ν2, ..., be measures dominated by a σ–finite measure µ and suppose
a1, a2, ..., are nonnegative real numbers. Let

ν =
∞
∑

i=1

aiνi .

Show that ν ≪ µ and

dν

dµ
=

∞
∑

i=1

ai
dνi

dµ
, µ− a.e.

4.2.9 Suppose µ is σ–finite. Show that there is a finite measure ν which is
equivalent to µ.

4.2.10 Let X be a random vector with distribution in an exponential family.
Show that for the measure Q in Lemma 4.2.6, we can take any Q of the form
∑

aiPθi
where ai ≥ 0 and

∑

ai = 1. In particular, we can take Q = Pθ0 for some
θ0.

4.2.11 (a) Let X1, X2, ..., Xn be i.i.d. with a Unif [a, b] distribution with θ =
(a, b), −∞ < a < b < ∞. Show that for the measure Q in Lemma 4.2.6 we may
take Qn

0 where

Q0 =
∞
∑

i=1

2−iUnif [−i, i] .

(b) Suppose X1, X2, ..., Xn are i.i.d. with Law[Xi] = Q0. What is LawQ0[X
|(X(1), X(n)) = (x(1), x(n))]?

(c) For the setup as in part (a), explain why it would not suffice in the proof
of Theorem 4.2.2 to take Q = Pθ0 for some fixed θ0.

4.2.12 Let X1, X2, ..., Xn be i.i.d. from a truncation family Pθ where θ = (a, b),
−∞ < a < b < ∞, and the Lebesgue density of a single Xi is given by

fθ(x) =
g(x)

∫ b
a g(ξ) dξ

, a < x < b .

(See the discussion after Example 2.3.4.)
(a) Show that (X(1), X(n)) are sufficient.
(b) Show that (X(1), X(n)) are minimal sufficient.

4.2.13 Show that the exponential family in Example 4.2.4 is not full rank.

4.2.14 Let X1, X2, ..., Xn be i.i.d. N(σ2, σ2). Find a minimal sufficient statistic
for σ2.

4.2.15 Let X1, X2, ..., Xn be i.i.d. N(σ, σ2). Find a minimal sufficient statistic
for σ > 0.
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4.2.16 Let X1, X2, ..., Xn be i.i.d. N(µX , σ
2
X) and Y1, Y2, . . . , Ym be i.i.d.

N(µY , σ
2
Y ), and assume the X and Y samples are independent. Find minimal

sufficient statistics under each of the following:

(i) The parameters µX , σ2
X µY , σ2

Y are unrestricted.

(ii) σ2
X = σ2

Y = σ2.

(iii) µX = µY = µ.
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4.3 Complete Statistics and Ancillary Statistics.

Now we introduce a concept which is related to minimal sufficiency but is more
useful.

Definition 4.3.1 Let T be a random p-vector with possible distributions {Lawθ[T ] :
θ ∈ Θ}. We say T is complete for θ iff for all f : IRp → IR such that Eθ|f(T )|
< ∞ for all θ,

Eθ[f(T )] = 0 for all θ ⇒ f(T ) = 0, Lawθ[T ] − a.s. for all θ.

We say T is boundedly complete for θ iff this condition holds for f bounded.

✷

Remarks 4.3.1 (a) A complete statistic is always boundedly complete.
(b) If T is complete and U = h(T ), then U is complete since Eθ[f(U)] =

Eθ[f(h(T ))] = 0 for all θ implies f(h(T )) = f(U) = 0 Pθ-a.s. for all θ.

Suppose Pθ is a dominated family as in the factorization theorem. Then if T
is sufficient and T = H(V ) for some V then V is sufficient. To see this note that
fθ(x) = g(T (x), θ)h(x) = g(H(V (x)), θ)h(x) = g̃(V (x), θ)h(x).

In terms of σ-fields:

T complete, σ(U) ⊂ σ(T ) ⇒ U complete;

T sufficient, σ(T ) ⊂ σ(V ) ⇒ V sufficient.

In words, if T is complete and U is less informative than T , then U is complete.
If T is sufficient and V is more informative than T , then V is sufficient. The
next result shows that under some conditions, if T is complete and sufficient then
no less informative statistic is sufficient. One can see that any “strictly” more
informative statistic cannot be complete (Exercise 4.3.2).

Proposition 4.3.1 Let the random vector T be complete and sufficient for {Pθ :
θ ∈ Θ}, and assume Eθ[‖T‖] < ∞ for all θ. Suppose there is a random vector U
which is a minimal sufficient statistic. Then T is minimal sufficient.

Proof. Since U is minimal sufficient and T is sufficient, U = h(T ). By
sufficiency of U , Eθ[T |U ] = E[T |U ] = g(U) = g(h(T )) where of course g(u) =
E[T |U = u]. By the Law of Total Expectation, Theorem 1.5.7 (d),

0 = Eθ[T ] − Eθ[E[T |U ]] = Eθ[T − E[T |U ]] = Eθ[T − g(h(T ))] .

By completeness of T , T − g(h(T )) = T − g(U) = 0, Pθ-a.s., all θ, i.e. T =
g(U) Pθ-a.s., all θ. This shows T is a function of U and hence that T is minimal
sufficient.
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✷

Remarks 4.3.2 (a) One can prove the theorem without assuming T is inte-
grable, i.e. that E[‖T‖] < ∞, but the proof is much harder. One can accomplish
this by considering IA(T ) for all A ∈ Bn.

(b) The result holds more generally in that one need not assume the existence
of a minimal sufficient statistic. See Lehmann and Scheffe (19??).

✷

Determining whether or not a statistic is complete can be a trying task. In
exponential families, it is possible to give a simple sufficient condition.

Theorem 4.3.2 If X is distributed according to an exponential family

fθ(x) = exp [ η(θ)′T (x) − B(θ) ] h(x)

which is of full rank, then T (X) is complete.

Proof. We assume the family is in canonical form. By changing η to η − η0

where η0 is an interior point of the natural parameter space, we can obtain a new
parameterization where 0 = η0 − η0 is an interior point of the natural parameter
space which we denote Λ. Assume h(T ) is integrable for all η and Eη[h(T )] = 0
for all η in some neighborhood of 0, i.e. for some ǫ > 0

∫

h(T (x))eη′T (x)−A(η) dµ(x) = 0 , for all ‖η‖ < ǫ

where µ is the dominating measure, but this is the same as

∫

h+(T (x))eη′T (x) dµ(x) =
∫

h−(T (x))eη′T (x) dµ(x) , for all ‖η‖ < ǫ (4.42)

where h+ and h− denote the positive and negative parts of h. We may assume
by renormalizing that

∫

h+ ◦ T dµ =
∫

h− ◦ T dµ = 1, i.e. h± ◦ T is a probability
density w.r.t. µ. But (4.42) says the two corresponding probability measures
have the same finite m.g.f. in a neighborhood of 0. Hence, by uniqueness of
m.g.f.’s (Proposition 2.2.1 (d)) the two p.m.’s are the same and so by uniqueness
of Radon-Nikodym derivatives we have

h+(T (x)) = h−(T (x)) , for µ− almost all x .

But this says that h(T ) = h+(T ) − h−(T ) = 0 Pθ-a.s. for all θ, since Pθ ≪ µ for
all θ. This shows T is complete as desired.

✷
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Example 4.3.1 Let X1, X2, ..., Xn be i.i.d. with Gamma(α, β) distribution.
Then the joint density is

f(α,β)(x) = exp

[

α
n
∑

i=1

log(xi) − 1

β

n
∑

i=1

xi − n log(Γ(α)βα)

]

n
∏

i=1

x−1
i I(0,∞)(xi) .

The natural parameter is η = (α,−1/β) and the natural parameter space is
(0,∞) × (−∞, 0) which is a subset of IR2 with nonempty interior (it clearly
conatains a nonempty open rectangle, in fact it is one). Thus, the family is
full rank and T = (

∑

i log(Xi),
∑

iXi) is complete and sufficient. Of course, by
Proposition 4.2.5, T is also minimal sufficient.

✷

Example 4.3.2 Suppose X1, X2, ..., Xn are i.i.d. with Unif(0, b) distribution,
b > 0. We will show that T = X(n) = max{Xi : 1 ≤ i ≤ n} is complete and
sufficient. For sufficiency, apply the factorization theorem to the joint density

fb(x) =
n
∏

i=1

b−1I(0,b)(xi) = b−nI(0,b)(x(n)) .

Now we compute Lawb[T ] using the c.d.f.:

Fb(t) = Pb[T ≤ t] = Pb[X1 ≤ t&X2 ≤ t& ...&Xn ≤ t]

=
n
∏

i=1

Pb[Xi ≤ t] = (Pb[X1 ≤ t])n

= (t/b)n , 0 ≤ t ≤ b .

Hence, Lawb[T ] has Lebesgue density

fb(t) =
ntn−1

bn
, 0 < t < b .

Now suppose h is such that Eb[h(T )] = 0 for all b > 0. Then for all b > 0,

∫ b

0
h(t)ntn−1/bn dt = 0

or what is the same
∫ b

0
h+(t)tn−1 dt =

∫ b

0
h−(t)tn−1 dt , for all b > 0 , (4.43)

where h+ and h− are the positive and negative parts of h. Now suppose h is not
identically 0 Lebesgue a.e. and then fix N , a positive integer, such that

∫ N

0
h+(t)tn−1 dt = C > 0 .
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The existence of such and N follows from h+ not identically 0, Lebesgue a.e.
Note that C is finite since we assume h(T ) is integrable for all b. Let H+ be the
p.m. given by

H+(B) = C−1
∫

B∩(0,N)
h+(t)tn−1 dt

and similarly for H−. Then (4.43) says that H+ and H− have the same c.d.f., so
they are the same p.m., so h+ = h− Lebesgue a.e. on (0, N), and hence h = 0
Lebesgue a.e. on (0, N), a contradicition. Thus, since each measure in {Lawb[T ] :
b > 0} is dominated by Lebesgue, it follows that T is complete.

✷

Example 4.3.3 Now we consider a nonparametric family. Let X1, X2, ..., Xn

be i.i.d. with Lebesgue density f which is unknown. We will use f to denote
the parameter in expectations, etc. We claim T = Sort(X) is complete and
sufficient. We already know T is sufficient from Example 4.2.1. We will show
that Ef [h(T )] = 0 for all Lebesgue probability densities f implies that h(t) = 0
Lebesgue a.e. on IP n = {x ∈ IRn : x1 ≤ x2 ≤ ... ≤ xn}. This implies that h(T ) =
0 Lawf [T ]-a.s. for all f since IP = {Lawf [T ] : f is a Lebesgue probability density
} ≪ mn. Now if mn(IP n ∩ {x : h(x) 6= 0}) > 0 then

mn([−N,N ]n ∩ Pn ∩ {x : h(x) 6= 0}) > 0 , for some N. (4.44)

Fix N at such a value. Given a probability vector (p1, p2, ..., pn) and a η ∈ IRn,
let

f(x) =
n
∑

j=1

pj exp [ ηjx − A(ηj) ] I[−N,N ](x) (4.45)

where

A(ηj) = log
∫ N

−N
eηjx dx .

Using Ef [h(Sort(X))] = 0 for f in (4.45), we conclude that

∫

[−N,N ]n
h(Sort(x))





n
∏

i=1

n
∑

j=1

pj exp[ηjxi]



 dx = 0 .

Expanding the l.h.s. gives

n
∑

j1=1

n
∑

j2=1

...
n
∑

jn=1

∫ N

−N

∫ N

−N
...
∫ N

−N
h(Sort(x1, x2, ..., xn))

exp

[

n
∑

i=1

ηji
xi

]

dx1 dx2 ... dxn

n
∏

i=1

pji
= 0.

Considering the expression on the l.h.s. of the latter equation as a function of p
for fixed η, we have a homogeneous polynomial of degree n in the variables p1,
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p2, ..., pn which vanishes identically on the set {p ∈ IRn : pj ≥ 0, 1 ≤ j ≤ n, and
∑

j pj = 1}. This can only happen if all coefficients vanish. (See Exercise 4.3.3.)
Hence, looking at the coefficient with j1 = 1, j2 = 2, ... jn = n we obtain

∫ N

−N

∫ N

−N
...
∫ N

−N
h(Sort(x1, x2, ..., xn)) exp

[

n
∑

i=1

ηixi

]

dx1 dx2 ... dxn = 0

for all η1, η2, ..., ηn. In more compact notation,

∫

[−N,N ]n
h(Sort(x)) exp[η′x] dx = 0 for all η ∈ IRn .

Now as in the proof of Theorem 4.3.2, or similarly to Example 4.3.2, we obtain

∫

[−N,N ]n
h+(Sort(x)) exp[η′x] dx = (4.46)

∫

[−N,N ]n
h−(Sort(x)) exp[η′x] dx > 0 .

The last inequality follows from (4.44). As in the proof of Theorem 4.3.2, we can
normalize the nonnegative functions h+ ◦ Sort and h− ◦ Sort to be probability
densities w.r.t. Lebesgue measure. Since (4.46) holds for all f of the form (4.44),
it follows that the p.m.’s corresponding to h+ ◦Sort and h− ◦Sort have the same
finite m.g.f. by (4.46), and hence that h+ = h− Lebesgue a.e. on IP n ∩ [−N,N ]n,
i.e. h = 0 Lebesgue a.e. on IP n ∩ [−N,N ]n, a contradiction. Thus, we conclude
h = 0 Lebesgue a.e. on IP n and hence that h(Sort(X)) = 0, Pf -a.s. for all f , i.e.
that T = Sort(X) is complete.

✷

Definition 4.3.2 A statistic V = V (X) is called ancillary to θ iff Lawθ[V ] =
Law[V ] doesn’t depend on θ.

✷

The notion of an ancillary statistic is in some sense complementary to the
notion of a sufficient statistic. A sufficient statistic contains all the information
about the unknown parameter, but an ancillary statistic contains no informa-
tion about the unknown parameter since its distribution is the same no matter
what parameter value Nature chooses. The notions of ancillarity and complete
sufficiency come together in the following result.

Theorem 4.3.3 (Basu’s Theorem.) Suppose T is boundedly complete and suf-
ficient for IP n = {Pθ : θ ∈ Θ} and V is ancillary for θ. Then T and V are
independent for all θ.
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Proof. By ancillarity, Pθ[V ∈ B] = P [V ∈ B]. Also, by sufficiency, Pθ[V ∈
B|T ] = P [V ∈ B|T ]. By the law of total expectation (Theorem 1.5.7 (d)),
Eθ[P [V ∈ B|T ]] = P [V ∈ B]. Thus, for all θ,

Eθ{P [V ∈ B|T ] − P [V ∈ B] } = 0

Note that for fixed B, the quantity inside braces { ... } is a function of T (P [V ∈
B] is a constant function of T ). Hence, by completeness,

P [V ∈ B|T ] = P [V ∈ B] , for all θ .

This shows that Law[V ] can be used as a version of Law[V |T = t], which implies
V and T are independent by Supplementary Exercise for Chapter 2, #1???.

✷

Example 4.3.4 Let X1, X2, ..., Xn be i.i.d. with N(µ, σ2) density. We will show
that the sample mean and variance,

X̄ =
1

n

n
∑

i=1

Xi

S2 =
1

(n− 1)

n
∑

i=1

(Xi − X̄)2 ,

respectively, are independent. For this purpose, fix σ2 and let µ be the unknown
parameter ranging over IR. The joint density w.r.t. mn is

fµ(X) = exp

[

(nµ)

σ2
X̄ − nµ2

2σ2

] {

(2πσ2)−n/2 exp

[

−1

2σ2

n
∑

i=1

X2
i

] ]

which is an exponential family with T = X̄ and η = (nµ)/σ2. Since η ranges over
all of IR, the family is full rank and it follows that X̄ is complete and sufficient
for µ. To show that S2 is ancillary, first recall that

Lawµ[
(n− 1)

σ2
S2] ∼ χ2

(n−1)

where χ2
r denotes the χ-squared distribution with r degrees of freedom, which is

the same as Gamma(r/2, 2). This distribution is obviously independent of the
unknown parameter µ, so this shows ancillarity, and hence independence of X̄
and S2. However, we show ancillarity by an invariance argument that works more
generally. Clearly, S2 as a function of X is invariant of the location parameter µ,
since

S2(X) =
1

(n− 1)

n
∑

i=1

[

(Xi − µ) − (X̄ − µ)
]2
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= S2(X − µ1)

where 1 is an n-vector with all entries 1. Now

Lawµ[X − µ1] = Law0[X] .

Hence,
Lawµ[S

2(X)] = Lawµ[S2(X − µ1)] = Law0[S
2(X)]

and the latter is clearly independent of µ.
It is a source of some confusion that while probably both µ and σ2 are un-

known, we treated σ2 as known. This is done purely from a mathematical stand-
point. Certainly all of the distribution theory stated above is true for any fixed
value of σ2, whether that value is known to be a specific number or not.

✷

Example 4.3.5 Let X1, X2, ..., Xn be i.i.d. with unknown Lebesgue density f ,
as in Example 4.3.3. Let Rank(X) denote the ranks of the random sample as in
Proposition 2.5.2. According to that Proposition, Rank(X) has a distribution
which doesn’t depend on f . Hence, Rank(X) is independent of the complete
and sufficient statistic Sort(X).

✷
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Exercises for Section 4.3.

4.3.1 Let X1, X2, ..., Xn be i.i.d. r.v.’s with unknown Lebesgue density f which
is known to satisfy the condition of existence of the first k moments:

Ef [|X1|j] < ∞ , 1 ≤ j ≤ k .

Show that Sort(X) is complete and sufficient for f . (Hint: This problem is easy
in that you don’t need to make any long arguments.)

4.3.2 Suppose {Pθ : θ ∈ Θ} is a dominated family as in the factorization the-
orem. Suppose T is a sufficient statistic and σ(T ) is essentially a proper subset
of σ(V ) in that σ(T ) ⊂ σ(V ) and there is a set A ∈ σ(V ) and a θ such that
there is no B ∈ σ(T ) with IA = IB, Pθ-a.s. (This means that V is strictly more
informative than T .) Show that V is not complete.

4.3.3 The following result was used in Example 4.3.3. Let

g(p) =
n
∑

j1=1

n
∑

j2=1

...
n
∑

jn=1

aj1j2...jn

n
∏

i=1

pji

be a homogeneous polynomial of degree n in p1, ..., pn. Here, the polynomial is
called homogeneous since

g(bp) = bng(p)

for all b > 0. Assume

g(p) = 0 , for all p such that (4.47)

pi ≥ 0 for 1 ≤ i ≤ n and
∑

i

pi = 1 .

(a) Using homogeniety, show that g(x) = 0 for all x ∈ IRn such that xi ≥ 0
for 1 ≤ i ≤ n.

(b) Show the following by induction on n: If g(x) is a polynomial of degree
≤ k in x ∈ IRn which vanishes identically in {x : xi ≥ 0 for 1 ≤ i ≤ n} then
all coefficients of g vanish. (Hint: For n = 1 the result is trivial since such a
polynomial has at most k roots, unless all coefficients are 0. If g(x1, x2, ..., xn)
is a polynomial in n variables, then one can fix xn and obtain a polynomial in
n− 1 variables.)

(c) Using (a) and (b), show that all coefficients of g in (4.47) must vanish.

4.3.4 LetX1, X2, ..., Xn be i.i.d. r.v.’s with unknown Lebesgue density f and let
Y1, Y2, ..., Ym be i.i.d. r.v.’s with unknown Lebesgue density g, and suppose the
X and Y samples are independent. Show that (Sort(X),Sort(Y )) are complete
and sufficient for (f, g).
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4.3.5 Let X1, X2, ..., Xn be i.i.d. r.v.’s with Gamma(α, β) density. Show that
X/

∑

iXi is independent of
∑

iXi.

4.3.6 Let X1, X2, ..., Xn be i.i.d. r.v.’s with Unif [0, θ] distribution where θ > 0.
Show that V = X/X(n) is independent of X(n).

4.3.7 Let X1, X2, ..., Xn be i.i.d. r.v.’s with Unif [θ1, θ2] where θ1 < θ2 are
unknown.

(a) Show that T = (X(1), X(n)) is complete for θ.
(b) Let V = X/(X(n) −X(1)). Show that V is independent of T .

4.3.8 Let X1, X2, ..., Xn be i.i.d. r.v.’s with Unif [θ−1/2, θ+1/2] where θ ∈ IR
is unknown. Show that (X(1), X(n)) is not complete.


