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Chapter 3

Basic Theory of Point
Estimation.

Suppose X is a random observable taking values in a measurable space (Ξ,G)
and let P = {Pθ : θ ∈ Θ} denote the family of possible distributions of X. An
estimand is a function g(θ) of the unknown parameter which we wish to estimate.
We will typically assume that g takes values in IR. The goal of point estimation
is to produce a single number (when g is one dimensional) which is (hopefully)
“close” to g(θ) where θ is the unknown value of the parameter. An estimator of
g(θ) is a measurable mapping δ : (Ξ,G) −→ (IR,B).

3.1 General Principles of Estimation.

In this section, we consider some fairly general methods for deriving estimators,
and some general properties of estimators useful for comparing and evaluating
estimators.

3.1.1 Methods for Deriving Estimators.

Here we consider a variety of techniques or “principles” which are used for ob-
taining estimators in practice. In Sections 3 through 6 of this chapter, we will
consider estimators which are optimal in some sense. However, in many prac-
tical problems, there either do not exist acceptable optimal procedures (such
as UMVUE’s or minimax estimators) or they are not readily computable (e.g.
Bayesian estimators when one has an acceptable prior). It is safe to say that most
often applied statisticians resort to such ad hoc procedures as we introduce in this
section. We will see that some of these (in particular, maximum likelihood) have
certain “asymptotic optimality” properties (Section 7), but this may not be a
compelling justification for some statisticians.
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Methods Based on the Empirical Distribution.

One fairly general method for constructing estimators we have already seen is
based on the empirical distribution. This method is applicable when we can
extend the definition of g(θ) to a family of distributions which will include the
empirical distribution. For instance, suppose that X1, X2, . . . , Xn are i.i.d. with a
N(µ, σ2) distribution and both µ and σ2 are unknown. If we consider estimation
of the two estimands:

g1(µ, σ
2) = µ, g2(µ, σ

2) = σ2.

Since g1(µ, σ
2) is just the mean of the distribution, and the mean is defined for a

large class of distributions, namely

M1 = {P : P is a Borel p.m. on IR and EP [|X1|] =
∫

IR
|x| dP (x) <∞}.

We can extend g1 to, say, ḡ1 : M1 −→ IR by ḡ1(P ) = EP [X1] =
∫

IR x dP (x), for
any P ∈ M1. Now, any realization of the empirical distribution will be in M1,
so we can estimate g1(µ, σ

2) = ḡ1 (N(µ, σ2)) by ḡ1

(

P̂n
)

where P̂n = n−1∑n
i=1 δXi

is the empirical distribution. Of course, as we have already seen, ḡ1

(

P̂n
)

=
∫

IR x dP̂n(x) = n−1∑n
i=1Xi = X̄ is just the sample mean. In a similar manner,

we can extend g2 above from the family of i.i.d. N(µ, σ2) distributions to ḡ2

defined on the family of i.i.d. distributions with finite second moment, viz.

M2 = {P : P is a Borel p.m. on IR and EP [X2
1 ] =

∫

IR
x2 dP (x) <∞}.

Then, the corresponding estimator ḡ2

(

P̂n
)

is the sample variance

S2 =
1

n

n
∑

i=1

(Xi − X̄)2 .

Unfortunately, there are several difficulties with the simple notions we have
presented here. First of all, in a given problem, there may be more than one
way to extend the estimand to a class of distributions containing the empirical
distribution. For instance, g1 is not only the mean of the N(µ, σ2) distribution,
but it is also the median of the N(µ, σ2) distribution (by symmetry), so we could
use the median of the data to estimate g1(µ, σ

2). Further, in many settings, there
is no obvious extension of the estimand. For instance, suppose X1, X2, . . . , Xn

are i.i.d. with a Gamma(α, β) distribution and α and β are unknown. If were
interested in estimating α, there is no obvious extension of α to a family of
distributions containing the empirical. In fact, the “shape” parameter α really
only makes sense in the context of a Gamma family. But the scale parameter β
also only makes sense in the context of the Gamma family. So there is no obvious
way of applying this principle of estimation to the Gamma family.
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Method of Moments.

Assume X1, X2, . . . , Xn are i.i.d. from the Gamma(α, β) distribution as in the
last paragraph. Consider the two estimands

g1(α, β) = αβ = E(α,β)[X1]

g2(α, β) = αβ2 = V ar(α,β)[X1].

Now we can apply the technique based on the empirical distribution and estimate
g1(α, β) with X̄ and g2(α, β) with S2. Observe that the parameters are related
to these two estimands by

β = g2(α, β)/g1(α, β), α = g2
1(α, β)/g2(α, β).

We can plug in the estimators of g1 and g2 into the algebraic relationships and
obtain estimators of the parameters, viz.

α̂mm = X
2
/S2 ,

β̂mm = S2/X . (3.1)

The subscript mm stands for method of moments, a terminology we shall now
explain.

Suppose θ ∈ IRp, then usually the value of θ will uniquely determine the first
p moments of the distribution, i.e. the map θ 7→ (Eθ[X], Eθ[X

2], . . . Eθ[X
p]) is a

one to one correspondence (bijective map). Letting M(θ) denote this map, we
obtain p equations in p unknowns if we set the first p sample moments equal to
the corresponding theoretical moments, i.e. solve for the θ which gives

1

n

n
∑

i=1

[Xp
i − Mj(θ)] = 0 , 1 ≤ i ≤ p . (3.2)

Alternatively, for i > 1 we can replace the i’th noncentral moment by the i’th
centeral moment, i.e. solve the equations

1

n

n
∑

i=1

{Xi − Eθ[X1]} = 0

1

n

n
∑

i=1

{(

Xi − X̄
)p − Eθ[(X1 − Eθ[X1])

p]
}

= 0, 1 < i ≤ p.

Quite clearly, the traditional moments are rather arbitrary here, and one can
consider a generalized method of moments estimator as follows. Let β : X×Θ −→
IRp be such that η(θ) := Eθ[β(X, θ)] is bijective. Then we can estimate θ by
setting the theoretical expecatation equal to the sample expectation, i.e.

1

n

n
∑

i=1

[β(Xi, θ) − η(θ)] = 0 . (3.3)
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Still more generally, we can consider any function ψ : X × Θ −→ IRp for
which Eθ1[ψ(X, θ2)] = 0 if θ1 = θ2, and Eθ1 [ψ(X, θ2)] 6= 0 if θ1 6= θ2. Then we
simply set (1/n)

∑

i ψ(Xi, θ) = 0. Putting ψ(x, θ) = β(x, θ) − η(θ) as in (3.3)
recovers the generalized method of moment estimators, which we see is a class of
M–estimators, to be discussed next.

M–Estimators.

Recall that the mean µ is the value of b which minimizes

λ(b) =
∫

(x− b)2 dPX(x),

so if we wish to estimate the mean of a distribution on IR from i.i.d. observations,
a reasonable approach is to minimize

λ̂(b) =
∫

(x− b)2 dP̂ (x) =
1

n

n
∑

i=1

(Xi − b)2

where we have simply plugged in the empirical P̂ for PX in the expression for
λ. Of course, minimization of λ̂(b) leads to X̄ as an estimator for the mean of
the distribution. In a similar fashion, one can show that a median is a value of b
which minimizes

λ(b) =
∫

|x− b| dPX(x),

and plugging in the empirical distribution for the unknown PX leads to the sample
median as an estimator of the median of PX .

Of course, we did not need to invent these optimization problems to obtain
the sample mean and median as estimators of the mean and median of the un-
known distribution. However, there are many estimands that can be expressed
as solutions of optimization problems involving the unknown distribution, and
then the technique above can be applied. Of course, when we solve the opti-
mization problem, it will probably by setting a derivative equal to 0, i.e. solving
an equation. An M–estimator (or maximum likelihood–type estimator) is one ob-
tained either by a minimization or maximization problem, or as the root of a
equation. For instance, if we model X1, . . ., Xn as i.i.d. with Law[Xi] in a domi-
nated family with densities fθ(x), then the M–estimator might be obtained from
a minimization problem such as

θ̂n = arg min
θ

1

n

∑

ρ(Xi, θ) . (3.4)

We will refer to ρ as a criterion function (some authors call it a “loss function”
but it is certainly not a loss function in the decision theoretic sese of the term).
If ψ(x, θ) = Dρ(x, θ) (derivatives in this context are always w.r.t. the parameter,
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i.e. ψ(x, θ) = (∂/∂θ)ρ(x, θ) if θ is one dimensional) then we would usually seek
stationary points of the objective function which are roots of

1

n

∑

ψ(Xi, θ) = 0 . (3.5)

Here, ψ(x, θ) is called the score function. Note that this is a version of the gener-
alized method of moments discussed above. In general, we will be more interested
in the root characterization (3.5) rather than the minimization characterization
of (3.4), mostly because this permits an easier asymptotic analysis, and because
we want to consider examples of estimators not obtained from optimization prob-
lems.

Maximum Likelihood Estimation.

Now we introduce the notion of maximum likelihood estimation. It is probably
safe to say that this estimation methodology is used more often in practice than
any other.

Suppose X is an observation vector with Law[X] assumed to be in a para-
metric family P = {Pθ : θ ∈ Θ}. Assume P is dominated by a σ-finite measure
µ and let fθ(x) = [dPθ/dµ](x) be the density under θ. We usually treat fθ(x) as
a function of x for fixed θ, but when we think of it as a function of θ for the fixed
value of X which is actually observed, we call it the likelihood function. The (a)
maximum likelihood estimator (abbreviated MLE) θ̂mle is defined the (a) value of
θ which maximizes the likelihood function.

Remarks 3.1.1 (a) There are a number of problems with this definition. First,
there is no guarantee that a maximizer of the likelihood exists. It does happen
in practice that one sometimes attempts to compute an MLE and has problems
because it doesn’t exist. This issue will be taken up in the asymptotic theory
below where we show (under regularity conditions) that the MLE exists with high
probability in sufficiently large samples. There is also the question of uniqueness
of the maximizer of the likelihood, of course, which is why we said ”the (a)
maximum likelihood estimator” above. Again, this can be a problem in practice,
although it is safe to say less of a problem than nonexistence. Typically when the
MLE is not unique, there is a relatively small set of values with nice properties
(e.g. a small interval for unidimensional θ). In order to deal with these issues, we
will almost always have to impose “regularity conditions” on the densities fθ(x),
e.g. continuity in θ for fixed x. See the next remark for even more potentially
troubling issues if such “regularity conditions” are not imposed. We will see below
that for exponential families there is generally not a problem with uniqueness.

(b) Consider a single observation X from N(µ, 1). Suppose we use the fol-
lowing version of the density:

fµ(x) =

{

φ(x− µ) if x 6= 2µ;
100 if x = 2µ.
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This is a perfectly good version of the density since we have changed it from
the usual version only on a set of Lebesgue measure 0. The likelihood will be
maximized at the value of µ where x = 2µ, i.e. the MLE will be x/2, which is
rather silly. If however we require that the likelihood be continuous for all x,
then there is only one version of the density which works, namely φ(x− µ), and
the MLE under this version is x, which makes a lot more sense.

(c) Apparently the likelihood and hence also the MLE depend on which dom-
inating measure we choose. Suppose P ≪ µ and also P ≪ ν and let τ = µ + ν.
By the chain rule for Radon-Nikodym derivatives,

dPθ
dµ

(x) =
dPθ
dτ

(x)
dµ

dτ
(x) τ–a.e.

dPθ
dν

(x) =
dPθ
dτ

(x)
dν

dτ
(x) τ–a.e.

Forgetting about the τ–a.e. that follows each of the above equations (i.e. just
assuming they hold everywhere), then we see that maximizing dPθ/dτ is the same
as maximizing either dPθ/dµ or dPθ/dν since the factors dµ/dτ and dµ/dτ don’t
depend on θ.

Now let’s make a more rigorous argument. Take a fixed version of dPθ/dτ (e.g.
one that is continuous in θ) and find the MLE using this, call it θ̂τ,mle. Since this

version when multiplied by a version of dµ/dτ gives a version of dPθ/dµ, θ̂τ,mle
is also an MLE under this version of dPθ/dµ. Now if we use the same version of
dPθ/dτ to form a version of dPθ/dν, then we will get this same MLE θ̂τ,mle. Thus,
the MLE doesn’t depend on the dominating measure, in this sense of matching
up the versions of the Radon-Nikodym derivatives. Of course, from (b) above we
already knew there was a problem with using different versions of the density.
In particular, if we start with a version of dPθ/dτ which is continuous in θ for
fixed x, then all the versions of dPθ/dµ and dPθ/dν that we constructed will be
continuous.

(d) Why is maximum likelihood estimation a good idea? The answer to this
is not at all simple and obvious. On a very crude intuitive level, we “expect”
(in a loose sense of the word) that the observed value of X is more “likely” to
come from a region where the true density fθ0 is large, so finding a value of θ
which maximizes the likelihood of the observed value seems reasonable. A better,
albeit still heuristic justification might be based on Kullback-Leibler information,
which is discussed below. In Section 5.5 we give some Bayesian justifications for
maximum likelihood.

Ultimately, we have to admit that maximum likelihood is rather ad hoc, but
it has been discovered that (under regularity conditions) it gives asymptotically
optimal estimators, a subject to be taken up in Section 5.7. It turns out that
maximum likelihood is not unique in this regard (e.g. Bayes estimators are usually
asymptotically optimal, also), but it is also relatively easy to compute in practice
in that one can generally compute the likelihood and numerical optimization to
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find the maximum is relatively well understood and good software exists for doing
it.

2

If g : Θ −→ IRk is an estimand, we define the maximum likelihood estimator of
g(θ) to be g(θ̂mle). Thus, within the framework of maximum likelihood estimation
we solve all estimation problems at once when we find θ̂mle. One can show
that this definition is not entirely frivolous in the following sense. Suppose g
is a “partial reparameterization” in that there exists an h defined on Θ such
that θ 7→ (g(θ), h(θ)) is a 1-1 correspondence (so that (g(θ), h(θ)) is a genuine
reparameterization). Then under the new parameterization, (g(θ̂mle), h(θ̂mle)) is
the MLE. We will see also that g(θ̂mle) enjoys the same “asymptotic optimality”
property as θ̂mle, which is the only general theoretical justification for maximum
likelihood estimation.

It is commonly the case that the Pθ all have the same support, so restricting
attention to a common support all the densities are (or can be taken to be)
positive. Then it is usual to consider the log–likelihood

ℓ(θ) = log fθ(X) .

We do not show the X in ℓ(θ) as it is fixed once the observation is taken and
plugged in, but it should be kept in mind that ℓ is a random function. Of course,
if X = (X1, X2, . . . , Xn) has i.i.d. components Xi with common marginal fθ(x),
then the log–likelihood is

ℓ(θ) =
n
∑

i=1

log fθ(Xi) ,

and maximization of the likelihood is equivalent to maximization of the log–
likelihood, which often is easier to do mathematically. Typically we will carry
this out by taking derivatives and setting to 0, which gives rise to a (random)
equation

1

n

n
∑

i=1

ψ(Xi, θ) = 0

where the score function is

ψ(x, θ) = −▽ log fθ(x)

and all derivatives are w.r.t. θ. Recall that a solution to the equation is called
a “stationary point.” One should be careful to check one of the conditions to
ensure that the stationary point is indeed a maximizer (e.g. check that the ma-
trix −D2ℓ(θ) is positive definite), otherwise one could end up with a “minimum
likelihood estimator” which probably would be pretty bad. If multiple roots are
found, one has to determine which is the global maximizer as well. We will see
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below that for natural parameter exponential families, it is not necessary to check
the condition – there is at most one stationary point and if it exists, then it is
the MLE.

There is one aspect of computing MLE’s which is often useful. Suppose the
parameter vector can be split into two components θ = (θ1, θ2) such that for a
fixed value of θ2, the likelihood can be easily maximized analytically over θ1. In
symbols we have

θ̂1(θ2) = arg max
θ1

ℓ(θ1, θ2) . (3.6)

Note that the maximizer over θ2 depends on the fixed value of θ1. Then we can
plug back in the maximizer over θ2 and obtain a concentrated log–likelihood

ℓ2(θ2) = ℓ(θ̂1(θ2), θ2) . (3.7)

Now this can be maximized over θ2 numerically to find θ̂2, which is then plugged
into the formula for θ̂1(θ2) to obtain θ̂1. This situation arises for instance in the
Gamma family (see Example 3.1.1 below). From the practical point of computing
the MLE this is important to recognize and take advantage of it since it reduces
the dimensionality of the optimization problem and thereby improves numerical
efficiency.

Kullback-Leibler Information. Now we turn to the “justification” or mo-
tivation of maximum likelihood based on Kullback-Leibler information. This
concept will also be useful in hypothesis testing.

Definition 3.1.1 Let P and Q be probability measures on a measurable space
(Ω,F). The Kullback-Leibler information or divergence between Q and P is

K(Q,P ) :=











∫

log dP
dQ
dP if both P ≪ Q and Q≪ P ;

∞ otherwise.

2

Proposition 3.1.1 We have K(Q,P ) ≥ 0 with K(Q,P ) = 0 if and only if
P = Q.

Proof. Note that log is strictly concave, so by Jensen’s inequality,

−
∫

log
dQ

dP
dP ≥ − log

∫ dQ

dP
dP = − log 1 = 0 ,

with equality if and only if dQ/dP = 1, P–a.s., i.e. if and only if Q = P .

2
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Suppose µ is a σ–finite measure which dominates both P and Q, and let p
and q denote their respective densities, so of course dP/dQ = p/q, µ–a.e. Then
under the first line of the definition, we can write

K(Q,P ) =
∫

(log p)p dµ −
∫

(log q)p dµ . (3.8)

Now consider the setup of maximum likelihood estimation with a parametric
family {Pθ : θ ∈ Θ} ≪ µ} of mutually absolutely continuous probabilities with
densities {fθ}. Denoting the unknown true value by θ0, we have for any other θ,

K(Pθ, Pθ0) =
∫

(log fθ0)fθ0 dµ −
∫

(log fθ)fθ0 dµ . (3.9)

Now minimization over θ of K(Pθ, Pθ0) gives θ0, by Proposition 3.1.1. But the
first term on the r.h.s. of (3.9) doesn’t depend on θ, so we can write

θ0 = arg max
θ

∫

[log fθ(x)]fθ0(x) dµ(x) = Eθ0 [log fθ(X)] .

Of course, we don’t know θ0, so we can’t compute this latter expectation, but
given a sample X1, X2, . . ., Xn of i.i.d. observations from Pθ0 , we can estimate
this expectation with the sample average

1

n

n
∑

i=1

log fθ(Xi) = n−1ℓ(θ) .

Thus, maximizing the log likelihood ℓ(θ) should provide us approximately with
the value of θ which minimizes Kullback-Leiber information between Pθ and the
true probability, at least for large n where we expect the sample average to be
close to the true expectation. In fact, this interpretation is very useful in that it
also tells us what to expect if our data are generated from distribution not in our
parametric model. It has also been used as the basis for a very general proof of
the consistency of MLE’s; see Wald (???).

Maximum Likelihood in Exponential Families. As mentioned above, for
exponential families, we can obtain some nice results about the existence and
uniqueness of the MLE, which we now detail.

Theorem 3.1.2 Suppose {fη(x) : η ∈ Λ} is a natural parameter exponential
family of full rank with

fη(x) = exp
[

ηtT (x) − A(η)
]

h(x) .

If a solution η̂ of the equation

▽A(η) = T (X) (3.10)

exists in the interior of the natural parameter space and is in Λ, then it is the
unique MLE. Conversely, if Λ is an open set and if an MLE exists, then it is
unique and given by the solution of (3.10).
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Proof. We know that A(η) is strictly convex (in fact, D2A is strictly positive
definite). This implies that the negative log–likelihood

ℓ(η) = −ηtT (x) + A(η)

is also strictly convex in η. (We have dropped the unimportant log h(x) which
doesn’t depend on η.) To see this, note that for t ∈ (0, 1),

ℓ((1 − t)η0 + tη1) = −(1 − t)ηt0T (x) + tηt1T (x) + A((1 − t)η0 + tη1)

< −(1−t)ηt0T (x) − tηt1T (x) + (1−t)A(η0) + tA(η1) = (1−t)ℓ(η0) + tℓ(η1) ,

the inequality following from strict convexity of A. (In general, the sum of a
convex function and a strictly convex function gives a strictly convex function,
and a linear function like η 7→ −η′T is convex.)

Letting Λ0 denote the natural parameter space (which is convex) we show that
ℓ(η) can have at most one minimizer in Λ0, because of strict convexity. Suppose
η0 and η1 both minimize ℓ in Λ0, then for any t ∈ (0, 1), of course ηt ∈ Λ0 and

ℓ(ηt) < (1 − t)ℓ(η0) + tℓ(η1) = ℓ(η0) (3.11)

since ℓ(η0) = ℓ(η1) the minimum value of ℓ on Λ0 by assumption, but this last
display contradicts this assumption, so any minimizer of ℓ on Λ0 must be unique.
If the minimizer on Λ0 exists and is an interior point, then the derivative must
vanish (recall A is infinitely differentiable, so clearly also is ℓ since it is just a
linear function added to A) and we obtain

▽
[

−ηtT (X) + A(η)
]

= −T (X) + ▽A(η) = 0

which gives equation (3.10).
Conversely, we claim that a solution to (3.10) which is an interior point must

be a minimizer of ℓ. To see this, we have by Taylor expansion that if ▽ℓ(η0) = 0
then

ℓ(η) = ℓ(η0) + [η − η0]
tD2ℓ(η0)[η − η0] + o(‖η − η0‖2)

and since D2ℓ(η0) = D2A(η0) is strictly positive definite, it follows that for η
in some sufficiently small neighborhood of η0, we must have ℓ(η) > ℓ(η0) unless
η = η0. So at least a stationary point of ℓ is a local minimizer, but this is
impossible unless it is also a global minimizer since if η0 is a local minimizer but
ℓ(η1) < ℓ(η0) then we have ℓ(ηt) < ℓ(η0) for all ηt on the line segment joining η0

and η1 (see equation (3.11)), which contradicts the assumption that η0 is a local
minimizer.

Now all of the above argument is for Λ0, the natural parameter space of which
Λ is a subset with nonempty interior (from the full rank assumption). A solution
of equation (3.10) in the interior of Λ0 would be the MLE over Λ0, so if it is in Λ
then it would also be the MLE over Λ, and also unique by our argument above.
Conversely, if Λ is open, then an MLE over Λ is of course an interior point of Λ0,
hence a stationary point, and so a solution of equation (3.10).
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2

Note that equation (3.10) may be interpreted as setting the observed value of
the complete and sufficient statistic T (X) equal to its expected value. Thus, for
exponential families, the maximum likelihood estimator is a kind of method of
moments estimator. Also, if we have i.i.d. observations X1, X2, . . ., Xn from the
exponential family, then (3.10) becomes

▽A(η) = T n :=
1

n

n
∑

i=1

T (Xi) . (3.12)

One final remark which applies generally to MLE’s: when we have a parameter
space Θ or Λ, to say the MLE exists means that the maximizer of the likelihood
is an element of the parameter space. Thus for instance, if we believe the true
variance σ2 < 1 for i.i.d. observations from N(µ, σ2), then the MLE must satisfy
σ̂2
mle < 1. If the sample variance (which is the MLE when σ2 is unrestricted)

happens to be bigger than 1 (which can happen with positive probability even if
our assumption σ2 < 1 is true), then the MLE simply doesn’t exist, although we
would probably at least entertain the idea of enlarging the parameter space to
σ2 ≤ 1 so that the MLE would be σ̂2

mle = 1 if the sample variance is bigger than
1 (see Exercise 3.1.1). The student should perhaps reread the statement and last
paragraph of the proof above with these remarks in mind and remembering that
the natural parameter space is the largest possible parameter space for a natural
parameter exponential family, but one may wish to consider only a subset of the
natural parameter space.

Examples of MLE’s. Here we consider a number of special cases which are
easy to treat, and we leave the verifications to the student (Exercises 3.1.2, 3.1.3,
3.1.4, and x8.2.7).

Example 3.1.1 In each of the following, assume we have i.i.d. observations X1,
X2, . . ., Xn from the specified family of distributions. We denote the MLE of a
parameter by putting the hat over the notation for that parameter.

N(µ, σ2) : µ̂ = X, the sample mean, and

σ̂2 =
1

n

n
∑

i=1

(Xi −X)2

This is a biased estimator of σ2 which however has smaller MSE than the
UMVUE.

Nd(µ,Σ) : The MLE of µ is the sample mean X and the MLE of the covariance
matrix Σ is the sample covariance

Σ̂ =
1

n

n
∑

i=1

(X i −X)(Xi −X)t .



166 CHAPTER 3. BASIC THEORY OF POINT ESTIMATION.

B(n, p) : With a single observation X, p̂ = X/n, the UMVUE.

Expo(µ) : µ̂ = X.

Laplace(µ, s) : Recall that the density for a single observation is given by

fµ,s(x) =
1

2s
exp

[

−|x− µ|
s

]

.

Here, µ ∈ IR is a location parameter and s > 0 is a scale parameter. The
MLE µ̂ of the location is any sample median Mn (the MLE is not unique
with probability 1 when n is even for this example). The MLE of the scale
parameter is

ŝ =
1

n

n
∑

i=1

|Xi −Mn|

which is the average absolute deviation from any median.

U(0, θ) : θ̂ = X(n) = max{Xi : 1 ≤ i ≤ n}, the maximal order statistic. To
derive this result, first note that with probability 1, all Xi are positive, so
we assume they are all positive. We will use the version of the density
given by fθ(x) = I[0,θ](x), i.e. include the endpoints of the interval. Then
the likelihood is

fθ(X) =
n
∏

i=1

θ−1I[0,θ](Xi)

=

{

0 if X(n) > θ;
θ−n if X(n) ≤ θ.

This function is maximized over θ by making θ as small as possible subject
to the constraint X(n) ≤ θ, i.e. at θ = X(n). Notice in this case that
the likelihood is not continuous and there is no version of fθ(x) which will
make it continuous. Also, if we had chosen the version of the density fθ(x)
= I(0,θ)(x), i.e. left out the endpoints, then we would have maximized
the likelihood by making θ as small as possible subject to the constraint
X(n) < θ, and the MLE would technically not have existed, although it is
clear what value one should use. This is an example that will not be covered
by the asymptotic theory to be discussed in the Section 5.7.

U(θ1, θ2) : Adapting the argument from the U(0, θ) example above, one can show
that (with appropriate choice of the density again) the MLE’s are θ̂1 = X(1)

= min{Xi : 1 ≤ i ≤ n}, and θ̂2 = X(n), the minimal and maximal order
statistics.

2
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Example 3.1.2 Assume we have i.i.d. observations X1, X2, . . ., Xn from the
Gamma(α, β) family. It is convenient to replace the scale parameter β by 1/β =
η which gives the natural parameterization. Then by Theorem 3.1.2, the MLE
(α̂, η̂) is the unique solution (if it exists) of

ψ0(α) − log η = Ln ,

α/η = Xn ,

where

Ln =
1

n

n
∑

i=1

logXi ,

and ψ0(α) = Γ′(α)/Γ(α) is the so–called digamma function. One can solve for η̂
from the second equation,

η̂ =
α̂

X

or what is the same

β̂ =
X

α̂

and substitute it out of the first equation to obtain a single equation for α̂, viz.

ψ0(α̂) − log α̂ = Ln − logX . (3.13)

Note that we have to solve only one equation in one unknown – i.e. we have
reduced the dimensionality of our optimization problem from 2 to 1 by “concen-
trating out” one of the unknown parameters. Now it turns out that ψ0(α)− logα
is strictly increasing and takes on all values between −∞ and 0 (see Abramowitz
and Stegun ??? for properties of the digamma function). Further, by Jensen’s
inequality, since log is a strictly concave function, if there are at least 2 distinct
Xi’s (which happens with probability 1 under the model as soon as n ≥ 2), then
the r.h.s. of (3.13) is strictly negative, so we are guaranteed a unique root α̂ of
this equation. One must solve for this root numerically in practice. Software
for computing the digamma function and its derivative (known as the trigamma
function) is generally available, e.g. in the cmlib special functions package of for-
tran subprograms. It is also available as a supplied function in the Mathematica
system.

2

3.1.2 Properties of Estimators.

Here we consider various properties of an estimator that may be desirable.
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The Principle of Unbiasedness.

Assume g : Θ −→ IR. We say an estimator δ(X) is unbiased for g(θ) iff

Eθ[δ(X)] = g(θ) , for all θ ∈ Θ.

(Note: in the above we are implicitly assuming that Eθ[|δ(X)|] < ∞ for all θ.)
Recall from Section 4.2 that an unbiased estimator is a uniform minimum vari-
ance unbiased estimator (abbreviated UMVUE) iff it has smallest variance (and
hence mean squared error) among all unbiased estimators of g(θ). Classically,
unbiasedness has been a fundamental requirement, so there is a well developed
theory for unbiased estimators, which we explore in more detail in Section 3.

Let g(θ) be an estimand in the setup described above. The class of unbiased
estimators may be empty. We say g(θ) is U–estimable iff there exists an unbiased
estimator for g(θ). U–estimability is equivalent to the existence of a solution δ(x)
of an integral equation of the form

g(θ) =
∫

Ξ
δ(x) dPθ(x) =

∫

Ξ
δ(x) fθ(x) dµ(x) , for all θ ∈ Θ .

In the last expression we have assumed that the family P is dominated by µ and
fθ = dPθ/dµ are the densities.

Example 3.1.3 Suppose X ∼ Poisson(µ) where µ > 0. Then g(µ) is U–
estimable if and only if there is a sequence {δ(k) :, k ∈ IN} such that

g(µ) =
∞
∑

k=0

e−µ
δ(k)

k!
µk , all µ > 0 .

This is true just in case

eµg(µ) =
∞
∑

k=0

δ(k)

k!
µk , all µ > 0 .

Evidently, eµg(µ) must have a Taylor series expansion which converges for all
µ > 0. Recall that if a power series of the form

∑

k akµ
k converges form some µ0,

then it converges for all µ such that |µ| < |µ0|. Thus, the Taylor series above for
eµg(µ) converges for all µ ∈ IR. (Of course, for the statistical problem at hand,
it doesn’t make sense to speak of µ < 0, but the point is that mathematically we
can extend the function g from (0,∞) to all of IR.) Furthermore, if an unbiased
estimator exists, then eµg(µ) is infinitely differentiable at all µ, so by an easy
chain rule argument (multiply by e−µ), g(µ) must be infinitely differentiable at
all µ. (In fact, the student who knows a little complex analysis can see that g(µ)
is U–estimable in this setup if and only if g(µ) is analytic in the entire complex
plane, i.e. g is an entire function. Again, we don’t consider complex values of the
Poisson parameter, but mathematically the function can be extended to all of
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the complex plane.) If δ(X) is an unbiased estimator of g(µ) then by uniqueness
of Taylor series coefficients,

δ(k) =
dk

dµk
[ eµg(µ) ]µ=0 .

In this setting, δ is the only unbiased estimator of g and hence is UMVUE. In
particular, the standard deviation

√
µ is not U–estimable since the square root

function it is not differentiable at µ = 0. One estimand which is U–estimable is

g(µ) = (Pµ[X = 0] )2 = e−2µ .

For this estimand, the unique unbiased estimator is

dk

dµk

[

eµe−2µ
]

µ=0
=
[

(−1)ke−µ
]

µ=0
= (−1)k .

So the UMVUE of e−2µ is (−1)X , which is a rather silly estimator (especially if X
is odd). This example illustrates that restricting oneself to unbiased estimation
is not always a wise choice. In the last two estimands we have seen two problems
that can exist with the class of unbiased estimators: it may be empty, and it
may contain only ridiculous estimators. In general one should always examine a
decision rule to see if it “makes sense,” no matter what optimality properties it
satisfies.

2

The class of U–estimable estimands depends on sample size, and for a given
U–estimable estimand the class of unbiased estimators depends on sample size.
In the previous example, if we had a random sample X1, X2, ..., Xn which were
i.i.d. Poisson(µ) with sample size n > 1, then there would generally be more
than one unbiased estimator for any U–estimable estimand.

3.1.3 Equivariance and Invariance.

We consider here other “reasonable restrictions” on the class of estimators similar
to unbiasedness. Consider a location-scale family X1, X2, . . ., Xn i.i.d. with
Lebesgue density

fab(x) =
1

b
f
(

x− a

b

)

where f is a given Lebesgue probability density function, the unknown location
parameter a ∈ IR, and the unknown scale parameter b ∈ (0,∞). Now suppose
someone adds a fixed constant α ∈ IR to the data, say,

X̃i = Xi + α.
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We will denote the new data vector

X̃ = X + α1 = X + α

where 1 = (1, 1, . . . , 1) is a vector of all 1’s of dimension n. Note that “X + α”
is an abuse of notation since one can’t add a vector and scalar, but we will use
it to mean X + α1. Now the distribution of the shifted data X̃ still comes from
the location-scale family but the location parameter has been shifted from a to
a+ α (and the scale parameter is unchanged). If â is an estimator of a, it makes
sense to require that it be location equivariant, which means

â(x+ α) = â(x) + α, ∀α ∈ IR, ∀x ∈ IRn.

Furthermore, if someone multiplies the data by a positive scalar β, then the new
data vector X̃ = βX still comes from the location-scale family but the location
parameter is βa (and the scale parameter has changed to βb). Thus, it also would
be reasonable to require that the location estimator â be scale equivariant, which
means

â(βx) = βâ(x), ∀β ∈ (0,∞), ∀x ∈ IRn.

In a similar manner, it is reasonable that an estimator b̂ of the scale parameter
should be location invariant, meaning

b̂(x+ α) = b̂(x), ∀α ∈ IR, ∀x ∈ IRn.

and scale equivariant, i.e.

b̂((βx) = βb̂â(x) + α, ∀β ∈ (0,∞), ∀x ∈ IRn.

These are “reasonable” requirements since the corresponding scale parameter is
transformed in this way when the data is shifted or rescaled.

Example 3.1.4 Clearly the sample mean is location-scale equivariant. In fact,
given scalars ci, consider a linear location estimator of the form

â(x) =
n
∑

i=1

cixi.

Let us determine conditions under which this is location-scale equivariant.

â(x+ α) = â(x) + α
n
∑

i=1

ci

which equals â(x) +α for all α ∈ IR if and only if
∑

i ci = 1. Now â(βx) = βâ(x)
by the distributive law no matter what the ci are. Since the order statistics are
sufficient, it makes sense to require the ci to be all equal so that â does not depend
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on the order of the data. Hence, we would expect that the choice ci = 1/n is
optimal in the sense of minimizing MSE.

Also, the sample median is location-scale equivariant, and in fact any sample
quantile is. Further, one could consider a linear combination of order statistics

â(x) =
n
∑

i=1

cix(i),

where again
∑

i ci = 1 is necessary and sufficient to guarantee location-scale equiv-
ariance. Such an estimator is called an L-estimator. For this type of estimator,
there is not an obvious choice for the ci. In fact, the optimal ci for minimizing
the MSE will depend on the shape of the generating density f .

Now for scale estimation, the sample standard deviation is location invariant
and scale equivariant. We can construct a large class of location invariant and
scale equivariant estimators of scale by

b̂(x) =

(

n
∑

i=1

|xi − â(x)|p
)1/p

where p > 0 and â is location-scale equivariant. Note that for any α ∈ IR and
β > 0,

b̂(βx+ α) =

(

n
∑

i=1

|βxi + α− â(βx+ α)|p
)1/p

=

(

n
∑

i=1

|βxi + α− [βâ(x) + α]|p
)1/p

=

(

n
∑

i=1

|βxi − βâ(x)|p
)1/p

= β

(

n
∑

i=1

|xi − â(x)|p
)1/p

= βb̂(x)

Other location invariant and scale equivariant estimators are given in the exer-
cises.

2
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Exercises for Section 5.1.

3.1.1 Suppose we have i.i.d. observations from N(µ, σ2) where 0 < σ2 ≤ 1.
Show that the MLE of σ2 is min{S2, 1} where S2 = n−1∑

i(Xi −X)2.

3.1.2 Verify the claims about the MLE’s for the N(µ, σ2), B(n, p), and Expo(µ)
distributions in Example 3.1.1.

3.1.3 Verify the claims about the MLE’s for the Nd(µ,Σ) in Example 3.1.1.

3.1.4 Verify the claims about the MLE’s for the Laplace(µ, s) distribution in
Example 3.1.1.

3.1.5 Verify the claims about the MLE’s for the U(θ1, θ2) distribution in Ex-
ample 3.1.1.

3.1.6 (Logistic Regression) The following is a common example where existence
of the MLE can be a problem. Suppose we have data (x1, Y1), (x2, Y2), . . ., (xn, Yn)
where the xi’s are fixed real numbers and the Yi’s are independent Bernoulli
random variables with

P [Yi = 1] =
exp[a+ bxi]

1 + exp[a + bxi]
.

Note that

a+ bxi = log

(

P [Yi = 1]

1 − P [Yi = 1]

)

.

Here a and b are unknown real numbers. Assume for convenience that x1 ≤ x2

≤ . . . ≤ xn and that there are at least 3 distinct values in the xi’s. Show that
the MLE of (a, b) exists if and only if there exists i1 < i2 < i3 such that either

Yi1 = 1, Yi2 = 0, Yi3 = 1,

or
Yi1 = 0, Yi2 = 1, Yi3 = 0.

Loosely speaking, this says there are at least 2 “sign changes” in the Yi’s. (Hints:
Use exponential family theory. If there are less than 2 “sign changes” in the Yi’s,
then the log likelihood can be increased by going off to ∞ in a certain direction.)

3.1.7 Let X1, X2, . . ., Xn be i.i.d. random variables with finite second moment.
Consider affine estimators of µ = E[Xi] which have the form

µ̂(x) = b +
n
∑

i=1

cixi
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where b and c1, c2, . . ., cn are constants. (Such estimators are sometimes called
“linear” although strictly speaking one must set b = 0 to get a linear estima-
tor). Determine the values of these which minimize the variance of the estimator
subject to the unbiasedness constraint

E[µ̂(X)] = µ

for all possible distributions.

3.1.8 Show that each of the following estimators is location invariant and scale
equivariant:

b̂1(x) = |xn − x1|
b̂2(x) = x(n) − x(1)

b̂3(x) =
1

n(n− 1)

∑

i6=j

|xi − xj |

b̂4(x) =
n
∑

i=1

cix(i)

where x(1) ≤ x(2) ≤ . . . ≤ x(n) denote the order statistics and for b̂4 the constants
ci satisfy

∑

i ci = 0.
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3.2 Rao-Cramer Inequality.

In this section we derive a lower bound on mean squared error of an estimator
under certain “regularity” conditions. The basic techniques involved are (i) some
tricky calculus (which is where the “regularity” conditions come in), and (ii) the
Cauchy-Schwartz inequality. The resulting lower bound will prove very useful for
many purposes. Of course, one can always use the lower bound of 0 on means
squared error, but the lower bound derived here is much sharper. We will see in
particular that when we cannot find an optimal procedure (such as an UMVUE),
then the lower bound provides some standard for assessing the performance of
an estimator. For instance, if we have an estimator whose MSE is “close” to the
lower bound, then we know that it is “close” to optimal.

3.2.1 The Main Result.

Suppose a random observable X has a distribution in a family P = {Pθ : θ ∈ Θ}
and we wish to estimate g(θ). Let δ(X) be any estimator of g(θ) and

MSE(θ, δ) = Eθ[(δ(X) − g(θ))2]

its mean squared error. Let us assume Θ ⊂ IRp and a dominated family with
densities

fθ(x) =
dPθ
dµ

(x) .

The lower bound we shall derive will require “regularity” conditions, mostly
to allow differentiation and interchangeability of differentiation and integration.
Rather than state the regularity conditions at the outset, we will derive the re-
sult and determine what is needed as we go along, which is the natural way to
proceed.

Start with the equation
∫

Ξ
δ(x)fθ(x) dµ(x) = Eθ[δ(X)] = m(θ) , (3.14)

where m(θ) just denotes the mean of the statistic δ(X) as a function of θ. Re-
calling that δ(X) is meant as an estimator of g(θ), we have

m(θ) = g(θ) + b(θ) , (3.15)

where
b(θ) = Eθ[δ(X)] − g(θ)

is the bias. Assuming we can differentiate both sides of (3.14) w.r.t. θ and
interchange

∫

and ∂/∂θj , for 1 ≤ j ≤ p, we obtain

∫

δ(x)∇fθ(x) dµ(x) = ∇m(θ) , (3.16)
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where ∇fθ denotes the derivative (gradient) of fθ(x) w.r.t. θ when x is held fixed.
(Note: Many students get confused on which variable to differentiate w.r.t. Just
remember, X may be a discrete r.v. so that the density may only be defined on
the integers, as a function of X, and then it makes no sense to differentiate w.r.t.
x. All derivatives are w.r.t. θ.) The l.h.s. of (3.16) can be rewritten as

∫

δ(x)
∇fθ(x)
fθ(x)

fθ(x) dµ(x) =
∫

δ(x) Ψ(x, θ) fθ(x) dµ(x) (3.17)

= Eθ [ δ(X) Ψ(X, θ) ] ,

where

Ψ(x, θ) = ∇ log fθ(x) =
∇fθ(x)
fθ(x)

. (3.18)

Furthermore, by interchanging differentiation and integration in the equation

∫

fθ(x) dµ(x) = 1

we obtain

0 =
∫

∇fθ(x) dµ(x) = Eθ[Ψ(X, θ)] . (3.19)

In particular, since m(θ) is nonrandom,

Eθ[m(θ) Ψ(X, θ) ] = 0 . (3.20)

If we substitute (3.17) into (3.16) and subtract (3.20) from the result, we obtain

Eθ { [ δ(X) −m(θ) ] Ψ(X, θ) } = ∇m(θ) . (3.21)

For simplicity, first assume p = 1, i.e. that we have a one dimensional pa-
rameter θ, referred to simply as the one parameter case. Then the ∇’s in (3.21)
are simply d/dθ, and in particular are scalar. Now apply the Cauchy-Schwartz
inequality (Theorem 2.1.5) to the l.h.s. of (3.21) to obtain

m′(θ)2 ≤ Eθ
{

[ δ(X) −m(θ) ]2
}

Eθ







[

d

dθ
log fθ(X)

]2






= Varθ[δ(X)] IX(θ) , (3.22)

where IX(θ) is called the Fisher information (about θ contained in X) and is
given in the one parameter case by

I(θ) = Eθ







[

d

dθ
log fθ(X)

]2






= Eθ[Ψ(X, θ)2] , (3.23)
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where we usually drop the subscript X when it is clear from context. If we assume
that I(θ) > 0 then from (3.22) we get

Varθ[δ(X)] ≥ m′(θ)2

I(θ)
. (3.24)

Here, m′ denotes dm/dθ. Recalling that mean squared error (MSE) is bias
squared plus variance (see (4.6) we obtain

MSE(θ, δ) ≥ b(θ)2 +
m′(θ)2

I(θ)
. (3.25)

This is the Rao–Cramer lower bound in the one parameter case. If δ is unbiased or
if the estimand is the parameter itself, then this can be simplified (see Corollary
3.2.2 below).

Now we return to the multiparameter case, i.e. the dimension of θ is p ≥ 1.
We wish to apply Cauchy-Schwartz to (3.21) but it is a vector equation. Let v
be any nonrandom vector, and take inner products of both sides of (3.21) with v
to obtain

Eθ { [ δ(X) −m(θ) ] [ Ψ(X, θ)′v ] } = ∇m(θ)′v . (3.26)

Here, A′ denotes the transpose of the matrix A. Now by Cauchy-Schwartz we
have

{∇m(θ)′v }2 ≤ Varθ[δ(X)]Eθ
{

[ Ψ(X, θ)′v ]
2
}

(3.27)

Note that

Eθ
{

[ Ψ(X, θ)′v ]
2
}

= Eθ { ( v′Ψ(X, θ) ) (Ψ(X, θ)′v ) } (3.28)

= v′Eθ [ Ψ(X, θ) Ψ(X, θ)′ ] v = v′ IX(θ) v ,

where IX(θ) is a p× p matrix given by

I(θ) = Eθ [ Ψ(X, θ) Ψ(X, θ)′ ] (3.29)

= Eθ
{

[∇ log fθ(X) ] [∇ log fθ(X) ]′
}

.

I(θ) is called the Fisher information matrix. Assuming I(θ) is strictly positive
definite and v 6= 0, then (3.27) yields

Varθ[δ(X)] ≥ {∇m(θ)′v }2

v′I(θ)v
. (3.30)

We are free to choose v in (3.30) (in a nonrandom way subject to v 6= 0) so as
to obtain the largest possible r.h.s. Set u = I(θ)1/2v so that v = I(θ)−1/2u (see
Exercise 2.1.18 for definition and construction of I(θ)1/2). Note that as v varies
over IRp − {0} then so also does u. Then (3.30) becomes

Varθ[δ(X)] ≥
{

∇m(θ)′I(θ)−1/2u
}2

‖u‖2
. (3.31)
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Note that if we multiply u in (3.31) by any positive scalar, it does not change the
r.h.s. Thus, we may constrain

‖u‖2 = 1 (3.32)

Then, subject to (3.32) we wish to maximize the following expression over u ∈ IRp:

{

∇m(θ)′I(θ)−1/2u
}2

=
{

[

I(θ)−1/2∇m(θ)
]′
u
}2

. (3.33)

An inner product of a unit vector with a given vector is maximized by choosing
the unit vector in the direction of the given vector, i.e. the last expression in
(3.33) is maximized if

u =
I(θ)−1/2∇m(θ)

‖I(θ)−1/2∇m(θ)‖ . (3.34)

Putting this back into the r.h.s. of (3.33) gives

{

∇m(θ)′I(θ)−1∇m(θ)

‖I(θ)−1/2∇m(θ)‖

}2

= ∇m(θ)′I(θ)−1∇m(θ) . (3.35)

Finally, using (3.35) in (3.31) gives

Varθ[δ(X)] ≥ ∇m(θ)′I(θ)−1∇m(θ) . (3.36)

We state this formally in the following where the regularity conditions are spelled
out.

Theorem 3.2.1 (Rao-Cramer Inequality.) Suppose Law[X] ∈ P = {Pθ : θ ∈
Θ} ≪ µ σ–finite. Let dPθ/dµ = fθ denote the densities w.r.t. µ, let g : Θ → IR
be an estimand, and let δ(X) be an estimator of g(θ). Assume the following
regularity conditions:

(i) Θ ⊂ IRp is an open set.

(ii) Eθ[δ(X)2] < ∞ for all θ ∈ Θ.

(iii) For µ-almost all x, Ψ(x, θ) = ∇ log fθ(x) exists for all θ ∈ Θ.

(iv) Eθ[‖Ψ(X, θ)‖2] < ∞ for all θ ∈ Θ.

(v) For φ(x) ≡ 1 and φ(x) = δ(x), γ(θ) = Eθ[φ(x)] is differentiable for all
θ, and the derivative can be computed by interchanging differentiation and
integration.

(vi) The Fisher information matrix in (3.29) is strictly positive definite for all
θ ∈ Θ.
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Then

MSE(θ, δ) ≥ b(θ)2 + ∇m(θ)′I(θ)−1∇m(θ) . (3.37)

gives a lower bound on the MSE of any estimator of g(θ) with bias b(θ) and mean
function m(θ) = g(θ) + b(θ).

Proof. First, we discuss the “self–consistency” of the regularity conditions.
Condition (i) is merely to guarantee that we can discuss differentiability of func-
tions of θ. It is needed, for instance, in order that (iii) and (iv) make sense. If for
a given θ there is not some neighborhood of θ contained in the parameter space,
then we have potential difficulties with differentiation at θ. Condition (i) can be
weakened considerably, but it is not particularly useful to do so.

If one attempts to compute derivatives in (v) by interchanging
∫

. . . dµ with
∂/∂θj , it would be necessary to differentiate fθ(x), so it is implicit in (v) that
fθ(x) is differentiable in θ. This also follows from (iii) for values of θ and x for
which fθ(x) > 0 so that log fθ(x) is finite. However, it seems a little clearer to
explicitly state (iii) which also guarantees that (iv) makes sense because Ψ exists.
Note that the φ = δ case of (v) makes sense by (ii) (i.e. Eθ[|δ(X)|] < ∞ for all
θ) and this case of (v) also states that m(θ) is differentiable, which is of course
necessary for the lower bound to make sense as ∇m appears there. Finally, (iv)
is needed for (vi), i.e. we need to know that the entries of I are well defined real
numbers.

Now we will indicate where the regularity conditions are needed in the calcu-
lations leading up to the theorem. The first result requiring justification is (3.16),
which follows from condition (v) with φ = δ. Equation (3.17) requires condition
(iii) to justify the existence of Ψ and also,

∫

|δ(x)| ‖Ψ(x, θ)‖ fθ(x) dµ(x)

≤
{∫

δ(x)2 fθ(x) dµ(x)
}1/2 {∫

‖Ψ(x, θ)‖2 fθ(x) dµ(x)
}1/2

< ∞ ,

where the last line follows from conditions (ii) and (iv). This shows integrability,
i.e. that the integrals in (3.17) are defined (and in fact, finite). Of course, condi-
tion (v) with φ ≡ 1 is needed for (3.19), and we know from (iv) that Eθ[‖Ψ(X, θ)‖]
< ∞, so the integral in (3.19) is defined (and finite), and also (3.21) is valid (i.e.
all integrals are finite so there is no ∞−∞). Of course, condition (vi) is needed
at (3.30) (to know the denominator is not 0), and in the definition of v which
appears in (3.31) (so we know that I(θ)−1/2 exists). This completes the verifica-
tion.

2
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Remarks 3.2.1 (a) The result is sometimes called the Information inequality,
Rao-Cramer lower bound, or Information lower bound.

(b) If (i) doesn’t hold, then we simply replace Θ by its interior.
(c) Assumption (iii) that log fθ(x) be differentiable in θ for µ-almost all x

implicitly requires that µ({ x : fθ(x) = 0 for any θ }) = 0, for otherwise log fθ(x)
is not even finite µ-a.e. If fθ(x) = 0 on a set if positive µ measure, then we may
be able to change dominating measures so as to avoid the problem.

For example, if we use Lebesgue measure to dominate the Exp[β, 0] fam-
ily with densities β−1 exp[−x/β]I(0,∞)(x), then we do not have condition (iii).
However, we can simply change the dominating measure to Lebesgue measure
restricted to (0,∞), i.e. µ(B) = m(B ∩ (0,∞)).

On the other hand, for the Unif [a, b] family, there is no way to change domi-
nating measures so as to achieve (iii). The same holds for the shifted exponential
family Exp[β, b]. In general, in order for condition (iii) to hold it is necessary
that the support of the Pθ’s not depend on θ.

(d) Condition (v) is applied with φ(x) = δ(x) in (3.16) and φ(x) = 1 in (3.19).
In general, one will use Theorem 1.2.10 to check condition (v), as in the proof
of Theorem 2.2.1 (b). A sufficient condition for (v) to hold is the following: for
all θ0 ∈ Θ there is a neighborhood B(θ0, ǫ) ⊂ Θ and a constant K < ∞ such
that ‖∇fθ(x)‖ ≤ Kfθ0(x) for all θ ∈ B(θ0, ǫ) and all x ∈ Ξ. If this condition
holds, then we may apply Theorem 1.2.10 to the integral

∫

g(x, θi)dµ(x) where
g(x, θi) = φ(x)fθ(x) (where we hold all components of θ constant except θi), and
the dominating function for ∂g/∂θi is G(x) = K|φ(x)|fθ0(x). Since Eθ|φ(X)| <
∞ is assumed, we have

∫

G(x)dµ(x) = KEθ0 |φ(X)| < ∞.

2

Corollary 3.2.2 Under the same Assumptions as Theorem 3.2.1, the following
hold:

(a) If δ(X) is unbiased for g(θ), then

Varθ[δ(X)] ≥ ∇g(θ)′I(θ)−1∇g(θ) .

(b) If θ is 1 dimensional and g(θ) = θ, then

MSE(θ, δ) ≥ b(θ)2 +
[1 + b′(θ)]2

I(θ)
.

(c) If θ is 1 dimensional and δ(X) is any unbiased estimator of θ, then

Varθ[δ(X)] ≥ 1

I(θ)
.

2
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It is worthwhile to consider exponential families since some of the regularity
condtions are obtained “for free” in that case.

Proposition 3.2.3 Suppose X has distribution in an exponential family with
densities of the form

dPθ(x) = fθ(x) dµ(x) = exp [ η(θ)′T (x) − B(θ) ] h(x) dµ(x) , θ ∈ Θ .

Suppose Θ ⊂ IRp is open and η : Θ −→ IRk is differentiable with derivative
(Jacobian matrix) Dη which is of full rank p ≤ k. Assume further that the
natural parameter exponential family with natural parameter space Λ0 is of full
rank, and η(Θ) is contained in the interior of Λ0. Let g : Θ −→ IR be continuously
differentiable. Suppose δ(X) is an estimator of g(θ) for which

∫

δ(X)2 exp[η′T (x)] dµ(x) < ∞ , for all η ∈ Λ0 . (3.38)

Then

Eθ{[(δ(X) − g(θ)]2} ≥
{Eθ[(δ(X) − g(θ)]}2 + ∇Eθ[δ(X)]′ [Dη(θ)′Covθ[T (X)]Dη(θ) ]

−1 ∇Eθ[δ(X)] .

Proof. We verify that the conditions of the previous theorem apply. Condi-
tions (i) and (ii) are already assumed in the Proposition (condition (ii) in (3.38)).
For (iii), it may be necessary to change dominating measures µ so that h(x) > 0,
but this is easily done as in Remark 2.3.1 (b). Then differentiability of log fθ
w.r.t. θ is easy from the chain rule since log fθ is clearly differentiable in η and
η is assumed differentiable in θ. In fact, we have

Ψ(x, θ)′ =
d

dθ
log fθ(x) =

[

d

dη
log fθ(x)

]

dη

dθ
(3.39)

=

[

T (x)′ − dA(η)

dη

]

dη

dθ
= (T (x) − Eθ[T (X)] )′

dη

dθ
.

In the above, we use A(η) = B(θ) when η = η(θ), and Proposition 2.3.1 (b).
Condition (v) holds for any φ(x) such that Eθ[|φ(X)|] <∞ for all θ by Propo-

sition 2.3.1 (c).
Also,

I(θ) = Eθ[Ψ(X, θ)Ψ(X, θ)′] (3.40)

= Eθ

{(

dη

dθ

)′

(T (X) − Eθ[T (X)] ) (T (X) − Eθ[T (X)] )′
dη

dθ

}

=

(

dη

dθ

)′

Covθ[T (X)]

(

dη

dθ

)

.
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Note in particular that Eθ[‖Ψ(X, θ)‖2] = Trace[I(θ)] < ∞ by Proposition 2.3.1
so (iv) holds. Since dη/dθ is full rank and the natural family is full rank, it
follows that I(θ) is strictly positive definite. To see this, note that if v 6= 0 is a
p-vector and u = (dη/dθ)v (which is nonzero a k-vector since (dη/dθ) is full rank
of dimension k × p with p ≤ k), then

v′I(θ)v = u′Covθ[T (X)]u > 0

since Covθ[T (X)] is strictly positive definite (see the proof of Proposition 2.3.1
(b)), so condition (vi) holds. Plugging (3.40) into the Rao-Cramer inequality, we
obtain the result.

2

3.2.2 Facts about Fisher Information.

Here we develop some useful results about Fisher information. The first one
states that the Fisher information from independent observations is the sum of
the individual (or marginal) Fisher informations, which is intuitively appealing.
The second result concerns transformation of Fisher information under reparam-
eterization. The final result gives an alternative formula for computing Fisher
information which was already evident in the last result above (see Remark 3.2.2
below).

Proposition 3.2.4 Suppose X and Y are independent observables from P =
{Pθ : θ ∈ Θ} and Q = {Qθ : θ ∈ Θ}, respectively. (Note that the parameter space
is the same for both families.) Assume both families satisfy the conditions of
Theorem 3.2.1, and denote the Fisher informations, IX(θ) and IY (θ), respectively.
Then the Fisher information for the joint observation (X, Y ), denoted IXY (θ), is
defined and IXY (θ) = IX(θ) + IY (θ).

In particular, if X1, X2, ..., Xn are i.i.d. with common distribution from P
as above, then

I(X1,X2,...,Xn)(θ) = nIX1(θ) .

Proof. We are implicitly assuming both families are dominated, and let µ
and ν denote the dominating measures for P and Q, respectively. Also, let fθ(x)
and gθ(y) denote the respective densities. Then on the product of the respective
observation spaces, the joint distribution is dominated by µ × ν (Proposition
1.4.3), and the logarithm of the joint density is the sum of the logarithms of the
marginals. Hence,

Eθ
[

(∇ log fθ(X) + ∇ log gθ(Y ) ) (∇ log fθ(X) + ∇ log gθ(Y ) )′
]

= Covθ [∇ log fθ(X) + ∇ log gθ(Y ) ]
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= Covθ[∇ log fθ(X)] + Covθ[∇ log gθ(Y )] = IX(θ) + IY (θ) .

Independence of X and Y implies the second equality above. Note that the
general equation

I(θ) = Covθ[Ψ(X, θ)]

follows from the definition of covariance and (3.19).

2

Proposition 3.2.5 Suppose {Pθ : θ ∈ Θ} satisfies the conditions of Theorem
3.2.1 with Fisher information I(θ). Let ζ = h(θ) where h : IRp → IRp is one
to one and continuously differentiable with continuously differentiable inverse.
Denote the Fisher information for the new parameter ζ by J(ζ) and let G(ζ) =
(dh/dθ)(h−1(ζ)). Then

J(ζ) = [G(ζ)−1]′ I(h−1(ζ)) [G(ζ)−1] .

Proof. Let g = h−1. Then the densities are fθ(x) = fg(ζ)(x). Thus, by the
chain rule for multivariate differentiation and the formula for differentiation of
an inverse function,

d

dζ
log fg(ζ)(x) =

[

d

dθ
log fθ(x)

]

θ=g(ζ)

dg

dζ
(ζ)

=

[

d

dθ
log fθ(x)

]

θ=g(ζ)

[G(ζ)]−1 .

Using θ = g(ζ) and plugging this into the formula for Fisher information gives

J(ζ) = Eθ

{[(

d

dθ
log fθ(x)

)

[G(ζ)]−1

] [(

d

dθ
log fθ(x)

)

[G(ζ)]−1

]′ }

= ([G(ζ)]−1)′Eθ

[(

d

dθ
log fθ(x)

) (

d

dθ
log fθ(x)

)′ ]

[G(ζ)]−1 ,

which is the desired formula. Note that we can factor G(ζ)−1 out of the expec-
tation since it is nonrandom.

2
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Proposition 3.2.6 Suppose that in addition to the assumptions of Theorem
3.2.1, the family {Pθ : θ ∈ Θ} has densities fθ(x) satisfying

(vi) log fθ(x) is twice continuously differentiable for µ-almost all x, and if
H(X, θ) denotes the Hessian of log fθ(X), then

Eθ[|Hij(X, θ)|] = Eθ

[

| ∂

∂θi

∂

∂θj
log fθ(X) |

]

< ∞ , for 1 ≤ i, j ≤ p .

(vii) We can interchange differentiation and integration as in the following:

∂

∂θi

∫

Ψj(x, θ)fθ(x) dµ(x) =
∫

Hij(X, θ)fθ(x) dµ(x) .

Then the Fisher information is given by

I(θ) = −Eθ[H(X, θ)] .

Proof. Note that H(X, θ) = d
dθ

Ψ(X, θ). Applying condition (vii) to (3.19)
and using the product rule for differentiation yields,

0 =
d

dθ
Eθ[Ψ(X, θ)] (3.41)

=
d

dθ

∫

Ψ(x, θ)fθ(x) dµ(x) =
∫

d

dθ
[ Ψ(x, θ)fθ(x) ] dµ(x)

=
∫

[(

d

dθ
Ψ(x, θ)

)

fθ(x) + Ψ(x, θ)

(

d

dθ
fθ(x)

)]

dµ(x) .

Now recall that
d

dθ
fθ(x) = Ψ(x, θ)′ fθ(x) .

Using this and the definition of H , the last expression in (3.41) equals

∫ ∫

[H(x, θ) + Ψ(x, θ)Ψ(x, θ)′ ] fθ(x) dµ(x) = Eθ[H(X, θ)] + I(θ) = 0 .

Subtracting Eθ[H(X, θ)] from both sides gives the desired result.

2

Remarks 3.2.2 We can use the previous two Propositions to derive part of
Proposition 3.2.3, namely the formula for the Fisher information in the case where
the natural parameter mapping η(θ) is one to one, continuously differentiable and
has continuously differentiable inverse. Assume first the family is in canonical
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form, and let J(η) denote the information for the natural parameter. Then it
follows from Proposition 3.2.6 (see Exercise 3.2.2) that

J(η) = −Eη
[

d2

dη2
( η′T (X) − A(η) )

]

= −Eη[−A(η)] =
d2

dη2
A(η) = Covη[T (X)] ,

where the last equality follows from Proposition 2.3.1 (b). Now, let θ = h(η)
where h is the inverse of the natural parameter mapping η(θ). Note that θ takes
on the role of ζ in Proposition 3.2.5 and η(·) takes on the role of h−1 in that
Proposition. Also, the roles of I and J are reversed. Then G(θ) in Proposition
3.2.5 is (dη/dθ)(θ)−1. Hence, the Fisher information for θ is by Proposition 3.2.5

I(θ) =

(

dη

dθ
(θ)

)′

J(η)

(

dη

dθ
(θ)

)

.

Combining the previous two displays, one sees the formula for Fisher information
which appears in the lower bound in Proposition 3.2.3 (see (3.40)).

2

3.2.3 Applications.

Example 3.2.1 Let f be a positive probability density function w.r.t. Lebesgue
measure on IR, and assume f is continuously differentiable. Put

ψ(x) = −f ′(x)/f(x) = − d

dx
log f(x) . (3.42)

(Note: This is one of the few times we will differentiate w.r.t. the variable x.)
Then the location family of densities generated by f is

fb(x) = f(x− b) ,

where −∞ < b < ∞ is the location parameter. Assume that there is an ǫ0 > 0
and a function G0(x) such that

|β| < ǫ0 ⇒ |f ′(x− β)| < G0(x) , for all x , (3.43)

and
∫

G0(z) dz < ∞ . (3.44)

This will imply condition (v) of Theorem 3.2.1 with φ ≡ 1. To see this, note
that for any b0, | − f ′(x − b)| ≤ Gb0(x) for b ∈ (b0 − ǫ0, b0 + ǫ0) where Gb0(x)



3.2. RAO-CRAMER INEQUALITY. 185

= G0(x − b0). Then, Theorem 1.2.10 can be used to interchange d/db and
∫

in
∫

f(x− b) dx for b ∈ (b0 − ǫ0, b0 + ǫ0), and since b0 is arbitrary, for all b.
Assume also that

ι ≡
∫

ψ(x)2f(x) dx < ∞ . (3.45)

Then the Fisher information for location estimation is

I(b) = Eb





(

d

db
log f(X − b)

)2


 (3.46)

=
∫ ∞

−∞
ψ(x− b)2f(x− b) dx =

∫ ∞

−∞
ψ(z)2f(z) dz = ι ,

where the second to last equation follows from the simple change of variables,
z = x − b. Note that in this case, the Fisher information is independent of the
parameter value. Of course the Fisher information for a random sample of size n
from this model is n times this. Thus, if b̂ = δ(X) is an unbiased estimator based
on a random sample of size n and satisfying condition (ii) of Theorem 3.2.1, then

Var[̂b] ≥ 1

nι
.

Now we consider three special cases.
(a) Suppose f is the N(0, 1) density, i.e.

f(x) = e−x
2/2

where we have included the constant 1/
√

2π in the dominating measure for con-
venience. Then

f ′(x− β) = −(x− β)e−(x−β)2/2 .

Note that
| − (x− β)| ≤ |x| + ǫ0 , for |β| < ǫ0 .

Also,
−(x− β)2 = −(x2 − 2βx+ β2)

≤ −(x2 − 2ǫ0|x| + ǫ20 − ǫ20) = (|x| − ǫ0)
2 − ǫ20 ,

for |β| ≤ ǫ0, so we may take

G0(x) = (|x| + ǫ0)e
−ǫ20/2

[

e−(x−ǫ0)2/2I[0,∞)(x) + e−(x+ǫ0)2/2I(−∞,0)(x)
]

which is clearly integrable w.r.t. Lebesgue. Then,

ψ(x) = − d

dx
(−x2/2) = x ,

and condition (3.45) clearly holds. Thus,

ι = 1 , (3.47)
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for the N(0, 1) problem. By Corollary 3.2.2 (c), a lower bound on the variance
of any unbiased estimator δ(X) is 1/n, which the variance achieved by X̄. This
shows X̄ to be the UMVUE, a fact we already knew.

(b) Suppose f is the logistic density, given by

f(x) =
e−x

[1 + e−x]2
. (3.48)

Note that this is the density for the c.d.f.

F (x) =
1

1 + e−x
.

Using the quotient rule for differentiation,

f ′(x) =
−e−x[1 − e−x]

[1 + e−x]3
.

Since |1 − exp[−x+ β]| ≤ 1 + exp[−x+ β], we have for |β| ≤ ǫ0,

|f ′(x− β)| ≤ e−x+β

[1 + e−x+β]2

≤ e2ǫ0
e−x−ǫ0

[1 + e−x−ǫ0]2
= G0(x)

and
∫

G0(x) dx = e2ǫ0
∫

f(x− ǫ0) dx = e2ǫ0 < ∞ .

Note that

ψ(x) =
1 − e−x

1 + e−x
=

ex/2 − e−x/2

ex/2 + e−x/2
= tanh(x/2) ,

is bounded between ±1, so ψ2(x)f(x) is Lebesgue integrable. Thus,

ι =
∫

ψ2(x) f(x) dx =
∫ ∞

−∞

e−x[1 − e−x]2

[1 + e−x]4
dx

=
∫ ∞

1

[2 − u]2

u4
du =

1

3
,

where the second to last equation follows from the change of variables u =
1 + exp[−x], and the evaluation can be done with elementary calculus. Thus,
the lower bound on variance of an unbiased estimator of location based on n
independent observations from the logistic density in (3.48) is 3/n.

(c) In order to make a fair comparison of the logistic density in (b) with the
N(0, 1) density in (a), it is useful to rescale so that the variance of the density
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in (3.48) is 1. One can show that (e.g. using residue calculus, or more simply
looking in a table of integrals)

∫ ∞

−∞

x2e−x

[1 + e−x]2
dx =

π2

3
.

So the rescaled logistic density with variance 1 is (π/
√

3)f(xπ/
√

3), and the
Fisher information for location for this family is.

ι̃ =
1

3

(

π2

3

)

=
(

π

3

)2 .
= 1.0966 .

Thus, the lower bound on variance for an unbiased estimator (for this rescaled
logistic family with variance 1) of location based on a sample of size n is (3/π)2/n
.
= .9119/n. Of course, the variance of X̄, the sample mean is 1/n, which is not
much larger. So if we are unbiasedly estimating location in the logistic location
family, then not much is lost by simply using X̄, since no unbiased estimator
could have a variance less than about 91% of the sample mean, anyway.

(d) Next, we consider the Cauchy density,

f(x) =
1

π(1 + x2)
, (3.49)

which is the Lebesgue density of the p.m. with c.d.f.

F (x) =
1

π
Tan−1x +

1

2
.

Now, if |β| < ǫ0 < 1, then

|f ′(x− β)| =
2

π

|x− β|
[1 + (x− β)2]2

≤ 2

π

|x| + ǫ0
[1 − ǫ20 + x2]2

:= G0(x)

and
∫ ∞

−∞
G0(x) dx ≤

∫ 1

−1
G0(x) dx +

4

π

∫ ∞

1

x+ ǫ0
x4

dx < ∞ .

This verifies (3.44). Also,

ψ(x) =
2x

1 + x2

is bounded between ±2, so (3.45) holds and

ι =
4

π

∫ ∞

−∞

x2

[1 + x2]3
dx =

1

2
. (3.50)
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The integral can be evaluated by residue calculus, elementary (but tedious meth-
ods) or partial fractions, or with a table of integrals. Thus, the variance of an
unbiased estimator of location in the Cauchy location family (generated by (3.49))
is always no less than 1/(2n), where n is sample size.

(e) Unlike with the logistic, there are difficulties comparing the Cauchy with
N(0, 1) since (i) the Cauchy density doesn’t have a mean, or a variance, and (ii)
consequently X̄ is not an unbiased estimator of location (its bias is undefined). In
particular, we cannot rescale the Cauchy to variance 1. However, we can “match”
another scale functional, namely the interquartile range

IQR(F ) = F−1(3/4) − F−1(1/4) . (3.51)

(One must use a more general definition of the quantile function to define IQR,
such as given in Section 2.4, if F is not strictly increasing and continuous.) For
the standard normal,

Φ−1(3/4) − Φ−1(1/4)
.
= 0.6741892 − (−0.6741892)

.
= 1.348378 . (3.52)

while for the “standard” Cauchy with density as given in (3.49), the IQR is

tan
[

π
(

3

4
− 1

2

)]

− tan
[

π
(

1

4
− 1

2

)]

= 2 . (3.53)

Thus, if we rescale the Cauchy to have the same IQR as the N(0, 1), then the
information for location

ι̃
.
= (2/1.348378)2/2

.
= 1.100035 .

Thus, the lower bound on variance of an unbiased estimate of this rescaled Cauchy
location family is (approximately) 1/(1.100035n)

.
= 0.909062/n. Thus, we see

that it may be possible to estimate location in a Cauchy more accurately than
in a normal (by about 9% in terms of variance), although we have not yet seen a
way to realize this since this is only a lower bound and we have not even shown
that an unbiased estimate of location for this family exists. See however Exercise
3.2.12.

As a final point, we note that the ψ function of (3.42) reveals some rather
interesting features about the underlying density. This function is called the loca-
tion score function. In Figure #4.1, we have plotted the corresponding location
score functions for the densities of parts (a), (b), and (d). Note especially that
the N(0, 1), which has “light” tails, has a linear asymptotic behavior for the ψ
function, the logisitic (with “exponential” tails) has a nonzero constant asymp-
totic behavior, and the Cauchy (with “heavy” tails behaving “algebraically” or
“like a power”) has a ψ function which tends to 0 as the variable → ±∞.

2
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Example 3.2.2 Now we consider simultaneous estimation of location and scale.
Suppose f is a given Lebesgue density and consider the location-scale family
generated by f , which has Lebesgue density

fab(x) =
1

a
f

(

x− b

a

)

, (3.54)

where a > 0 is the scale parameter and b is the location parameter. Assume the
following “regularity conditions”:

(i) f is positive and continuously differentiable on IR.

(ii) There is an ǫ0 ∈ (0, 1) and a function G0(x) which is Lebesgue integrable
such that if |β| < ǫ0 and |α− 1| < ǫ0, then for all x

| f ′

(

x− β

α

)

| ≤ G0(x) .

(iii) The following holds:
∫ ∞

−∞
x2ψ(x)2f(x) dx < ∞ .

Then the Rao-Cramer lower bound holds and the Fisher information matrix
I(a, b) is given by

I11(a, b) =
1

a2

∫

[xψ(x) − 1]2f(x) dx , (3.55)

I12(a, b) =
1

a2

∫

xψ(x)2f(x) dx , (3.56)

I22(a, b) =
1

a2

∫

ψ(x)2f(x) dx . (3.57)

The verification of this is left as Exercise 3.2.5.
One interesting feature of this is that we can assess the increase in the Rao-

Cramer lower bound for location estimation from the scale is known case to the
scale is unknown case. Assuming a random sample of size n and a scale a = 1, if
a is known then the lower bound on variance of unbiased estimates of location is

λ1 =
1

n
∫

ψ(x)2f(x) dx
. (3.58)

This follows of course from the previous example. However, when a is unknown
then the lower bound changes in general. Our estimand is g(θ) = g(a, b) = b, so
∇g = (0, 1), and so the quadratic form in Corollary 3.2.2 (a) is the (2, 2) entry
of I(θ)−1. Now the inverse of a 2 × 2 matrix is easily given by a formula:

[

a c
b d

]−1

=
1

ad− bc

[

d −b
−c a

]

. (3.59)
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Thus, we obtain for the lower bound on variance of an unbiased estimator of the
location parameter based on a sample of size n with unknown scale a = 1,

λ2 =
1 − I12(1, b)

2/[I11(1, b)I22(1, b)]

nI22(1, b)

= λ1

[

1 − (
∫

xψ(x)2f(x) dx )
2

∫

[xψ(x) − 1]2f(x) dx
∫

ψ(x)2f(x) dx

]

. (3.60)

One can show that the r.h.s. ≤ λ1. So in general, there is (Fisher) information
lost about location if we do not know scale. See Exercises 3.2.13, 3.2.15, and
3.2.16 for more on this example.

2

Example 3.2.3 Consider the Gamma(α, β) family, as in Example 2.3.2. This
is an exponential family, and it will be convenient to use the natural parameters
α and η = 1/β. Then the density can be written

exp[ α log x + η (−x) − (−α log η + log Γ(α) ) ]

so the logarithmic normalizing constant for this parameterization is

A(α, η) = −α log η + log Γ(α) .

By Remark 3.2.2, the Fisher Information matrix is the Hessian of A. It will be
convenient to consider some special functions. The digamma function is

ψ(t) =
d

dt
log Γ(t) =

Γ′(t)

Γ(t)
, (3.61)

and the trigamma function is

ψ(1)(t) =
d

dt
ψ(t) . (3.62)

With this notation, one can write the Hessian as

I(α, η) =







ψ(1)(α) −1/η

−1/η α/η2





 . (3.63)

Using equation (3.59) we obtain for the inverse Fisher information matrix,

I(α, η)−1 =
1

αψ(1)(α) − 1







α η

η η2ψ(1)(α)





 . (3.64)
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Now suppose we wish to estimate the scale parameter β = 1/η = g(α, η), based
on a random sample of size n. Of course

∇g(α, η) =







0

−1/η2





 , (3.65)

and hence the lower bound on variance for an unbiased estimator is

Var[β̂] ≥ 1

η4

η2ψ(1)(α)

n[αψ(1)(α) − 1]
=

ψ(1)(α)

nη2[αψ(1)(α) − 1]
(3.66)

=
β2ψ(1)(α)

n[αψ(1)(α) − 1]
.

It is instructive to note that the lower bound on variance of an unbiased estimator
of β when the shape parameter α is known is

Var[β̂] ≥ 1

η4

η2

nα
=

β2

nα
. (3.67)

One can verify that the lower bound in (3.66) is larger than the lower bound in
(3.67) (Exercise 3.2.17).

There of course remains the challenge of obtaining the lower bounds in (3.66)
and (3.67). Consider the latter one first. When α is known,

∑

Xi is complete
and sufficient for β, and

Eβ

[

n
∑

i=1

Xi

]

= nαβ (3.68)

so

β̂ =
1

nα

n
∑

i=1

Xi (3.69)

is the UMVUE of β. Also, its variance is

Var[β̂] =
1

nα2
αβ2 =

β2

nα
. (3.70)

Thus, we see that the lower bound in (3.67) is obtained. This provides an alter-
native proof that the β̂ of (3.69) is UMVUE, since it is clearly unbiased and no
unbiased estimator can have variance smaller than the Rao-Cramer lower bound,
which is the variance of β̂. Unfortunately, there is not an obvious UMVUE for β
when α is unknown.

2
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Exercises for Section 4.4.

3.2.1 Suppose the family {Pθ : θ ∈ Θ} ≪ µ σ–finite and satisfies the conditions
of Theorem 3.2.1. Let fθ(x) denote the densities w.r.t. µ. Suppose ν is another
σ–finite measure which is equivalent to µ, and let gθ(x) denote the densities w.r.t.
ν. Show that if the Fisher information is computed using the densities gθ the
result is the same as using fθ.

3.2.2 In Remark 3.2.2, verify that condition (vii) from Proposition 3.2.6 holds
when using the natural parameterization.

3.2.3 Assume X is a r.v. with density from a location family f(x − b) as in
Example 3.2.1. Let Y = aX where a > 0 is given, so Y has Lebesgue density
a−1f(a−1y − b̃) where b̃ = a−1b is the location parameter for Y . Find the infor-
mation ι̃ in Y for b̃ in terms of the information ι in X for b. Use this to verify
the results in Examples 3.2.1 (c) and (e).

3.2.4 In Example 3.2.1 (c), we compared the location information for a logistic
with variance 1 with a N(0, 1), and in Example 3.2.1 (e) we compared the Cauchy
with IQR 1.348378 to a N(0, 1). Rescale the logistic to have IQR 1.348378, and
compare its location information with both N(0, 1) and the rescaled Cauchy of
Example 3.2.1 (e).

3.2.5 (a) Show that the regularity conditions (i), (ii), and (iii) assumed in Ex-
ample 3.2.2 imply the regularity conditions (iv), (v) with φ(x) ≡ 1, and (vi) of
Theorem 3.2.1.

(b) Verify equations (3.55),(3.56), and (3.57).

3.2.6 Verify equation (3.59).

3.2.7 Verify equations (3.63) through (3.67)

3.2.8 Verify the claims made in the last paragraph of Example 3.2.3.

3.2.9 Find the Fisher informations for each of the following cases. Verify that
the regularity conditions hold.

(a) Poisson(θ), θ > 0.
(b) B(n, θ), 0 < θ < 1.
(c) NB(m, θ), 0 < θ < 1. See Exercise 2.3.9 (d).

3.2.10 For each of the examples of Exercise 3.2.9, give a lower bound on variance
of an unbiased estimator for each of the following estimands. Wherever possible,
find the UMVUE and compare its variance with the lower bound, or else show
that no unbiased estimator of the given estimand exists.

(a) g(θ) = θ.
(b) g(θ) = θ2.
(c) g(θ) = eθ.
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3.2.11 Show that under futher regularity conditions the Fisher information of a
single obseration for location estimation in a pure location family as in Example
3.2.1 is given by

ι =
∫

ψ′(X)f(x) dx .

State what extra regularity conditions are required. Apply your result to verify
the Fisher informations for location given in Examples 3.2.1 (a), (b), and (d),
checking that your regularity conditions hold in each case.

3.2.12 Consider a random sample of size n from a Cauchy distribution, and let
b̂ be the sample median. Assume for convenience that sample size n = 2k + 1 is
odd. Show that for integers p, E[|b̂|p] < ∞ if and only if p ≤ k. Conclude that
the sample median is unbiased for location in odd sample sizes if n ≥ 3, and has
finite variance if n ≥ 5.

Hints: The Lebesgue density for X(k) is

fX(k)
(x) = n

(

n− 1
k

)

F (x)k[1 − F (x)]n−k−1 f(x) .

For the c.d.f. of Example 3.2.1 (d), note that

1 − F (x) =
∫ ∞

x

1

π(1 + u2)
du ≤

∫ ∞

x

1

πu2
du =

1

πx
,

for all x > 0, and for u ≥ x ≥ 1, we have 1 + u2 ≤ 2u2 so

1 − F (x) ≥
∫ ∞

x

1

π2u2
du =

1

2πx
.

3.2.13 (a) Show that λ2 ≤ λ1 (see (3.58) and (3.60)) by using the fact that the
information matrix is positive definite.

(b) Show that same result as in (a) by using the fact that a correlation coef-
ficient is ≤ 1 in magnitude. Hint: Show that

∫

xψ(x)f(x) dx = 1.

3.2.14 Assume X1, X2, ..., Xn are i.i.d. with Lebesgue density from the pure
scale family

fa(x) = a−1f(x/a) .

Assume f is positive on IR, and let ψ = −f ′/f as in Example 3.2.1.
(a) Find a formula for the Fisher information for estimation of a, the scale

parameter. Give a lower bound on MSE for any “regular” estimator and on
variance for unbiased estimators.

(b) Calculate as explicitly as possible the Fisher information for the scale
family in the following cases:

(i) logistic

f(x) =
e−x

(1 + e−x)2
.
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(ii) Normal

f(x) =
1√
2π
e−x/2 .

(c) Similarly to Exercise 3.2.4, after renormalizing so each generating distri-
bution has the same IQR, compare the informations for scale estimation.

3.2.15 In the setup of Exercise 3.2.14 (a), assume a full location–scale family
(as in Example 3.2.2) and derive a lower bound on the variance of an unbiased
scale estimate. Show that the lower bound is larger than the one in 3.2.14 (a)
when location was known.

3.2.16 (a) Assume that the generating density f in Example 3.2.2 is symmetric,
i.e. f(−x) = f(x). Show that the Rao-Cramer lower bound for unbiased location
estimation is the same irrespective of whether or not scale is known.

(b) Do the analogue of (a) for scale estimation.
(c) What does this say about the three generating densities of Example 3.2.1:

normal, logistic, and Cauchy?

3.2.17 (a) Suppose θ = (θ1, θ2) and I(θ1, θ2) is the information matrix for both
parameters. Let J(θ1, θ2) = I(θ1, θ2)

−1. Show that

1

I11(θ1, θ2)
≤ J11(θ1, θ2) .

(b) State the meaning of this concerning lower bounds on the variance of
unbiased estimators of θ1 when θ2 is unknown vs. when θ2 is known.
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3.3 Unbiased Estimation.

When a complete and sufficient statistic exists, it is easy to choose which among
the unbiased estimators is “best” in a very strong sense, as we shall see next.

3.3.1 Lehmann-Scheffe Theorem.

The next result provides a way for finding the UMVUE in the class of unbiased
estimators. It also tells us that in many settings, the UMVUE is (essentially)
unique and simultaneously uniformly minimizes the risk for a wide class of loss
functions.

Theorem 3.3.1 (Lehmann-Scheffe Theorem.) Suppose T is a complete and
sufficient statistic for θ and δ0(X) is an unbiased estimator of g(θ). Put

δ(T ) = E[δ0(X)|T ] .

The following hold:

(i) δ(T ) is the essentially unique function of T which is unbiased for g(θ).

(ii) δ(T ) uniformly minimizes the risk under any convex loss function. In par-
ticular, it is a UMVUE.

(iii) For a strictly convex loss function, if there is an unbiased estimator δ⋆(X)
with finite risk at any value of θ, say R(θ0, δ

⋆) < ∞, then R(θ0, δ(T ) <
R(θ0, δ

⋆) unless δ⋆(X) = δ(T ) Pθ0–a.s.

(iv) In particular, if Varθ[δ0(X)] < ∞ for all θ ∈ Θ, then δ(T ) is the essentially
unique UMVUE.

Proof. First of all, δ(T ) is unbiased since

Eθ[δ(T )] = Eθ[Eθ[δ0(X)|T ]] (by definition of δ(T ))
= Eθ[E[δ0(X)|T ]] (by sufficiency of T )
= Eθ[δ0(X)]) (by the Law of Total Expectation (Theorem 1.5.5(d))
= g(θ) (by unbiasedness off δ0(X).)

If δ1(T ) is any other unbiased estimator which is a function of T , then

Eθ[δ(T ) − δ1(T )] = 0 , for all θ .

Hence, by completeness of T ,

δ(T ) = δ1(T ) , P − a.s. (3.71)

This establishes essential uniqueness of δ(T ) among unbiased estimators of g(θ)
which are a function of T .
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Now assume the loss is convex and then by the Rao–Blackwell theorem (or
just Jensen’s inequality), δ(T ) satisfies

R(θ, δ(T )) ≤ R(θ, δ0) , for all θ . (3.72)

(Application of Jensen’s inequality requires finite risk, but if R(θ, δ0) = ∞, then
(3.72) holds trivially.) If δ⋆(X) is any other unbiased estimator of g(θ), then
the “Rao–Blackwellized” version of δ⋆0(T ) = E[δ⋆(X)|T ], is as good as δ⋆ as in
(3.72), and δ⋆0(T ) must be essentially equal to δ(T ) by (3.71). (Thus, Rao–
Blackwellization of an unbiased estimator with a complete and sufficient statistic
always leads to essentially the same result.) This shows that δ(T ) uniformly
minimizes risk.

Assuming L is strictly convex as in part (ii) and that some unbiased estimator
δ⋆0(X) has finite risk at θ = θ0, then (3.71) establishes that δ(T ) has finite risk
at θ0 and since strict inequality holds in (3.71) unless δ0(X) is already a function
of T by the Rao–Blackwell theorem (or Jensen’s inequality) Pθ0–a.s., it follows
that δ(T ) is the unique uniform minimum risk unbiased estimator. Taking the
loss to be squared error loss (which is strictly convex) leads to the final claim in
the statement of the theorem.

2

This theorem allows us to assert that any function of a complete and sufficient
statistic is automatically the UMVUE of its expectation. If is often easy to
come up with such a function by inspection. For instance, if X1, X2, ..., Xn are
i.i.d. with N(µ, σ2) density, then the sample mean X̄ = n−1∑n

i=1Xi and sample
variance S2 = (n − 1)−1∑n

i=1(Xi − X̄)2 are jointly complete and sufficient (i.e.
T = (X̄, S2) is complete and sufficient for (µ, σ2)), and since E(µ,σ2)[X̄] = µ and
E(µ,σ2)[S

2] = σ2, it follows that X̄ is the UMVUE for µ (note that Var(µ,σ2)[X̄] <
∞) and S2 is the UMVUE for σ2 (note that its variance, i.e. risk, is also finite).
A more nontrivial example is the following.

Example 3.3.1 Let X1, X2, ..., Xn be i.i.d. r.v.’s with Unif [θ1, θ2] where θ1 <
θ2. We know T = (X(1), X(n)) is complete and sufficient for θ = (θ1, θ2) (Example
4.2.2 and Exercise 4.3.7 (a)). It is reasonable to guess that X(n) might be a good
estimator of θ2, but if we compute its distribution

Pθ[X(n) ≤ x(n)] =
(x(n) − θ1)

n

(θ2 − θ1)n

(see Example 4.3.2) and then its expectation we obtain

Eθ[X(n)] =
∫ θ2

θ1
x(n)

n(x(n) − θ1)
n−1

(θ2 − θ1)n
dx(n)
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=
n

n + 1
(θ2 − θ1)

∫ θ2

θ1
(n + 1)(θ2 − θ1)

−(n+1)(x(n) − θ1)
n dx(n) + θ1

=
n

n+ 1
θ2 +

1

n + 1
θ1 .

Thus, we cannot use X(n) itself to obtain the desired UMVUE. However, by a
symmetry argument (look at −X1, ..., −Xn), or direct calculation,

Eθ[X(1)] =
1

n+ 1
θ2 +

n

n+ 1
θ1 .

Now it is clear that we can find a and b so that the linear combination aX(1) +
bX(n) is unbiased for θ2. To this end we want

a
(

n

n+ 1
θ1 +

1

n+ 1
θ2

)

+ b
(

1

n+ 1
θ1 +

n

n+ 1
θ2

)

= θ2

for all θ1 < θ2. For this, it suffices that a and b solve the 2 × 2 linear system

n

n + 1
a +

1

n+ 1
b = 0

1

n + 1
a +

n

n+ 1
b = 1

which gives

a = − 1

n− 1
, b =

n

n− 1
.

Thus, the UMVUE for θ2 is

θ̂2 =
nX(n) −X(1)

n− 1
.

By symmetry, the UMVUE for θ1 is

θ̂1 =
nX(1) −X(n)

n− 1
.

2

Another method for obtaining a UMVUE is to compute the distribution for
the complete and sufficient statistic T and solve the first kind integral equation

g(θ) =
∫

δ(t)dLawθ[T ](t) . (3.73)

This method has already been applied in Example 3.1.3.
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Example 3.3.2 Suppose X1, X2, ..., Xn are i.i.d. with Unif(0, θ) where θ > 0.
Then T = X(n) is complete and sufficient and has Lebesgue density

fθ(t) =
ntn−1

θn
, 0 < t < θ .

See Example 4.3.2. Hence, plugging a general estimand g(θ) into (3.73) we need
to find the solution of the integral equation

n−1θng(θ) =
∫ θ

0
δ(t)tn−1 dt . (3.74)

This is a so-called Volterra integral equation of the first kind, and the solution is
easily obtained by the fundemental theorem of calculus

d

dθ

(

n−1θng(θ)
)

θ−(n−1) = δ(θ) (3.75)

provided g(θ) is continuously differentiable, which is a sufficient condition for g to
be U–estimable. (Note that if g does not satisfy some smoothness condition, then
there will be no solution to (3.74) since the r.h.s. of that equation is obviously a
smooth function of θ, and hence g will not be U–estimable since if an unbiased
estimator exists there is an unbiased estimator which is a function of the sufficient
statistic T .) Hence, the UMVUE for any such g is

δ(X(n)) = n−1X
−(n−1)
(n)

[

d

dθ

(

n−1θng(θ)
)

]

θ=X(n)

= n−1X
−(n−1)
(n)

[

nX
(n−1)
(n) g(X(n)) +Xn

(n)g
′(X(n))

]

= g(X(n)) + n−1X(n)g
′(X(n)) .

For example, the UMVUE of g(θ) = θ is

θ̂ =
n + 1

n
X(n)

and the UMVUE of Varθ[X1] = θ2/12 is

σ̂2 =
1

12
[X2

(n) + 2n−1X2
(n)] =

(

n+ 2

12n

)

X2
(n) .

2

Both of the above examples exemplify what Lehmann in his book Point Es-
timation calls “Method 1” for obtaining UMVUE’s which involves finding the
function of the complete and sufficient statistic which is unbiased for the given
estimand. Lehmann’s “Method 2” relies on the proof of Theorem 3.3.1: if δ0(X)
is any unbiased estimator of g(θ) and T is complete and sufficient, then δ(T ) =
E[δ0(X)|T ] is the UMVUE. Ostensibly, one must compute the conditional distri-
bution Law[X|T = t] to use this method, but one can frequently avoid this by
using methods based on ancillarity.
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Example 3.3.3 Let X1, X2, ..., Xn be i.i.d. N(µX , 1) and Y1, Y2, ..., Ym be i.i.d.
N(µY , 1), and assume the X and Y samples are independent. The unknown
parameter is θ = (µX , µY ). The joint density (w.r.t. Lebesgue on IR(n+m)) is

fθ(x, y) = C(θ) exp

[

µX
n
∑

i=1

xi + µY
m
∑

i=1

yi

]

h(x, y)

so T = (X̄, Ȳ ) = (n−1∑Xi, m
−1∑ Yi) is complete and sufficient (the student

should check that the family is full rank). Suppose we wish to estimate

g(θ) = Pθ[X1 < Y1] .

A trivial unbiased estimator is

δ0 = I(0,∞)(Y1 −X1)

so the UMVUE is

δ(T ) = E[I(0,∞)(Y1 −X1)|X̄, Ȳ ] = P [X1 < Y1|X̄, Ȳ ] .

Now we claim that V = V (X, Y ) = (X1 − X̄, Y1 − Ȳ ) is ancillary. To this
end, note that V is invariant of location shifts in the X and Y separately, i.e.

V (X − µX1, Y − µY 1) = V (X, Y )

and so

Law(µX ,µY )[V (X, Y )] = Law(µX ,µY )[V (X − µX1, Y − µY 1)]

= Law(0,0)[V (X, Y )]

since
Law(µX ,µY )[X − µX1 , Y − µY 1 ] = Law(0,0)[X, Y ] .

Thus, V is ancillary, and so by Basu’s theorem, V is independent of T = (X̄, Ȳ )
for all θ = (µX , µY ). Hence,

δ(t1, t2) = P [Y1 −X1) > 0|X̄ = t1, Ȳ = t2]

= P [(Y1 − Ȳ ) − (X1 − X̄) > −(Ȳ − X̄)|X̄ = t1, Ȳ = t2]

= P [V2 − V1 > −(t2 − t1)|X̄ = t1, Ȳ = t2]

= P [V2 − V1 > −(t2 − t1)]

where the latter follows by independence of V from T (see Exercise 4.2.2). Thus,
we need only derive the distribution of U = V2 − V1 = Y1 − Ȳ −X1 + X̄. Since
this is a linear combination of jointly normal random variables, it is normal with
E[U ] = 0 and

Var[U ] = Var

[

m− 1

m
Y1 − 1

m

m
∑

i=2

Yi −
n− 1

n
X1 +

1

n

n
∑

i=2

Xi

]
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=
(

m− 1

m

)2

+
(

1

m

)2

(m− 1) +
(

n− 1

n

)2

+
(

1

n

)2

(n− 1)

= 2 −
(

1

m
+

1

n

)

.

Hence, if n > 1 and m > 1,

P [U > −(t2 − t1)]

= P





U
√

2 − (1/m+ 1/n)
>

−(t2 − t1)
√

2 − (1/m+ 1/n)





= Φ





(t1 − t2)
√

2 − (1/m+ 1/n)





where Φ is the N(0, 1) c.d.f. Recalling that T2 = Ȳ and T1 = X̄, we see that the
UMVUE of P(µX ,µY )[X1 < Y1] is given by

δ(X̄, Ȳ ) = Φ





X̄ − Ȳ
√

2 − (1/m+ 1/n)



 .

Compare this with the formula

P(µX ,µY )[X1 < Y1] = Φ

(

µX − µY√
2

)

,

which follows from the fact that X1 − Y1 ∼ N(µX − µY , 2).

2

3.3.2 Nonparametric Models.

In this section, we consider estimation for some “nonparametric” models. Sup-
pose X1, X2, . . . , Xn are i.i.d. r.v.’s with unknown Lebesgue density f , and we
wish to estimate

g(f) =
∫

h(x)f(x) dx = Ef [h(X)] (3.76)

where X denotes a generic r.v. with density f . We will suppose f is in the family
of densities which satisfies the additional restriction

Ef [h(X)2] =
∫

h(x)2f(x) dx < ∞ , (3.77)

so that the mean squared error for estimating g will be finite for some estimator,
namely h(X1), which also happens to be an unbiased estimator. We will consider
unbiased estimation of g. Now we know from Example 4.2.1 that the vector of
order statistics T = Sort(X) is sufficient, and as long as h is bounded on finite
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intervals, we can apply the argument of Example 4.3.3 to show that T is complete
since the densities used in that argument will satisfy (3.77) (see Exercise 4.3.1).
Let γ : IRn −→ IR denote the projection map onto the first coordinate, i.e.
γ(x) = x1. Now clearly h(X1) is an unbiased estimator of g(f). Thus, by the
Lehmann-Scheffe and Theorem 2.5.1 the UMVUE of g(f) is given by

E[h(X1) | T ] =
1

n!

∑

π∈Perm
h(γ(π̃T )) =

1

n

n
∑

i=1

h(Xi) . (3.78)

The last equation follows easily as in Remark (c) after Theorem 4.2.1. Note in
particular that if h = IA is an indicator function of a set A, then the empirical
probability measure of A, P̂ (A) = n−1#{i : Xi ∈ A} is the UMVUE for P [X1 ∈
A].

Suppose for instance we wish to estimate the “population” mean Ef [X] (i.e.
h(x) = x), then (assuming finite second moments), the sample mean X̄ is
UMVUE for this nonparametric family. We consider estimation of µk(f) =
∫

xkf(x) dx, the k’th moment. Assume that f has finite 2k’th moment so that
Xk

1 is an unbiased estimator with finite variance. As in (3.78), the UMVUE is
given by

µ̂k =
1

n

n
∑

i=1

Xk
i , (3.79)

which is the sample k’th moment.
Now one might guess that the UMVUE of the “population” variance σ2 (as-

suming fourth moments) is

σ̃2 =
1

n

n
∑

i=1

(Xi − X̄)2 , (3.80)

but this estimator is not unbiased for σ2. It easy to see that

E[σ̃2] =
n

n− 1
σ2 , (3.81)

provided that n ≥ 2, (See Exercise 3.3.14), and also that

σ̃2 = µ̂2 − µ̂2
1 , (3.82)

so σ̃2 is a function of Sort(X). Hence,

σ̂2 =
1

n− 1

n
∑

i=1

(Xi − X̄)2 (3.83)

is the UMVUE of σ2, provided that n ≥ 2.
In general, when estimating central moments E[(X − E[X])k] or cumulants

(see Section 2.2 ), one can expand using elementary algebra into a linear combi-
nation of powers of moments. For instance in (3.82), we see a linear combination
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of the second moment and the square of the first moment. Thus, one needs to
estimate powers of moments such as µpk = µk,p. Assuming n ≥ p, then an easy
unbiased estimator of µk,p is obtained from

Ef [
p
∏

i=1

Xk
i ] =

p
∏

i=1

E[Xk
i ] = µk,p .

Now let γ : IRn −→ IRp denote the projection onto the first p coordinates,
i.e. γ(x1, x2, . . . , xn) = (x1, x2, . . . , xp), and let h : IRp −→ IR be given by
h(x1, x2, . . . , xp) = xk1x

k
2 . . . x

k
p. As in (3.78), the UMVUE is given by

µ̂k,p = E[Xk
1X

k
2 . . .X

k
p |Sort(X)] =

1

n!

∑

π∈Perm
h(γ(π̃T )) (3.84)

=
1

n(n− 1) . . . (n− p+ 1)

∑

i1

∑

i2 . . .
∑

ip Xk
i1
Xk
i2
. . . Xk

ip

all ij’s distinct

Note that the constant in front of the summations is 1 over the number of sum-
mands, since there are n ways of choosing i1, and for each of these there are n−1
ways of choosing i2 distinct from i1, and so forth until given i1, i2, . . . , ip−1, there
are n − p + 1 ways of choosing ip distinct from i1, i2, . . . , ip−1. Applying (3.84)
to find the UMVUE of µ2

1, we see that it is given by

µ̂1,2 =
1

n(n− 1)

n
∑

i1=1

n
∑

i2=1, i2 6=i1

Xi1Xi2 (3.85)

=
1

n(n− 1)





n
∑

i1=1

n
∑

i2=1

Xi1Xi2 −
n
∑

i1=1

X2
i1





=
1

n(n− 1)





n
∑

i1=1

Xi1









n
∑

i2=1

Xi2



 − 1

n(n− 1)

n
∑

i1=1

X2
i1

=
n

n− 1
µ̂2

1 − 1

n− 1
µ̂2

If one uses this with the UMVUE of µ2 in (3.82), then (3.83) can be obtained
with a little algebra (Exercise 3.3.15).

We will say a function γ : IRp −→ IR is symmetric iff γ(π̃z) = γ(z) for all
permutations π̃ ∈ Permp, i.e. if γ is invariant under reordering the arguments.
A one sample U-statistic of order p with kernel γ which is a symmetric function
of p variables is given by

U =
1

n(n− 1) . . . (n− p+ 1)

∑

i1

∑

i2 . . .
∑

ip γ(Xi1 , Xi2, . . . , Xip)
all ij ’s distinct

=
1

(

n
p

)

∑

i1 <

∑

i2 <

. . .
∑

< ip

γ(Xi1 , Xi2, . . . , Xip) . (3.86)
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The last equation follows since we may rearrange the Xij ’s in the first sum so
the indices are in increasing order (which doesn’t change its values since γ is
symmetric), and there are p! summands which all have the same value. From our
discussion above, one can see that U is the UMVUE of its expectation, which is

E[U ] = E[γ(X1, X2, . . . , Xp)] . (3.87)

We briefly consider a two sample problem. Let X1, X2, . . . , Xn be i.i.d. r.v.’s
with unknown Lebesgue density f and let Y1, Y2, . . . , Ym be i.i.d. r.v.’s with
unknown Lebesgue density g. Then T = (Sort(X), Sort(Y )) is complete and
sufficient (Exercise 4.3.4). One can show that (Exercise 3.3.19)

E[h(X, Y ) | (Sort(X),Sort(Y )) ] = (3.88)

1

n!

1

m!

∑

π∈Permn

∑

ζ∈Permm

h(π̃Sort(X), ζ̃Sort(Y ))

Hence, for instance, the UMVUE of P [X < Y ] is

P [X1 < Y1 | (Sort(X),Sort(Y ))] =

1

n!

1

m!

∑

π∈Permn

∑

ζ∈Permm

I(0,∞)(Yζ−1(1) −Xπ−1(1)) (3.89)

=
1

nm

n
∑

i=1

m
∑

j=1

I(0,∞)(Yj −Xi) =
1

nm
#{(i, j) : Xi < Yj} .

This latter expression is known as the Mann–Whitney statistic, although this is
not the usual formula for it. To derive the usual formula, let Z = (Y ,X) be
the combined sample (a random (m + n)-vector), and let R = Rank(Z) be the
ranks of the combined sample. Let Q = Rank(Y ) be the ranks of the Y ’s among
themselves. Then for 1 ≤ j ≤ m,

#{ i : Xi < Yj } = Rj − Qj ,

since Rj is the number of observations in the combined sample less than or equal
to Yj, and Qj is the number of Y ’s less than or equal to Yj. Since Q1, Q2, . . . ,
Qm is just a permutation of {1, 2, . . . , m},

m
∑

j=1

Qj =
m
∑

j=1

j = m(m+ 1)/2

and so the UMVUE of P [X < Y ] can be written as

1

nm
#{(i, j) : Xi < Yj} =

1

nm





m
∑

j=1

Rj −
m
∑

j=1

Qj



 =
1

nm

m
∑

j=1

Rj − (m+ 1)

2n
.

(3.90)
This is a more usual form of the Mann–Whitney statistic.
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Exercises for Section 4.1

In each exercise below where you derive a UMVUE, examine it to
see if it is “sensible”. Your answer may depend on sample size n.

3.3.1 (a) Suppose g1(θ) and g2(θ) are U-estimable. Let a1 and a2 be constants.
Show that g(θ) = a1g1(θ) + a2g2(θ) is U-estimable.

(b) Assume a complete and sufficient statistic T exists and that δ1(T ) and
δ2(T ) are the UMVUE’s of g1(θ) and g2(θ), respectively. What is the UMVUE
of g(θ) in part (a)? Prove your answer.

3.3.2 Suppose X1, X2, ..., Xn are i.i.d. Poisson(µ), µ ≥ 0.
(a) Show that T =

∑n
i=1Xi is complete and sufficient. What is Lawµ[T ]?

(b) Give a general necessary and sufficient condition for U-estimability of an
estimand g(µ), and give a formula for the UMVUE when it exists.

(c) For each of the following estimands, find UMVUE’s, or show that they
don’t exist.

(i) g(µ) = µk, where k is a positive integer.

(ii) g(µ) = Pµ[X1 = k] where k is a given nonnegative integer.

(iii) g(µ) = log(µ).

(iv) g(µ) = eµt where t is a given real number.

(v) g(µ) = eµ
2
.

(vi) g(µ) = eµ
−2

.

3.3.3 In the setup of Example 3.3.1, find the distribution of the complete and
sufficient statistic and give an integral equation to be solved to find the UMVUE
of a U-estimable estimand, similarly to Example 3.3.2.

3.3.4 In the setup of Example 3.3.2, determine whether each of the following
estimands are U-estimable, and find UMVUE’s for those that are.

(a) g(θ) = θp where p is a real number, positive or negative. (Warning: This
is not U-estimable for some values of p.)

(b) g(θ) = eaθ, where a is a real number.
(c) g(θ) = Fθ(x) where x is a given positive number and Fθ denotes the

distribution function.
(d) g(θ) = ψθ(u) where u is a given real number and ψθ denotes the m.g.f.

3.3.5 Let X1, X2, ..., Xn be i.i.d. N(µ, σ2). Determine for which real numbers
p, positive or negative, σp is U-estimable and find the corresponding UMVUE.
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3.3.6 Let X1, X2, ..., Xn be i.i.d. N(µ, σ2). Consider estimators of σ2 of the
form

σ̂2(a) = a
n
∑

i=1

(Xi − X̄)2 ,

where a > 0. Note that a = (n − 1)−1 gives the UMVUE. Find all values of a
such that the MSE of σ̂2(a) is smaller than the variance of the UMVUE.

3.3.7 Let X1, X2, ..., Xn be i.i.d. N(µX , σ
2
X) and Y1, Y2,, . . ., Ym be i.i.d.

N(µY , σ
2
Y ), and assume the X and Y samples are independent. Also, assume

that all of µX , µY , σ2
X , and σ2

Y are unknown.
(a) Find the UMVUE of µX − µY .
(b) Give conditions under which σ2

X/σ
2
Y is U-estimable, and find the UMVUE

under those conditions.

3.3.8 (Simple Linear Regression.) Suppose Yi, 1 ≤ i ≤ n, are given by

Yi = axi + b + ǫi ,

where ǫ1, ..., ǫn are i.i.d. N(0, σ2). Here, the unknown parameters are a, b, and
σ2 > 0, and x1, ..., xn are known constants.

(a) Show that T = (
∑

xiYi,
∑

Yi,
∑

Y 2
i ) is complete and sufficient.

(b) Let x̃i = xi − x̄ and Ỹi = Yi − Ȳ . Show that

â =

∑n
i=1 x̃iỸi
∑n
i=1 x̃

2
i

and
b̂ = Ȳ − âx̄

are the UMVUE’s for a and b, respectively.
(c) Show the the UMVUE of σ2 is

σ̂2 =
1

n− 2

n
∑

i=1

(

Y i− âxi − b̂
)2

3.3.9 Let X be B(n, p) with 0 < p < 1 unknown.
(a) Show that an estimand g(p) is U-estimable if and only if if is a polynomial

of degree ≤ n, and find the UMV UE. (Hint: To show that such polynomials
are U-estimable, it suffices to show pk is U-estimable for 1 ≤ k ≤ n, by Exercise
3.3.1.)

(b) Find the UMVUE’s of Ep[X] and Varp[X].

3.3.10 Let X be Mult(n, p) where p = (p1, p2, ..., pk) (see Example 2.3.3). Find
the UMVUE’s for Ep[Xi], Varp[Xi], and Covp[Xi, Xj].
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3.3.11 Suppose X1 and X2 are independent Poisson r.v.’s with E[Xi] = µi ≥ 0
where the µi’s satisfy the constraint

µ1 + µ2 = 1 .

(a) Is T = (X1, X2) sufficient for the family? . . . complete? . . . minimal
sufficient?

(b) Consider “linear” estimators (really, affine estimators) of µ1, i.e. estima-
tors of the form

δ(X1, X2) = aX1 + bX2 + c

for some constants a, b, and c. Find a necessary and sufficient condition for such
a linear estimator to be unbiased.

(c) Find a formula for the variance of any unbiased linear estimator from (b).
Are any of these unbiased linear estimators UMVUE?

3.3.12 Suppose X1, X2, ..., Xn are i.i.d. random 2-vectors with uniform distri-
bution on the disk of radius θ > 0, i.e. their common density w.r.t. m2 is

fθ(x) =
1

2πθ2
I[0,θ](‖x‖) .

(a) Find a complete and sufficient statistic.
(b) Find the UMVUE for θ.
(c) Similarly to Example 3.3.2, find a formula for the UMVUE of a U-estimable

estimand, and give a simple sufficient condition for U-estimability.

3.3.13 Let X be a discrete random variable with

P [X = n] =











θ if n = −1,
(1 − θ)2θn if n ∈ IN

0 otherwise.

Here, 0 < θ < 1.
(a) Show that X is minimal sufficient for θ.
(b) Show that a function of X is unbiased for 0 if and only if it is of the form

cX for some constant c. (We say h(X) is unbiased for 0 if and only if Eθ[h(X)]
= 0 for all θ ∈ Θ.)

(c) Show that X is not complete for θ.
(d) Show that the UMVUE of (1 − θ)2 is

δ(X) =











1 if X = 0,

0 otherwise.

(e) Show that there exists an unbiased estimator of θ, but there is no UMVUE
of θ.
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In the exercises below, X, X1, X2, . . . , Xn are i.i.d. r.v.’s with un-
known Lebesgue density f , and Y, Y1, Y2, . . . , Ym are i.i.d. r.v.’s with
unknown Lebesgue density g. Assume any moment conditions or min-
imum sample size requirements you need.

3.3.14 Verify equations (3.81) and (3.82).

3.3.15 Verify that the UMVUE of σ2 can be given by µ̂2 − µ̂1,2 by using (3.82)
and Exercise 3.3.1 (b). Then use this to show that (3.83) gives the UMVUE of
σ2 from (3.85).

3.3.16 Find the UMVUE for E[(X−E[X])p] when p = 3 and 4. What minimal
sample sizes do you need? Using this, give “natural” estimates of skewness and
kurtosis defined as the ”normalized” third and fourth cumulants:

skewness =
κ3

σ3
, kurtosis =

κ4

σ4
+ 3 .

For your estimator, just use the UMVUE of the numerator and the corresponding
power of the UMVUE of σ2 in the denominator.

3.3.17 Find the UMVUE of σ4.

3.3.18 (a) Find the UMVUE of ψX(u) for fixed u where ψX is the m.g.f. What
moment conditions are required?

(b) Find the UMVUE of ψX1+X2(u) for fixed u where ψX1+X2 is the m.g.f. for
X1 +X2. Hint: it will be a U-statistic of order 2.

(c) Find the UMVUE of ψ(X1,X2)(u) for fixed u, where ψ(X1,X2) is the joint
m.g.f. of (X1, X2).

3.3.19 Verify (3.88).

3.3.20 In the two sample problem, find UMVUE’s for the following estimands.
Simplify your answers as much as possible.

(a) E[X]E[Y ].
(b) P [X + Y < r] where r is given.
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3.4 Equivariant Estimation: General Theory

3.4.1 The Principle of Equivariance.

In this chapter, we consider another reasonable restriction on the class of esti-
mators similar to unbiasedness, and then we seek an optimal estimator in the
restricted class. Unlike unbiasedness, the principle of equivariance requires a
more elaborate structure involving the model, the estimand, and the loss func-
tion. These will be set forth in the Assumptions below. When these assumptions
hold, we will be able to find minimum risk equivariant (MRE) estimators fairly
easily.

In order to facilitate understanding, we will constantly refer to the following
“running example” as each new concept is introduced.

Example 3.4.1 We suppose that X is a random n-vector with Lebesgue density

fb(X) = q(X − b1) , (3.91)

where q is a fixed, known Lebesgue density and 1 is the n-vector of all components
1. Here, b ∈ IR is the unknown location parameter. We will refer to this as the
one sample location model. Of course, if the observations are i.i.d., then q will be
a product of one dimensional densities.

2

Assumption 3.4.1 We assume P = {Pθ : θ ∈ Θ} is a group family generated
by a single probability measure and a group of transformations T, i.e. there is
a p.m. Q on the observation space (Ξ,G), T is a group of transformations on
(Ξ,G), and

P = Q ◦ T−1 . (3.92)

Thus, each Pθ = Q ◦ g−1 for some g ∈ T. We further assume that we have a
parameter θ is identifiable.

2

One may use g as the parameter and T as the parameter space, but it has al-
ready been noted in Example 2.3.7, this parameterization may not be identifiable,
i.e. different values of g may lead to the same probability measure. However,
there is a “parameterization” mapping p : T → Θ defined by

Pp(g) = Q ◦ g−1 . (3.93)

Note that T gives an identifiable parameterization if and only if p is injective, i.e.
one to one. From Assumption 3.4.1, it follows that p is surjective, i.e. p maps
T onto Θ. We will need further measurability properties of p, which makes the
following necessary.
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Assumption 3.4.2 (a) We assume that (T,E) is a measurable space which is
compatible with the group structure on T, i.e. for any B ∈ E and any g ∈ T,
gB := {gh : h ∈ B} and Bg := {hg : h ∈ B} are both in E.

(b) We also assume that (Θ,H) is a measurable space.
(c) Assume that the map p is measurable (T,E) → (Θ,H), and that for any

B ∈ E, p(B) ∈ H, i.e. that forward images of measurable sets are measurable.

2

Example 3.4.2 (This is a continuation of Example 3.4.1.) For the location
model of (3.91), Q is the p.m. with Lebesgue density q, and T is the set of all
transformations of the form

gb(x) = x + b1 ,

where b ∈ IR determines the transformation. Such transformations are called
location shifts or translations by a multiple of the 1 vector. For this example, we
could identify T with the parameter space Θ = IR, and then p is the identity.
Of course, the “natural” σ-field to use is B, and clearly this is compatible with
the group structure by measurability of translations (see Exercise 3.4.1). Since
Θ and T are both IR, and p is the identity, part (c) of Assumption 3.4.2 holds
trivially.

2

We next show that T induces a transformation group on the parameter space
Θ.

Theorem 3.4.1 The relation Pθ ◦ g−1 = Pḡθ defines a map ḡ : Θ → Θ, and T̄
= {ḡ : g ∈ T} is a group of transformations on Θ. Furthermore,

for any θ1, θ2 ∈ Θ, there is ḡ ∈ T̄ such that ḡθ1 = θ2 . (3.94)

Proof. Given θ ∈ Θ, Pθ ◦ g−1 ∈ P, so Pθ ◦ g−1 = Pθ′ for some θ′ ∈ Θ. Since
we are assuming an identifiable parameterization, θ′ is uniquely determined by θ
and g, so if we write θ′ = ḡθ, the mapping ḡ is well defined. Note that

Pθ[gX ∈ A] = Pḡθ[X ∈ A] (3.95)

for all A ∈ G. One sees that ḡ : Θ → Θ.
Note that p has the following property,

ḡp(h) = p(hg) . (3.96)

To see this,

Pḡp(h)[X ∈ C] = Pp(h)[gX ∈ C] = Q ◦ h−1[gX ∈ C]
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= Q[gX ∈ h−1C] = Q[hgX ∈ C] = Q ◦ (hg)−1[X ∈ C] .

so p(hg) = ḡp(h), by identifiability.
Next we show that each ḡ is a measurable map (Θ,H) → (Θ,H). For H ∈ H,

(ḡ)−1(H) = { θ ∈ Θ : ḡθ ∈ H } .

Since p is surjective, as h ranges over all of T, p(h) ranges over all of Θ. Therefore,
we may replace θ by p(h), h ∈ T in the last display, and we obtian

(ḡ)−1(H) = { p(h) : h ∈ T& ḡp(h) ∈ H } = { p(h) : h ∈ T& p(hg) ∈ H } ,

where the last equation follows from (3.96). Now let f = hg in the above, i.e. h
= fg−1, then

(ḡ)−1(H) = { p(fg−1) : f ∈ T& p(f) ∈ H } ,

since as f ranges over all of T, h = fg−1 ranges over all of Tg−1 = T (see Exercise
2.5.1) Thus,

(ḡ)−1(H) = { p(fg−1) : f ∈ T& f ∈ p−1(H) } = p(p−1(H)g−1) .

Now p−1(H) ∈ E by the assumed measurability of p, and p−1(H)g−1 ∈ E by
compatibility of E with the group structure on T. Finally, p(p−1(H)g−1) ∈ H
since it is assumed that forward images under p of measurable sets are also
measurable. This shows ḡ is measurable.

Now we show that T̄ is closed under composition. Let g1, g2 ∈ T, then

Pθ[g1g2X ∈ A] = Pḡ1θ[g2X ∈ A] = Pḡ2ḡ1θ[X ∈ A]

which shows that ¯g1g2 is in T̄, and in fact

¯g1g2 = ḡ2ḡ1 . (3.97)

This completes the verification of property (ii) of Definition 3.2.5(a).
Now we show that ḡ is one to one and onto (bijective), and that the inverse

(ḡ)−1 = h̄ for some h ∈ T, namely h = g−1. This will show property (iii) of
Definition 3.2.5(a). Suppose ḡθ1 = ḡθ2 for some θ1 and θ2, i.e. Pθ1 ◦ g−1 =
Pθ2 ◦ g−1. This means Pθ1[X ∈ g−1A] = Pθ2[X ∈ g−1A] for all A ∈ G. Since g
is bijective (and bimeasurable), letting B = g−1A, as A ranges over G, B also
ranges over all of G. Hence, Pθ1 [X ∈ B] = Pθ2 [X ∈ B] for all B ∈ G, i.e. Pθ1 =
Pθ2 , and since we are assuming identifiability, θ1 = θ2. This completes the proof
that ḡ is one to one (injective).

Now we show that ḡ is onto, i.e. surjective. By (3.92), given θ1, θ2 ∈ Θ there
are a g1, g2 ∈ T such that Pθ1 = Q ◦ g−1

1 and Pθ2 = Q ◦ g−1
2 , i.e. p(gi) = θi for

i = 1, 2. Now let
g = g2 ◦ g−1

1 ,
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which is in T by the group properties. We claim that ḡθ1 = θ2, which incidentally
establishes (3.94). To see this,

Pθ1[gX ∈ A] = Pθ1 [X ∈ g−1A] = Pθ1[X ∈ (g2g
−1
1 )−1A]

= Pθ1[X ∈ g1g
−1
2 A] = (Q ◦ g−1

1 )[X ∈ g1g
−1
2 A] = Q[g1X ∈ g1g

−1
2 A]

= Q[X ∈ g−1
2 A] = Pθ2 [X ∈ A] .

Thus, looking back at the defining relation (3.95), we see that ḡθ1 = θ2, as claimed.
This completes the proof that ḡ : Θ → Θ is surjective, as well as the claim (3.94).

Since ḡ is both injective and surjective, it is bijective, and its inverse map
exists. Now let h = g−1, and note that

Pθ[X ∈ A] = Pθ[hgX ∈ A] = Ph̄θ[gX ∈ A] = Pḡh̄θ[X ∈ A] ,

so Pθ = Pḡh̄θ and again using identifiability, we have that ḡh̄θ = θ, i.e.

(ḡ)−1 = h̄ with h = g−1 . (3.98)

This shows (ḡ)−1 ∈ T̄ and completes the verification of property (iii) of Definition
3.2.5(a). Hence, T̄ is a group of transformations on Θ.

2

Remarks 3.4.1 (a) The property (3.94) is called transitivity of the transforma-
tion group T̄.

(b) As a consequence of (3.95), we have

Eθ[h(gX)] = Eḡθ[h(X)] (3.99)

for any function h for which the expectation is defined. See Exercise 3.4.2.
(c) If G1 and G2 are groups, then a mapping α : G1 → G2 is called a homo-

morphism iff α(g1g2) = α(g1)α(g2) and α(g−1
1 ) = α(g1)

−1,for all g1, g2 ∈ G1. α is
called an antihomomorphism iff α(g1g2) = α(g2)α(g1) and α(g−1

1 ) = α(g1)
−1,for

all g1, g2 ∈ G1. Note that if G2 is commutative, then an antihomomorphism is a
homomorphism. In the proof of the last proposition, (3.97) and (3.98) show in
fact that the mapping α : T → T̄ is an antihomomorphism.

2

Example 3.4.3 (This is a continuation of Example 3.4.1.) Let us consider the
application of the previous result to the location example. Given a and b in IR
= Θ with ga(x) = x+ a1,

Pb[gaX ∈ B] = Pb[X ∈ B − a1] = Q[X ∈ B − (a + b)1]
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so that

ḡa(b) = b+ a ,

i.e. ḡa is just translation by a on Θ = IR. Note that each ḡa is obviously mea-
surable w.r.t. B. This is typical for much of the area: we work hard to prove
measurability in a general setting as in Theorem 3.4.1, but in most concrete
examples measurability is trivially obvious.

2

Next we consider the properties required of the estimand in order that we
can utilize the principle of equivariance. Suppose we wish to estimate u(θ) where
u : Θ → A, and A is the action space. We will say that the estimand u is
compatible with T (or T̄, or simply “with the group structure”) if

u(θ1) = u(θ2) ⇒ u(ḡθ1) = u(ḡθ2) for all g ∈ T .

Assumption 3.4.3 Assume
(i) u(Θ) = A, i.e. u is onto or surjective.
(ii) u : (Θ,H) → (A,D) is measurable, and for every measurable H ∈ H,

u(H) is measurable (i.e. u(H) ∈ D).
(iii) u is compatible with T.

2

One consequence of this last assumption is that we can obtain still another
group of transformations. The proof of the following is left as Exercise 3.4.7.

Theorem 3.4.2 The map g⋆ : A→ A given by

g⋆(u(θ)) = u(ḡθ) for all θ ∈ Θ ,

is well defined, and T⋆ = {g⋆ : g ∈ T} is a group of transformations on A.
Furthermore,

for any d1, d2 ∈ A, there is g⋆ ∈ T⋆ such that g⋆d1 = d2 . (3.100)

2

Assumption 3.4.4 Assume T⋆ is commutative.

2

Lemma 3.4.3 The map g⋆ in (3.100) is unique for each d1, d2.
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Proof. Suppose that for some d ∈ A and g⋆1, g
⋆
2 ∈ T⋆, g⋆1d = g⋆2d. One must

be careful here: this equation is only assumed for a single d ∈ A. We will show
g⋆1d

′ = g⋆2d
′ for all d′ ∈ A, and hence that g⋆1 = g⋆2.

By part (i) of Assumption 3.4.3, d = u(θ) for some θ, and for any d′ ∈ A, d′

= u(θ′) for some θ′. By (3.94), θ′ = ḡ′θ for some ḡ′, so d′ = u(ḡ′θ) = g′ ⋆u(θ) =
g′ ⋆d. Hence,

g⋆1d
′ = g⋆1g

′ stard = g′ starg⋆1d = g′ starg⋆2d = g⋆2g
′ stard = g⋆2d

′ ,

where commutativity was used in the second and fourth equalities.

2

Example 3.4.4 (This is a continuation of Example 3.4.1.) In the location ex-
ample, the estimand most likely of interest is the identity, i.e. u(b) = b. For
this estimand, g⋆ = ḡ, so the conclusions of Theorem 3.4.2 holds trivially. Also,
T⋆ is a group of shifts or translations on IR and is clearly commutative, so the
conclusions of Lemma 3.4.3 hold trivially.

For another estimand which satisfies Assumptions 3.4.3, consider the “frac-
tional part”,

u(b) = b − ⌊b⌋ , (3.101)

where ⌊b⌋ is the largest integer ≤ b. See Exercise 3.4.4.

2

Finally, we are ready for the following definitions.

Definition 3.4.1 (a) A function v : (Ξ,G) → (Ω,F) is invariant iff

v(gx) = v(x) for all g ∈ T, x ∈ Ξ .

(b) A function L : Θ × A → IR for which L(θ, ·) : (A,D) → (IR,B) (such as
a loss function L(θ, d)) is invariant iff

L(ḡθ, g⋆d) = L(θ, d) for all g ∈ T, θ ∈ Θ, and d ∈ A .

(c) An estimator δ : (Ξ,G) → (A,D) is called equivariant iff

δ(gx) = g⋆δ(x) for all g ∈ T and x ∈ Ξ .

2

Equivariance of an estimator δ is a property of δ as a function and the estimand
u(θ) is irrelevant other than that u determines the range of δ, i.e. the action space.
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Example 3.4.5 (This is a continuation of Example 3.4.1.) For instance, with
the estimand u(b) = b, a Borel function v : IRn → IRm is location invariant iff
given any a ∈ IR,

v(x− a1) = v(x) , for all x ∈ IRn .

Note that the function

T1(x) = (x1 − xn, x2 − xn, ..., xn−1 − xn) (3.102)

is location invariant.
We have the following characterization of location invariant functions: a Borel

function v : IRn → IRm is location invariant iff there is a Borel function w :
IRn−1 → IRm such that v = w ◦ T1, where T1 is given in (3.102). Pictorially, this
can be represented as follows:

(IRn−1,Bn−1)

T1

(IRn,Bn)
�

�
�

�
�

�
�

�
�3

w exists iff v is invariant.

v

(IRm,Bm)
?

Q
Q

Q
Q

Q
Q

Q
Q

Qs

(3.103)

To prove this claim, notice that a function of a location invariant function is
location invariant, i.e. if v = w ◦ T1 then v is location invariant since T1 is
location invariant. Conversely, if v is invariant, let

w(t1, t2, ..., tn−1) = v(0, t1, t2, ..., tn−1) .

Then by location invariance of v,

v(x1, x2, x3, ..., xn) = v(x1 − x1, x2 − x1, x3 − x1, ..., xn − x1)

= w(x2 − x1, x3 − x1, ..., xn − x1) = w ◦ T1(x1, x2, x3, ..., xn) .

A loss function is location invariant if

L(θ + a, d+ a) = L(θ, d)
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for all a ∈ IR, θ ∈ IR, and d ∈ IR .

Note that squared error loss,

L(θ, d) = (θ − d)2

satisfies this requirement. More generally, any loss of the form

L(θ, d) = λ(θ − d) (3.104)

for some function λ : IR → [0,∞] is location invariant (Exercise 3.4.1). One can
also show the converse, i.e. that any location invariant loss function can be put
in the form of (3.104) (Exercise 3.4.1).

An estimator δ : IRn → IR is location equivariant iff

δ(x+ b1) = δ(x) + b for all b ∈ IR and x ∈ IRn . (3.105)

For instance, the estimator X̄ is location equivariant, as is the estimator X1.
More generally, any estimator of the form

∑

aiXi + c where
∑

ai = 1 is location
equivariant in this setup (Exercise 3.4.1). One can give a simple characterization
of location equivariant estimators: given any location equivariant estimator δ0,
an estimator δ is location equivariant if and only if

δ(x) = δ0(x) − v(x) , (3.106)

where v is location invariant. If v is location invariant, then δ as given in (3.106)
is location equivariant since

δ(x+ a1) = δ0(x+ a1) − v(x+ a1)

= δ0(x) + a − v(x) = δ(x) + a .

Conversely, if δ is location equivariant, then let

v(x) = δ0(x) − δ(x)

and one can easily check that v is location invariant.

2

Our immediate goals are to give a useful characterizations of invariant and
equivariant functions in general, similar to the ones in (3.103), (3.104), and
(3.106) for the location model. First, we need some more definitions. Given
x ∈ Ξ, the orbit of x under the transformation group T is

Tx = { gx : g ∈ T } ⊂ Ξ .

Note that two orbits either overlap or are disjoint, i.e. either Tx1 = Tx2 or
Tx1 ∩ Tx2 = ∅. To see this, suppose x ∈ Tx1 ∩ Tx2, then x = g1x1 and x =
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g2x2, but then x1 = g−1
1 g2x2, so gx1 = gg−1

1 g2x2, which shows Tx1 ⊂ Tx2. The
reverse inclusion holds by symmetry (i.e. interchange x1 and x2).

Now denote the collection of all orbits by

Orb(Ξ,T) = {Tx : x ∈ Ξ } . (3.107)

Note that Orb(Ξ,T) is a collection of subsets of Ξ. We define a σ-field J on
Orb(Ξ,T) by

J ∈ J iff
⋃

Tx∈J

Tx ∈ G . (3.108)

That is, a subset J of Orb(Ξ,T) (which is a collection of subsets of Ξ) is mea-
surable iff the union of the subsets of Ξ in J is a measurable subset of Ξ. It is
left to the student to check that J so defined is indeed a σ-field (Exercise 3.4.5).
With these definitions, the following result is easy to show.

Theorem 3.4.4 Let T : Ξ → Orb(Ξ,T) be given by T (x) = Tx. Then T is
measurable as a map (Ξ,G) → (Orb(Ξ,T),J), and T is invariant.

A function v : (Ξ,G) → (Ω,F) is invariant if and only if there is a function
w : Orb(Ξ,T) → (Ω,F) such that v = w ◦ T .

Proof. Let J ∈ J. First we claim that Tx ∈ J iff x ∈ Tx0 for some Tx0 ∈ J .
Clearly x ∈ Tx since x = identx where ident is the identity map in T. Thus,
Tx ∈ J implies x ∈ Tx0 for some Tx0 ∈ J . Conversely, if x ∈ Tx0 then x =
g0x0 for some g0 so x0 = g−1

0 x and hence gx0 = gg−1
0 x and Tx0 = Tx, and thus

if Tx0 ∈ J and x ∈ Tx0, then Tx ∈ J .
Assuming J ∈ J, then

T−1(J) = { x ∈ Ξ : Tx ∈ J } =
⋃

Tx∈J

Tx ,

where the last equality follows from our first claim. This shows the measurability
of T .

To show invariance of T , note that T (gx) = (Tg)x. But if y ∈ (Tg)x, then y
= hgx for some h ∈ T, and then since hg ∈ T (property (ii) of Definition 3.2.5),
we have y ∈ Tx, so Tgx ⊂ Tx. Since two elements of Orb(Ξ,T) are either equal
or disjoint, we have Tgx = Tx, i.e. T (gx) = T (x), and hence T is invariant.

Now suppose v : (Ξ,G) → (Ω,F) is invariant. Given any Tx ∈ Orb(Ξ,T),
define w(Tx) = v(x). We need to show that w is well defined, i.e. that if Tx =
Tx′ then w(Tx) = w(Tx′). If Tx = Tx′, then x′ ∈ T (x) by an argument given
above, and thus x′ = gx for some g ∈ T, so v(x′) = v(gx) = v(x). Now we need
to show that w is measurable. If F ∈ F , then

w−1(F ) = {Tx : w(Tx) ∈ F } = {Tx : v(x) ∈ F } .

Hence,
⋃

Tx∈w−1(F )

Tx = { x : v(x) ∈ F } = v−1(F )
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and hence w−1(F ) ∈ J by definition of J and measurability of v. Finally, we need
to show v = w ◦T , but this is easy since w ◦T (x) = w(Tx) = v(x), for all x ∈ Ξ,
by definition of w.

Now to prove the converse, assume that v = w ◦ T where w : Orb(Ξ,T) →
(Ω,F). Then for any x ∈ Ξ and g ∈ T, by invariance of T we have v(gx) =
w(T (gx)) = w((Tx)) = v(x) so v is invariant.

2

Remarks 3.4.2 The function T of the last Theorem is called a (the) maximal
invariant. A function of an invariant function is invariant, and the result above
says that every invariant function is a function of the maximal invariant. In
general, if T1 : (Ξ,G) → (Ω,F) is such that there is a bijective bimeasurable
map h such that T1 = h ◦ T , then T1 is also a maximal invariant. For instance,
referring back to Example 3.4.1, we see that T1 given in (3.102) is not the same
map as T in Theorem 3.4.4, but we proved that the T1 in (3.102) has the maximal
invariance property, so there is a bijective bimeasurable function h such that T1

= h ◦ T (Exercise 3.4.1).

2

Next we indicate the generalization of (3.104). Fix θ0 ∈ Θ, and for each
θ ∈ Θ, let gθ ∈ T be such that ḡθθ0 = θ. (Such a gθ exists by (3.94).) Suppose
L : Θ × A → IR is invariant as in Definition 3.4.1(b). Then there exists λ :
(A,D) → (IR,B) such that

L(θ, d) = λ((g⋆θ)
−1d) ,

namely,
λ(d) = L(θ0, d) .

See Exercise 3.4.6.
Finally, we turn to the generalization of (3.106).

Theorem 3.4.5 Let δ0 be a fixed equivariant estimator. Then δ : (Ξ,G) →
(A,D) is equivariant if and only if there is a function γ⋆ : Orb(Ξ,T) → T⋆ such
that δ(x) = γ⋆(T (x))δ0(x) for all x ∈ Ξ.

Proof. By Lemma 3.4.3, for each x there is a Γ⋆(x) ∈ T⋆ such that

δ(x) = Γ⋆(x)δ0(x) .

Assume δ is equivariant. We will show that Γ⋆(gx) = Γ⋆(x) for all g and all x.
This will imply that Γ⋆ = γ⋆ ◦ T for some γ⋆ : Orb(Ξ,T) → T⋆ by the proof of
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of Theorem 3.4.4. Note that we are not showing measurability of Γ⋆ nor of γ⋆,
so the measurability part of the proof of Theorem 3.4.4 doesn’t apply.

To show the claim, note that

δ(gx) = Γ⋆(gx)δ0(gx)

and by equivariance, this is the same as

g⋆δ(x) = Γ⋆(gx)g⋆δ0(x) = g⋆Γ⋆(gx)δ0(x)

where Assumption 3.4.4 was used at the last step. Multiplying both sides of the
latter by (g⋆)−1 gives

δ(x) = Γ⋆(gx)δ0(x) .

Since this is the same as the defining equation for Γ⋆(x), it follows that Γ⋆(gx)
= Γ⋆(x).

Conversely, assume δ(x) = γ⋆(T (x))δ0(x) for some γ⋆ : Orb(Ξ,T) → T⋆.
Then using invariance of T and Assumption 3.4.4 again,

δ(gx) = γ⋆(T (gx))δ0(gx) = γ⋆(T (x))g⋆δ0(x)

= g⋆γ⋆(T (x))δ0(x) = g⋆δ0(x) = g⋆δ(x) ,

which shows δ is equivariant.

2

Now we introduce the final important ingredient that makes the principle of
equivariance work. Given a decision rule δ(X) and loss L(θ, d), the corresponding
risk is

R(θ, δ) = Eθ[L(θ, δ(X)] .

Now by (3.99), for any θ ∈ Θ and any g ∈ T,

R(ḡθ, δ) = Eḡθ[L(ḡθ, δ(X)] = Eθ[L(ḡθ, δ(gX)] (3.109)

= Eθ[L(ḡθ, g⋆δ(X)] = Eθ[L(θ, δ(X)] = R(θ, δ) ,

where in the second to last equation, we assume δ is equivariant, and in the last
equation that L is invariant. Now, given θ, θ′ ∈ Θ, by (3.94) there is a g such
that ḡθ = θ′, and then

R(θ′, δ) = R(ḡθ, δ) = R(θ, δ) ,

where the last equation follows from (3.109). This proves the next result.

Theorem 3.4.6 Under an invariant loss, the risk of any equivariant estimator
is constant.
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2

Example 3.4.6 (This is a continuation of Example 3.4.1.) Consider equivariant
estimators of location under a loss of the form (3.104). If δ is location equivariant,
we have

R(b, δ) =
∫

λ(b− δ(x))q(x− b1) dx .

Now make the change of variables y = x− b1, and then the latter is

=
∫

λ(b− δ(y + b1)q(y) dy =
∫

λ(b− [δ(y) + b])q(y) dy

where the last equation follows by location equivariance of δ. Cancelling the b’s
inside λ we have

R(b, δ) =
∫

λ(−δ(y))q(y) dy (3.110)

which is a constant independent of b.

2

Recall that in Section 1 of Chapter 3, we introduced methods for comparing
estimators (or more general decision rules) which were based on comparing their
corresponding risk functions. One of the problems we encountered was that the
risk is a function of θ, so one estimator can be better than a second estimator at
some values of θ but worse at others. However, for the setup of Theorem 3.4.2,
if an equivariant estimator has smaller risk than a second equivariant estimator
at one value of θ, then it has smaller risk at all values. Thus, if we constrain
ourselves to equivariant estimators, then we see that the problem of finding a
minimum risk estimator is considerably simplified since the risk doesn’t change
from one parameter value to another.

Now we are ready to show how “easy” it is to obtain MRE estimators. To
minimize R(θ, δ) over equivariant estimators δ, we need only minimize R(θ0, δ)
by Theorem 3.4.6, and using Theorem 3.4.5,

R(θ0, δ) = Eθ0 [L(θ0, δ(X))] (3.111)

= Eθ0[L(θ0, γ
⋆(T (X))δ0(X))]

= Eθ0 {Eθ0 [L(θ0, γ
⋆(t)δ0(X)) | T (X) = t ] } .

Now suppose for fixed t ∈ Orb(Ξ,T) we can find γ⋆(t) ∈ T⋆ to minimize over g⋆

the function
ρ(t, g⋆) := Eθ0 [L(θ0, g

⋆δ0(X)) |T (X) = t ] ,

which is only a function of t and g⋆ since θ0 and δ0 are fixed, and X is “averaged”
out w.r.t. the distribution Lawθ0[X|T (X) = t]. Provided δ(x) = γ⋆(T (x))δ0(x) is
measurable, then δ will minimize risk among equivariant estimators by (3.111).
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Example 3.4.7 (This is a continuation of Example 3.4.1.) Let δ0 be a fixed
location equivariant estimator. We will work through the details of the previous
paragraph. Using (3.110) with λ(−x) = x2, we have for any equivariant estimator
δ,

R(b, δ) =
∫

(δ(x))2q(x) dx =
∫

(δ0(x) − v(x))2q(x) dx

where v(x) is invariant, and by (3.103),

R(b, δ) =
∫

(δ0(x) − w(x2 − x1, x3 − x1, ..., xn − x1))
2q(x) dx

= E0[(δ0(X) − w(X2 −X1, X3 −X1, ..., Xn −X1))
2]

= E0

{

E0

[

(δ0(X) − w(t))2 |(X2 −X1, X3 −X1, ..., Xn −X1) = t
] }

.

Note that Q = P0. To minimize

ρ(w) := E0

[

(δ0(X) − w)2 | (X2 −X1, X3 −X1, ..., Xn −X1) = t
]

,

we take

w = E0 [ δ0(X) | (X2 −X1, X3 −X1, ..., Xn −X1) = t ] .

Now

δ⋆(X) = δ0(X) − E0 [ δ0(X) | (X2 −X1, X3 −X1, ..., Xn −X1) ] , (3.112)

is clearly measurable, so δ⋆ is the minimum mean squared error location equiv-
ariant for location estimation in the location model.

Now we give a more concrete representation of the estimator in (3.112). Take
δ0(X) = Xn. The joint density under Q of T = T1(X) and Xn (where T1 is given
by (3.102)) is q(t+ xn1, xn). Thus, the conditional density of Xn given T = t is

q(xn|t) =
q(t+ xn1, xn)
∫

q(t+ ζ1, ζ) dζ
(3.113)

where 1 here is an n− 1-dimensional vector. Thus, the estimator in (3.112) is

Xn −
∫

ζq(T + ζ1, ζ) dζ
∫

q(T + ζ1, ζ) dζ
.

In the last expression, make the change of variables ζ = Xn − ξ, and we obtain

δ⋆(X) =

∫

ξq(X − ξ1) dξ
∫

q(X − ξ1) dξ
. (3.114)

The estimator above is known as the Pitman estimator of location after the fa-
mous statistician who first discovered this formula.
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We consider some special cases. First, assume the Xi’s are i.i.d. N(µ, σ2)
where µ is the unknown location parameter. Then

q(X − ξ1) = (2πσ2)−n/2 exp

[

−1

2σ2

n
∑

i=1

(Xi − ξ)2

]

= (2πσ2)−n/2 exp

[

−1

2σ2

{

n
∑

i=1

(Xi − X̄)2 + n(ξ − X̄)2

}]

=

{

(2πσ2/n)(2πσ2)−n/2 exp

[

−1

2σ2

n
∑

i=1

(Xi − X̄)2

]}

×
{

(2πσ2/n)−1 exp
[ −n

2σ2
(ξ − X̄)2

] }

.

In the last expression, note that the first factor is independent of ξ and the second
factor is the N(X̄, σ2/n) density in ξ. Thus, the first factor is the denominator
integral in (3.114) and will cancel from the numerator. Thus,

δ⋆(X) =
∫

ξ (2πσ2/n)−1 exp
[ −n

2σ2
(ξ − X̄)2

]

dξ = X̄ ,

i.e. X̄ is the minimum mean squared error location equivariant estimator of a
normal mean. Note that σ2 doesn’t enter into the formula for δ⋆, so whether it
is known or not is immaterial.

Next consider the family of shifted exponential distributions with known scale
parameter {Exp(a, b) : b ∈ IR}, a > 0 known (see Example 2.3.5). Then

q(x) =
1

an
exp

[

−1

a

n
∑

i=1

xi

]

n
∏

i=1

I(0,∞)(xi)

=
1

an
exp

[

−1

a

n
∑

i=1

xi

]

I(0,∞)(x(1)) ,

where x(1) is the minimum of the xi. Thus,

q(X − ξ1) =
1

an
exp

[

−1

a

n
∑

i=1

(Xi − ξ)

]

I(0,∞)(X(1) − ξ)

=

{

1

nan−1
exp

[

−1

a

n
∑

i=1

(Xi −X(1))

]}

{

n

a
exp

[

−n
a

(X(1) − ξ)
]

I(−∞,X(1))(ξ)
}

.

In the last expression, note that the first factor is independent of ξ and the second
factor is the density of −Y , where Y is an Exp(a/n,−X(1)) random variable.
Thus,

δ⋆(X) =
∫ X(1)

−∞
ξ
n

a
exp

[

−n
a

(X(1) − ξ)
]

dxi

= X(1) − a/n .

Unlike the normal case, here the Pitman estimator depends on the scale param-
eter. However, similarly to the normal case, the Pitman estimator is also the
UMVUE.



222 CHAPTER 3. BASIC THEORY OF POINT ESTIMATION.

3.4.2 Location-Scale Families.

In this subsection, we summarize and review the previous section and apply the
methodology developed there to location and scale families. As in the example
of i.i.d. N(µ, σ2) observations, rarely is σ2 known, so the problems in which both
location and scale are simulaneously unknown are more realistic.

Let X be a random n-vector with Lebesgue density

fab(x) = a−nq(a−1(x− b1)) ,

where q is a given Lebesgue probability density and the parameter is θ = (a, b)
with a ∈ (0,∞) and b ∈ (−∞,∞), i.e. Θ = (0,∞) × (−∞,∞). This is a group
family generated by the transformation group of location-scale transformations

T = { gα,β : (α, β) ∈ (0,∞) × (−∞,∞) }

where we define
gα,β(x) = αx + β1 .

To finish verification of Assumption 3.4.1, we need the following.

Proposition 3.4.7 The location-scale family above is identifiable.

Proof. Assume Pθ1 = Pθ2 . Letting Q denote the p.m. with Lebesgue density
q, we have

LawQ[a1X + b11] = LawQ[a2X + b21] . (3.115)

Assuming say a2 ≤ a1 and writing Y = a2X + b21, we have

LawQ[Y ] = LawQ[cY + d1]

where
c =

a1

a2
≥ 1

d = b1 − b2/a2 .

We consider the two cases c = 1 and c > 1 separately.
Under c = 1, we have

Q[Y ∈ A ] = Q[Y + d1 ∈ A ] = Q[Y ∈ A− d1 ] ,

for all A ∈ Bn .
Since A ∈ Bn implies A− d1 ∈ Bn, we can substitute A− d1 for A and obtain

Q[Y ∈ A− d1 ] = Q[Y ∈ A− d1 − d1 ] = Q[Y ∈ A− 2d1 ] .

Combining the two previous displays gives

Q[Y ∈ A ] = Q[Y ∈ A− 2d1 ] .
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By an induction argument, one can show

Q[Y ∈ A ] = Q[Y ∈ A−md1 ] , (3.116)

for all A ∈ Bn and all m ∈ naturals .

Now we can find a bounded set, say the n-dimensional cube [−M,M ]n which has
sidelength 2M , such that

Q([−M,M ]n) ≥ 3/4 . (3.117)

To see this, let hk = I[−k,k]n and note that 0 ≤ hk ↑ 1 so by the monotone
convergence theorem Q([−k, k]n) =

∫

hk dQ → ∫

1 dQ = 1, so for all k large
enough, Q([−k, k]n) ≥ 3/4. Now, if d 6= 0, then we can take m large enough that

m|d| > 2M

which implies that

( [−M,M ]n ) ∩ ( [−M,M ]n − md1 ) = ∅ .

To see this, note that x ∈ [−M,M ]n iff |xi| ≤ M for i = 1, 2, ..., n, but then
|xi −md| ≥ m|d| − |xi| > 2M −M > M , which implies x −md1 6∈ [−M,M ]n.
Thus,

Q [ ( [−M,M ]n ) ∪ ( [−M,M ]n − md1 ) ]

= Q ( [−M,M ]n ) + Q ( [−M,M ]n − md1 )

= Q([−M,M ]n) + Q([−M,M ]n) ≥ 3/2 ,

where (3.116) and (3.117) were used in the last line. But this is a contradiction
since Q is a p.m., so our assumption d 6= 0 must be wrong, i.e. d = 0 and since we
are assuming c = 1, it follows that (a1, b1) = (a2, b2), i.e. that θ1 = θ2 in (3.115).
(NOTE: This also shows identifiability of the location model in Example 3.4.1 of
the previous section.)

Turning to the case c > 1, we have

Q[Y ∈ A ] = Q[ cY + d1 ∈ A ] = Q[Y ∈ c−1(A− d1) ] ,

for all A ∈ Bn and all m ∈ naturals ,

where cA = {cx : x ∈ A}. Using a similar argument to the one used for (3.116),
one can show (Exercise 3.4.12)

Q[Y ∈ A ] = Q[Y ∈ c−mA− d
m−1
∑

i=1

c−i 1 ] (3.118)

= Q[Y ∈ c−mA− [dc−1(1 − c−m)/(1 − c−1)]1 ] ,
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for all A ∈ Bn and all m ∈ naturals .

Now take

hm = IAm
, Am = c−mA− [dc−1(1 − c−m)/(1 − c−1)]1 ] .

It is easy to see that

A bounded ⇒ hm(y) → 0 for all y 6= [d/(1 − c−1)]1 , (3.119)

(Exercise 3.4.13). Hence, since Q ≪ mn, hm → 0 Q-a.s. Since hm is bounded in
absolute value by 1, which is Q integrable, we have by the dominated convergence
theorem that

∫

hm dQ → 0. But,
∫

hm dQ = Q[Y ∈ Am] = Q[Y ∈ A] by
(3.118), and thus Q[Y ∈ A] = 0 for all bounded Borel sets A ⊂ IRn, which is a
contradiction since Q is a p.m. (see Exercise 3.4.14). Hence, c > 1 is not possible.
This completes the proof.

2

Continuing on with Assumption 3.4.2 (a), since T is in one to one correspon-
dence with (0,∞)×IR because each g ∈ T is associated with (a, b) where a is the
scale change and b is the location shift, we have a natural σ-field on T, namely
the image of B2 under the one to one correspondence. More explicitly, given
B ∈ B2, with B ⊂ (0,∞)× IR, let B′ = {g(a,b) : (a, b) ∈ B}. Then the collection
of all such B′ is E, the σ-field on T. Furthermore, this is compatible with the
group structure since if B′ ∈ E then g(a,b)B

′ = B′g(a,b) corresponds with aB + b1
which is clearly a Borel set contained in (0,∞) × IR.

Now for Assumption 3.4.2 (b), since Θ = (0,∞) × IR, we will use for H the
Borel subsets of (0,∞)× IR. Since p is the map p(g(a,b)) = (a, b) which was used
above to construct E, measurability of p and the fact that forward images under
p of measurable sets are measurable follows trivially, i.e. Assumption 3.4.2 (c)
holds. The transformation group T̄ on Θ is easily identified, viz. if θ = (α, β) ∈
Θ then

Pθ[ g(a,b)X ∈ A ] = Q[ a(αX + β) + b ∈ A ]

= Q[ (aα)X + (aβ + b) ∈ A ] = P(aα,aβ+b)[X ∈ A ] .

Thus,
ḡ(a,b)(α, β) = (aα, aβ + b) .

One can check directly that {ḡ(a,b) : 0 < a < ∞, and −∞ < b < ∞ } is
a transformation group on Θ and satisfies (3.94) without using Theorem 3.4.1
(Exercise 3.4.4).

We are mainly interested in two different estimands, the scale parameter and
the location parameter:

us(α, β) = α , As = (0,∞) ,
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ul(α, β) = β , Al = (−∞,∞) .

Another estimand of interest which can be treated is

usm(α, β) = αm , Asm = (0,∞) .

For instance, in the context of the i.i.d. normal model, m = 2 corresponds to
variance estimation whereas m = 1 corresponds to standard deviation estimation.
See Example 3.4.8 below. This estimand will be treated in Exercise 3.4.28.

We will see that each of the estimands us and ul requires its own kind of invari-
ant loss function. Clearly part (i) of Assumption 3.4.3 holds for each estimand.
Measurability of each estimand is also clear since it is a projection (see Theorem
1.3.5 and exercise 1.3.13). The fact that forward images of measurable sets under
the estimands are measurable is not so clear. However, this assumption can be
avoided as follows: measurability of forward images is used in only one step of the
proof to show that each g⋆ is measurable (A,D) → (A,D). Thus, if we simply
show each g⋆ is so measurable after identifying what a g⋆ looks like, then it is
not necessary to check the second part of Assumption 3.4.3 (ii). Finally, to check
Assumption 3.4.3 (iii), suppose we are given (α1, β1) and (α2, β2) for which

u(α1, β1) = u(α2, β2) (3.120)

where u is either us or ul. Then, for any g(a,b), we have

u(ḡ(a,b)(αi, βi)) = u(aαi, aβi + b)

=











aαi if u = us,

aβi + b if u = ul.

For the u = us case, (3.120) is equivalent to α1 = α2, so we see that aα1 = aα2,
i.e. u(ḡ(a,b)(α1, β1)) = u(ḡ(a,b)(α2, β2)). A similar simple argument applies if u =
ul.

Now we can identify T⋆, and we also need to check measurability of the
elements in it. Using the defining relation in Theorem 3.4.2, we compute

us(ḡ(a,b)(α, β)) = aα

so for the scale estimand
g⋆(a,b), s(α) = aα ,

i.e. T⋆
s is the group of scale transformations on (0,∞). Clearly the elements of

this transformation group are measurable. Similarly, for the location estimand

g⋆(a,b), l(β) = aβ + b .

Here, T⋆
1 is the group of affine transformations on IR. Again, measurability is

clear. This illustrates that as usual, the measurability assumptions are immediate
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in practice, and we will not bother to check them in further applications of the
principle of equivariance.

Turning to Assumption 3.4.4 , commutativity of T⋆
2 follows immediately from

commutativity of multiplication of real numbers. However, T⋆
1 is not commu-

tative (Exercise 3.4.16), and so Assumption 3.4.4 doesn’t hold. The only places
where Assumption 3.4.4 is used is in the proof of Lemma 3.4.3 (which is only used
for the proof of Theorem 3.4.5) and in the proof of Theorem 3.4.5, which gives a
characterization of of equivariant estimators. Thus, if we can give another char-
acterization of equivariant estimators for the location estimand in the location
scale model which can be used for finding the MRE estimator of location, then we
will not need Assumption 3.4.4. In Theorem 3.4.8 below we give an alternative
characterization of location equivariance in the setup of a location-scale family.

Now we turn to investigation of invariant loss functions. For the scale esti-
mation problem, Ls(θ, α) is invariant by definition iff for all g(a,b) ∈ T, all θ ∈ Θ,
and all α ∈ As,

Ls(ḡ(a,b)(θ1, θ2), g
⋆
(a,b), sα) = Ls((aθ1, aθ2 + b), aα) = Ls(θ, α) . (3.121)

One can easily see that this is equivalent to Ls being of the form

Ls((θ1, θ2), α) = λs(α/θ1) (3.122)

for some λs : (0,∞) → (0,∞). See Exercise 3.4.17. In general, we would want
the ratio α/θ1 to be close to 1 in say absolute value, so an example of a reasonable
scale invariant loss function is

Ls((θ1, θ2), α) = |1 − α/θ1| =

∣

∣

∣

∣

∣

θ1 − α

θ1

∣

∣

∣

∣

∣

p

(3.123)

where p > 0. Taking p = 2 gives relative squared error loss since the quantity
inside absolute values in (3.123) is the relative error, i.e. the error divided by
the true quantity. (Generally, relative error is only meaningful when we are
estimating a positive quantity so there is no chance of dividing by 0.)

For location estimation, Ll(θ, β) is invariant by definition iff for all g(a,b) ∈ T,
all θ ∈ Θ, and all β ∈ Al,

Ll((aθ1, aθ2 + b), aβ + b) = Ll(θ, β) . (3.124)

A necessary and sufficient condition for (3.124) to hold is that Ll have the form

Ll((θ1, θ2), β) = λl

(

θ2 − β

θ1

)

. (3.125)

See Exercise 3.4.17. An example is

Ll((θ1, θ2), β) =

∣

∣

∣

∣

∣

θ2 − β

θ1

∣

∣

∣

∣

∣

p

.
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The case p = 2 is what we might call normalized squared error since the error is
normalized by dividing by the scale parameter.

Now Theorem 3.4.6 (constancy of the risk function) holds for both the lo-
cation and scale estimation problems. Note that this theorem doesn’t depend
on the characterization of equivariant estimators given in Theorem 3.4.5, which
only applies to scale estimation in the current setup. However, the derivation of
the Minimum Risk Equivariant (MRE) estimator in (3.111) does depend on the
characterization of Theorem 3.4.5, so at this point we will restrict attention to the
scale estimation problem, returning to location estimation after we give a char-
acterization of the location equivariant estimators in the setting of location-scale
families.

Now to use the derivation in (3.111), we need to (i) find a fixed scale equiv-
ariant estimator δ0(X); (ii) find a maximal invariant T ; and (iii) for each fixed
value t of the maximal invariant T , minimize over a ∈ (0,∞)

ρ(t, a) = E(1,0)[λ(aδ0(X)) | T (X) = t ] . (3.126)

The last equation is derived from the display following (3.111) as follows. First
we take θ0 in (3.111) equal to (1, 0). Next, notice that g⋆(a,b)δ0(X) = aδ0(X), so
the value of b is irrelevant and it is only necessary to optimize over a. Finally,
we used the characterization of a scale invariant loss in (3.122) in the r.h.s. of
(3.126). Once we find a⋆(t) which minimizes the r.h.s of (3.126) (we fix t in
(3.126) and find the a which minimizes the r.h.s., so this optimal a depends on
t), then the MRE scale estimator for this setting is given by

δ⋆s (X) = a⋆(T (X))δ0(X) . (3.127)

For example, consider relative squared error loss, i.e. Ls as given in (3.122) with
λ(a) = (1 − a)2. Then

ρ(t, a) = E(1,0)[ (1 − aδ0(X))2 | T (X) = t ]

1 − 2aE(1,0)[ δ0(X) | T (X) = t ] + a2E(1,0)[ δ0(X)2 | T (X) = t ] .

It is easy to see that this is minimized when

a⋆ =
E(1,0)[ δ0(X) | T (X) = t ]

E(1,0)[ δ0(X)2 | T (X) = t ]

so the scale equivariant estimator which minimizes mean squared relative error
is

δ⋆s(X) =
δ0(X)E(1,0)[ δ0(X) | T (X) = t ]

E(1,0)[ δ0(X)2 | T (X) = t ]
. (3.128)

Of course, we must find a fixed equivariant estimator δ0 first (this will be easy),
then the maximal invariant T (this will be a little harder), and finally Law(1,0)[ δ0(X) | T (X) =
t ] (this will involve some computational difficulty, but is straightforward).
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Now we implement the recipe of the previous paragraph. Part (i), finding a
fixed scale equivariant estimator is easy. Now for δ to be scale equivariant for the
location-scale family, by definition it must satisfy

δ(g(a,b)X) = g⋆(a,b)δ(X)

which is the same as
δ(aX + b1) = aδ(X) .

Note that when a = 1, δ is invariant of location so it must be a function of any
maximal invariant of the location transformation group we found in the previous
section, say δ is a function of (X2 − X1, X3 − X1, ..., Xn − X1). Now δ(X) =
X2 −X1 satisfies the equivariance property in that

δ(aX + b1) = a(X2 −X1) = aδ(X)

but this δ isn’t positive (i.e. doesn’t take values in As, the action space). We
may take

δ0(X) = |X2 −X1| , (3.129)

and this is scale equivarian and positive provided X2 − X1 6= 0. Of course,
X2 −X1 = 0 happens with Pθ-probability 0 for all θ, so we may exclude the set
{x : x2 − x1 = 0} from the observation space Ξ. In the above, it was implicitly
assumed that

n ≥ 2 .

In fact, there are no scale equivariant estimators if n = 1 (Exercise 3.4.27(a)),
so this trivial case can be discarded. See Exercise 3.4.18 for related examples of
scale equivariant estimators.

Next, we need to find a maximal invariant T . As a general rule, if one char-
acterizes the orbit space in an algebraic fashion, there will be an obvious formula
for a maximal invariant. To characterize a general orbit Tx, suppose we have y
= g(a,b)x for some (a, b) with a > 0, i.e. yi = axi + b for each 1 ≤ i ≤ n for some
(a, b) with a > 0. Thus, each component yi of y is the same “linear” function of
the corresponding component xi of x. We can use two pairs (xi, yi) to determine
the slope a and intercept b of this “linear” function, and then y ∈ Tx if and only
if both the slope is positive and all other pairs (xi, yi) for i > 2 are given by the
same “linear” function. Using the pairs (x1, y1) and (x2, y2), we have

a =
y2 − y1

x2 − x1
and b = y1 − ax1 . (3.130)

Then y ∈ Tx if and only if a > 0 and yi = axi + b for i > 2 where a and b are
given in (3.130). This can be simplified algebraically to

yi − y1

xi − x1
=

y2 − y1

x2 − x1
> 0 , for 3 ≤ i ≤ n . (3.131)



3.4. EQUIVARIANT ESTIMATION: GENERAL THEORY 229

Because we are assuming x2 − x1 6= 0 and y2 − y1 6= 0, the inequality a =
(y2 − y1)/(x2 − x1) > 0 is equivalent to

sgn(y2 − y1) = sgn(x2 − x1) (3.132)

where the signum function is defined by

sgn(x) =











x/|x| if x 6= 0,

0 otherwise.

(It is called the “signum” function instead of the “sign” function so it is not
confused with the “sine” function.) By cross multiplying in (3.131), we see that
it is equivalent to

yi − y1

|y2 − y1|
=

xi − x1

|x2 − x1|
> 0 , for 2 ≤ i ≤ n . (3.133)

We have used one trick here: the case n = 2 of (3.133) is equivalent to (3.132).
The form of (3.133) is motivated by the choice of δ0 in (3.129). For instance,

if instead δ0(X) = |Xn−X1|, it would be more convenient to use this in choosing
the denominator of (3.133).

While we “derived” (3.133) as necessary and sufficient condition for y ∈ Tx, it
is a good idea to check that (3.133) is equivalent to y = g(a,b)x for some (a, b) with
a > 0. (In general, one can probably guess the form of the maximal invariant,
and then simply check its correctness as we are about to do.) Assuming y =
ax+ b1 gives

yi − y1 = a(xi − x1) , for 2 ≤ i ≤ n . (3.134)

Since a > 0, taking absolute values of the case i = 2 of (3.134) gives

|y2 − y1| = a|x2 − x1|

and because both x2 − x1 6= 0 and y2− y1 6= 0, we may divide the last equation
into (3.134) to obtain (3.133). Conversely, assuming (3.133), let

a =
|y2 − y1|
|x2 − x1|

.

Note that a is defined and positive since both x2 − x1 6= 0 and y2 − y1 6= 0.
Multiplying both sides of (3.133) by |y2− y1| gives

yi − y1 = a(xi − x1) , for 2 ≤ i ≤ n ,

and taking

b = y1 − ax1
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we have
yi = axi + b , for 1 ≤ i ≤ n ,

(note that the case i = 1 is trivial), which is what we wanted to show, i.e. that
y = g(a,b)x for some (a, b) with a > 0.

Now we seek a simple and obvious maximal invariant (other than the abstract
maximal invariant of Theorem 3.4.4). Notice that (3.133) says that y ∈ Tx if
and only if T (y) = T (x) where T : Ξ → {−1, 1} × IRn−2 is given by

T (x) =

(

sgn(x2 − x1) ,
x3 − x1

|x2 − x1|
, ... ,

xn − x1

|x2 − x1|

)

, (3.135)

It is easy to see that this means T is a maximal invariant (Exercise 3.4.19). Note
that T is constant on any orbit, and that T “separates” orbits (i.e. if Tx1 6= Tx2,
then T (x1) 6= T (x2)).

Finally, we need to compute the conditional distribution of δ0 = |X2 − X1|
given T = t under θ = (1, 0) in order to plug into (3.126) or (3.128). Let

W = (|X2 −X1|, T )

which is a random vector taking values in (0,∞) times {−1, 1} times IRn−2. If
we can get a joint density for Law(1,0)[W ] (w.r.t. m times # mn−2), then it will
be easy to get the desired conditional density. For the time being, all calculations
are with the parameter value θ = (1, 0), so we do not mention it further. Letting

U = (X2 −X1 ,
X3 −X1

X2 −X1
, . . . ,

Xn −X1

X2 −X1
)

= W2 (W1 , W3 , W4 , ..., Wn ) ,

it is clear that we can obtain the density of U (w.r.t. mn−2) by a Jacobian
argument, so we need only figure out how to get the density for W from that of
U , by somehow accounting for the signs. If A ⊂ (0,∞) × {−1, 1} × IRn−2 is
measurable, let

A1 = {w ∈ A : w2 = 1}
and

A2 = {w ∈ A : w2 = −1} .

Then
P(1,0)[W ∈ A] = Q[W ∈ A1] + Q[W ∈ A2]

= Q[U1 > 0 , & (U1, 1, U2, ..., Un−1) ∈ A1 ] (3.136)

+ Q[U1 < 0 , & (−U1, 1,−U2, ...,−Un−1) ∈ A2 ] .

Now let

B1 = { u ∈ IRn−1 : u1 > 0 , & (u1, 1, u2, ..., un−1) ∈ A1 ]
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so that the first probability in the last expression in (3.136) equals
∫

B1

fU(u) du

=
∫

A1

fU(w2w1, w2w3, w2w4, ..., w2wn) d(m× # ×mn−2)(w) .

Similarly for the second term, so

fW (w) = fU(w2w1, w2w3, w2w4, ..., w2wn) . (3.137)

Now to derive fU , if

V = (X2 −X1, X3 −X1, ..., Xn −X1)

then it’s density is

fV (v) =
∫

q(ξ, v + ξ1) dxi

by the derivation of (3.113). Now

V = (U1, U1U2 , U1U3 , ... , U1Un−1 ) ,

so the Jacobian determinant is

det [matrixccol1aboveu2above.above.above.aboveun−1ccol0aboveu1above.above.above.above0ccol.abov

and hence

fU (u) = |u1|n−2 fV ( u1 , u1u2 , u1u3 , ... , u1un−1 )

=
∫

|u1|n−2 q( ξ , u1 + ξ , u1u2 + ξ , ... , u1un−1 + ξ ) dξ .

Plugging this into (3.137) and using that w1 = |u1| and w2
2 = 1 gives

fW (w) = wn−2
1

∫

q( ξ , w1w2 + ξ , w1w3 + ξ , w1w4 + ξ , ... , w1wn + ξ ) dξ .

Now taking conditional densities (recall the definition of W ),

fW1|T (w1|t) =
wn−2

1

∫

q( ξ , w1t1 + ξ , w1t2 + ξ , ... , w1tn−1 + ξ ) dξ
∫∞
0 ωn−2

∫

q( ξ , ωt1 + ξ , ωt2 + ξ , ... , ωtn−1 + ξ ) dξ dω

Now we have for any integrable function h(|X2 −X1|, T ),

E(1,0)[ h(|X2 −X1|, T ) | T = t ] = (3.138)
∫∞
0 h(ω, t)ωn−2

∫

q( ξ , ωt1 + ξ , ωt2 + ξ , ... , ωtn−1 + ξ ) dξ dω
∫∞
0 ωn−2

∫

q( ξ , ωt1 + ξ , ωt2 + ξ , ... , ωtn−1 + ξ ) dξ dω
.
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To obtain a more aesthetically pleasing formula, make the change of variables

α =
|X2 −X1|

ω
, β = X1 − |X2 −X1|

ω
ξ . (3.139)

This gives (Exercise 3.4.20)

E(1,0)[ h(|X2 −X1|, T ) | T = t ] = (3.140)

∫∞
0 h(|X2 −X1|/α, t)α−n

∫

q((X − β1)/α) dβ dα
∫∞
0 α−n

∫

q((X − β1)/α) dβ dα
.

Plugging this into (3.128) gives the minimum mean squared relative error
location-scale equivariant estimator of scale as

â =
|X2 −X1|

∫∞
0 (|X2 −X1|/α)α−n

∫∞
−∞ q((X − β1)/α) dβ dα

∫∞
0 (|X2 −X1|/α)2α−n

∫∞
−∞ q((X − β1)/α) dβ dα

=

∫∞
0 α−(n+1)

∫∞
−∞ q((X − β1)/α) dβ dα

∫∞
0 α−(n+2)

∫∞
−∞ q((X − β1)/α) dβ dα

. (3.141)

Example 3.4.8 We consider the i.i.d. N(µ, σ2) family. Then, by some elemen-
tary algebra (Exercise 3.4.21),

q((X − β1)/α) = n−1/2(2π)−(n−1)/2α exp

[

−1

2α2

n
∑

i=1

(Xi − X̄)2

]

×







1
√

2π(α2/n)
exp

[

−1

2(α2/n)
(β − X̄)2

]







(3.142)

Hence

∫ ∞

−∞
q((X − β1)/α) dβ = n−1/2(2π)−(n−1)/2α exp

[

−1

2α2

n
∑

i=1

(Xi − X̄)2

]

.

If we write

S2 =
1

n

n
∑

i=1

(Xi − X̄)2

and substitute this into (3.141) there results

σ̂ =

∫∞
0 α−n exp

[

−nS2

2α2

]

dα
∫∞
0 α−(n+1) exp

[

−nS2

2α2

]

dα
. (3.143)

Now make a change of variables

v =
nS2

2α2
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and we obtain (Exercise 3.4.22)

σ̂ =
Γ((n− 1)/2)

Γ(n/2)

(

n

2

)1/2

S . (3.144)

In Exercise 3.4.28, the student is asked to derive the minimum mean relative
squared error location-scale equivariant estimator of variance σ2.

2

Next, we return to the location estimand. Recall that Theorem 3.4.5 does not
apply here so we seek a characterization of location-scale equivariant estimators
of location which can be used to derive an optimal such estimator. To this end,
let δ0 be a given location-scale equivariant estimators of location, and suppose δ
is any other such estimator. Then ∆(X) = δ(X) − δ0(X) satisfies

∆(aX + b1) = δ(aX + b1) − δ0(aX + b1) = [ aδ(X) + b ] − [ aδ0(X) + b ]

= a [ δ(X) − δ0(X) ] = a∆(X) .

Thus, ∆ acts like a location-scale equivariant scale estimator, except of course
it need not be positive. However, if δ1 is a (positive) location-scale equivariant
scale estimator, then consider ∆/δ1. We have

∆(aX + b1)

δ1(aX + b1)
=

a∆(X)

aδ1(X)
=

∆(X)

δ1(X)
.

Thus, ∆/δ1 is location-scale invariant, and so is a function of the maximal invari-
ant. We have just proved one direction of the following.

Theorem 3.4.8 Let δ0 be a fixed location-scale equivariant estimator of location,
and let δ1 be a fixed (positive) location-scale equivariant scale estimator. Then
δ : Ξ → IR is a location-scale equivariant estimator of location if and only if there
is a (Borel) function

v : {−1, 1} × IRn−2 → IR

such that
δ(x) = δ0(x) + v(T (x))δ1(x) , for all x ∈ Ξ , (3.145)

where T is given in (3.135).

Proof. The necessary ( ⇒ ) direction was shown in the preceding discussion.
Assume that δ has the form given in (3.145), and we will prove it is a location-
scale equivariant estimator of location. We have

δ(ax+ b1) = δ0(ax+ b1) + v(T (ax+ b1))δ1(ax+ b1)

= [aδ0(x) + b] + v(T (x))[aδ1(x)] = a[ δ0(x) + v(T (x))δ1(x) ] + b

= aδ(x) + b ,

which completes the proof.
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2

Now we consider whether or not this characterization can help us in the quest
for a minimum risk location-scale equivariant estimator of location. The risk of
any such estimator is of course a constant given by

R(θ, δ) = E(1,0)[Ll((1, 0), δ(X))]

= E(1,0)[Ll((1, 0), δ0(X) + v(T (X))δ1(X)]

= E(1,0)

{

E(1,0) [Ll( (1, 0) , δ0(X) + v(t)δ1(X) | T (X) = t ]
}

.

Thus, we need only minimize over v ∈ IR the function

ρ(tu, v) = E(1,0) [Ll( (1, 0) , δ0(X) + vδ1(X) | T (X) = t ]

for tu ∈ {−1, 1} × IRn−2 fixed, and then as long as the resulting v⋆(tu) is mea-
surable in tu, the sought after optimal estimator is

δ⋆(X) = δ0(X) + v⋆(T (X))δ1(X) .

In particular, if we use normalized squared error loss, the optimal estimator can
be given by the formula

δ⋆(X) = δ0(X) − E(1,0)[δ0(X)δ1(X)|T (X)]

E(1,0)[δ1(X)2|T (X)]
δ1(X) . (3.146)

See Exercise 3.4.23. Note that to carry out this recipe, we will have to find a
fixed location-scale equivariant estimator of location δ0 (we already have δ1, e.g.
as given in (3.129), and of course we already have T ), and then we need to find
the joint conditional distribution of (δ0(X), δ1(X)) given T (X) = tu.

Finding a fixed location-scale equivariant estimator of location δ0 is easy, as
usual. Consider δ0(X) = X1. We have

δ0(aX + b1) = δ0( ( aX1 + b , aX2 + b , ... , aXn + b ) )

= aX1 + b = aδ0(X) + b ,

which is all we need to verify to show that this δ0 is a location-scale equivariant
estimator of location.

It is not difficult (Exercise 3.4.24) to modify the derivation (3.140) to obtain

E(1,0)[ h(X1, |X2 −X1|, T ) | T ] = (3.147)

∫∞
0 h((X1 − β)/α, |X2 −X1|/α, T )α−n

∫

q((X − β1)/α) dβ dα
∫∞
0 α−n

∫

q((X − β1)/α) dβ dα
.
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Plugging this into (3.146), we obtain that the minimum mean normalized
squared error location-scale equivariant estimator of location is given by

b̂ =

∫∞
0

∫∞
−∞ β α−(n+2) q((X − β1)/α) dβ dα

∫∞
0

∫∞
−∞ α−(n+2) q((X − β1)/α) dβ dα

. (3.148)

Example 3.4.9 Again we consider the i.i.d. N(µ, σ2) family. Using (3.142) we
see tha that

∫ ∞

−∞
β q((X − β1)/α) dβ = n−1/2(2π)−(n−1)/2X̄ α exp

[

−1

2α2

n
∑

i=1

(Xi − X̄)2

]

.

Substituting this into (3.148), we see that X̄ factors out in the numerator and
the same integrals in α appear in the numerator and denominator, so after can-
celling them we obtain that X̄ is the minimum mean normalized squared error
location-scale equivariant estimator of location for this family. One can arrive at
this conclusion without using Theorem 3.4.8 and the subsequent derivations; see
Exercise 3.4.25.

2
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Exercises for Section 5.4.

3.4.1 Consider the location model of Example 3.4.1. Answer the following ques-
tions.

(a) What are gB and Bg in Assumption 3.4.2 (a), for a general g and B? Ver-
ify that (T,E) is compatible with the group structure as defined in Assumption
3.4.2 (a).

(b) Show that a necessary and sufficient condition for a loss to be location
invariant is that (3.104) hold for some nonnegative extended Borel function λ.

(c) Suppose δ(X) =
∑

i aiXi + c where
∑

i ai = 1. Show that δ is location
invariant by verifying (3.105). Also, put δ in the form of (3.106) with both δ0(X)
= X̄ and δ0(X) = X1.

(d) Identify Tx and Orb(Ξ,T) as defined in (3.107). Show that T1 of (3.102)
is a bimeasurable transformation of T as given in Theorem 3.4.4.

(e) Give detailed verifications of (3.113) and (3.114).

3.4.2 Verify equation (3.99)

3.4.3 Show that any bijective bimeasurable map of a maximal invariant also
is a maximal invariant (i.e. any invariant function is a function of the maximal
invariant).

3.4.4 In the framework of the location model, consider the estimand given in
(3.101).

(a) What is the group T⋆?
(b) Show that Assumptions 3.4.3 and 3.4.4 hold.

3.4.5 Check that J in (3.108) is a σ-field.

3.4.6 Suppose L(θ, d) is an invariant loss function. Fix θ0 ∈ Θ. Let gθ be
such that ḡθθ0 = θ, which exists by (3.94). Show that there exists a function
λ : (A,D) → (IR,B) such that L(θ, d) = λ((g⋆θ)

−1d).

3.4.7 Prove Theorem 3.4.2. In the proof, show that the mapping α : T → T⋆

given by α(g) = gstar is a homomorphism.

3.4.8 Show that the Pitman estimator is a function of any sufficient statistic.

3.4.9 Compute the Pitman estimators of location for the following families as-
suming any other parameters are known.

(a) i.i.d. double exponential:

fb(x) =
1

2a
exp[−|x− b|/a] .
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In this case, your formula will be rather complicated, but describe it as best you
can. You may use the order statistics in place of X for the evaluation of the
formula.

(b) i.i.d. Unif [b − a, b+ a]:

f(x) =
1

2a
I(b−a,b+a)(x) .

Does the Pitman estimator depend on a?
(c) N(b1, σ2D) where D is a diagonal matrix with positive diagonal entries.

Does the Pitman estimator depend on σ2?
(d) N(b1, σ2V ) where V is a positive definite matrix. Does the Pitman esti-

mator depend on σ2?
(e)

3.4.10 Consider the two sample location model where X and Y are random n
and m dimensional vectors, respectively. Let q(x, y) be a Lebesgue probability

density on IR(n+m), and let

fab(x, y) = q(x− a1, y − b1) .

The parameter is θ = (a, b), and the parameter space is IR2. Let T be the group
of transformations of the form

gα,β(x, y) = (x− α1, y − β1) .

(a) Give “natural” σ-fields and verify Assumptions 3.4.1 and 3.4.2. What is
the parameter map p?

(b) Determine T̄.
(c) Let u(θ) = a− b be the estimand. Determine T⋆ and verify Assumptions

3.4.3 and 3.4.4.
(d) Determine a maximal invariant and give characterizations similar to (3.103),

(3.104), and (3.106) of invariant v, invariant L, and equivariant δ, respectively.
(e) Find the analogue of the Pitman estimator in (3.114).

3.4.11 Evaluate the estimator of Exercise 3.4.10 (e) for the following models.
(a) X and Y independent N(a1, σ2

XI) and N(b1, σ2
Y I), respectively. Show

that the estimator depends on σ2
X and σ2

Y only through the ratio σ2
X/σ

2
Y .

3.4.12 Verify equation (3.118).

3.4.13 Verify equation (3.119).

3.4.14 Suppose Q is a p.m. on IRn. Show that there exists some bounded Borel
set A with Q(A) > 0.
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3.4.15 Verify directly from the definition (without using Theorem 3.4.1) that
T̄ = {ḡ(a,b) : 0 < a < ∞, and −∞ < b < ∞ } is a transformation group on Θ
and satisfies (3.94).

3.4.16 Show that T⋆
1 is not commutative.

3.4.17 (a) Show that a scale estimation loss function Ls is invariant (i.e. satisfies
(3.121)) if and only if it is of the form (3.122).

(b) Show that a location estimation loss function Ll is invariant (i.e. satisfies
(3.124)) if and only if it is of the form (3.125).

3.4.18 Show that any estimator of the form

δ(X) =







∑

j

aj

∣

∣

∣

∣

∣

∑

k

bjkXk

∣

∣

∣

∣

∣

p






1

/p

is scale equivariant (for the location-scale family) if the following hold

p 6= 0 ,

∑

k

bjk = 0 for all j ,

aj ≥ 0 for all j ,
∑

j

aj
∑

k

|bjk| 6= 0 .

You will need to exclude a null set from Ξ to guarantee that δ(X) > 0.. (Hint:
The first, third, and fourth conditions are needed to show that δ is defined and
positive. The second condition is needed because a scale equivariant estimator
in the location-scale family must be location invariant.)

3.4.19 (a) Assuming T is a general transformation group on some observation
space Ξ, suppose that T is a function on Ξ (to some range space) which (i) is
constant on orbits of T, i.e. x1 ∈ Tx and x2 ∈ Tx implies T (x1) = T (x2); and
(ii) T separates orbits, i.e. if x1 ∈ Tx and x2 /∈ Tx then T (x1) 6= T (x2). Then T
is a maximal invariant.

(b) Now consider the location-scale group of transformation on IRn. Show
that T given in (3.135) satisfies the properties (i) and (ii) above.

3.4.20 Verify that the change of variables in (3.139) transforms (3.138) into
(3.140).

3.4.21 Verify equation (3.142).

3.4.22 Verify that (3.144) follows from (3.143).



3.4. EQUIVARIANT ESTIMATION: GENERAL THEORY 239

3.4.23 Verify that the minimum mean squared normalized error location-scale
equivariant estimator of location is given by (3.146).

3.4.24 Verify (3.147) and (3.148).

3.4.25 Consider the general location-scale family as in the section.

(a) Show that if the scale parameter is fixed at a particular value, then the
resulting subfamily is a “pure” location family.

(b) Suppose that for each fixed value of the scale parameter, the minimum
mean squared error location equivariant estimator of location is δ which is func-
tionally independent of the (fixed value of) the scale parameter. Show that δ
is then the minimum mean normalized squared error location-scale equivariant
estimator of location.

(c) Use the result in (b) to give an alternative derivation that X̄ is the optimal
location estimator for the i.i.d. normal family as in Example Examp5.4.1.4.

3.4.26 (a) Find the minimum mean relative (normalized) squared error location-
scale equivariant estimator of scale (location) in the i.i.d. Unif(b− a/2, b+ a/2)
family.

(b) Same as (a) but the Exp(a, b) family.

3.4.27 Show the following in the context of a location-scale family on IR, i.e.
when n = 1.

(a) There exists no scale equivariant estimators.

(b) The only location equivariant estimator is δ(x) = x.

3.4.28 Consider the estimand usm(α, β) = αm.

(a) Check that Assumption 3.4.3 holds. Determine the corresponding induced
group T⋆

sm .

(b) Characterize invariant loss functions similarly to (3.122). Show that

L((θ1, θ2), α) =

∣

∣

∣

∣

∣

θm1 − αm

θm1

∣

∣

∣

∣

∣

p

where p > 0 is invariant.

(c) Characterize location-scale equivariant estimators of usm.

(d) Give a description as in (3.126) and (3.127) of the minimum risk location-
scale equivariant estimator of usm.

(e) Give a formula similar to (3.141) for the minimum mean squared relative
error location-scale equivariant estimator of usm.

(f) For the i.i.d. N(µ, σ2) family, find the minimum mean squared relative
error location-scale equivariant estimator of σ2. Compare with the UMVUE.
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3.4.29 Consider the “pure” scale family

fa(x) = a−nq(x/a) , a > 0 ,

where q is a fixed Lebesgue density on IRn. We wish to estimate

um(a) = am

for some m > 0.
(a) Determine the induced groups T̄ and T⋆, assuring that they exist by

checking whatever assumptions need be checked.
(b) Give characterizations of invariant loss functions and scale equivariant

estimators of the estimand.
(c) Show how a minimum risk scale equivariant estimator of um(a) may be

obtained, analogously to (3.126) and (3.127).
(d) Give a formula for the minimum mean relative squared error scale equiv-

ariant estimator of um(a).
(e) Specialize (d) to the case of i.i.d. N(0, σ2) observations and m = 1, 2,

obtaining explicit formulae similar to (3.144).
(f) Specialize (d) to the case of i.i.d. Unif(0, a), obtaining a simple formula

for the estimator.
(g) Specialize (d) to the case of i.i.d. Exp(a, 0).

3.4.30 (a) Consider the location-scale family as in the text of this section. Show
that the family of densities for

Y = (X2 −X1, X3 −X1, ..., Xn −X1)

form a pure scale family on IRn−1.
(b) Using (a) and Exercise 3.4.29, give an alternative derivation of the mini-

mum risk location-scale equivariant estimator of scale in (3.126) and (3.127).

3.4.31 Suppose X and Y are random n and m-vectors, respectively, with joint
Lebesgue density

f(a,b,c)(x, y) = a−(n+m)q((x− b1)/a, (y − c1)/a)

where a > 0, b ∈ IR, and c ∈ IR. Here, q is a known Lebesgue density.
(a) Extend the theory of the current section to obtain general formulae for

optimal appropriately equivariant estimators of (i) am and (ii) b− c.
(b) Specialize to the i.i.d. normal case.
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3.5 Bayesian Estimation.

The Bayesian approach to statistics requires the statistician to make one ad-
ditional assumption, namely that the unknown parameter is a random element
taking values in the parameter space (which now is required to have a measur-
able structure, i.e. there is a σ–field H on Θ), and that the distribution of the
parameter (call it Π) is known. Π is called the prior distribution. Once this
leap of faith is made, one arrives at a state of heavenly bliss wherein virtually all
problems can be solved (optimally, if there is a decision theoretic structure such
as a loss function) subject to the practical problem of computing the result. Fur-
thermore, there is a certain mathematical elegance and simplicity in the theory
which is unusual in Statistics, and the mathematical results have applications in
non-Bayesian theory. Many stastisticians and scientists are opposed to the use
of Bayesian Statistics in practical problems for mostly “philosophical” reasons
which we discuss below.

3.5.1 Bayesian Decision Theory.

Suppose we have a Euclidean observation space (Ξ,G) and family of possible dis-
tributions P = {Pθ : θ ∈ Θ} for the random observable X. Under measurability
assumptions (see (i) of Theorem 1.5.10, the “Two Stage Experiment Theorem”),
we may regard P as a family of conditional distributions for X given the param-
eter value θ. We may then compute an “average” risk which is the loss of an
estimated value averaged over both Ξ and Θ (the usual averaging is only over Ξ).
This extra averaging operation gives the the so called Bayes Risk

r(Π, δ) =
∫

Θ
R(θ, δ) dΠ(θ) =

∫

Θ

∫

Ξ
L(θ, δ(x)) dPθ(x) dΠ(θ) .

The second equation follows from “Furthermore, ...” conclusion of the Two Stage
Experiment Theorem and equation (1.71) of Theorem 1.5.6. Note that the ordi-
nary risk R(θ, δ) is the Bayes risk r(δθ, δ) w.r.t. the prior δθ which is a unit point
mass at θ. Alternatively, R(θ, δ) is the conditional expectation of the loss given
θ, i.e.

R(θ, δ) = E[L(θ, δ(X)) | θ ] . (3.149)

(Notational remark: we are using θ both to denote the random element θ :
(Ω,F , P ) −→ (Θ,H) and to denote a particular value θ ∈ Θ. Since we have
already used the upper case “Θ” to denote the parameter space, it is not available
to denote the random element. We hope the reader has sufficient understanding of
the difference at this point that he can recognize which meaning of “θ” is intended
and act appropriately. The above equation (3.149) would more appropriately be
written

R(θ0, δ) = E[L(θ, δ(X)) | θ = θ0 ] ,
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so as to avoid confusion between the random element θ and the specific value θ0.
We will continue to abuse the notation of conditional distributions and conditional
expectations as in (3.149) for simplicity.) A Bayes rule is one which minimizes
the Bayes risk, i.e. δ⋆Π is a Bayes rule iff

r(Π, δ⋆Π) ≤ r(Π, δ)

for any other decision rule δ. Notice that the Bayes rule depends on the prior (and
the loss). Once Π is given, then we are in the business of trying to optimize over δ
the real valued function r(Π, δ) instead of somehow trying to manage all values of
θ simultaneously when we try to uniformly minimize R(θ, δ). For this reason, it
is not necessary to restrict the class of decision rules in Bayesian decision theory
(e.g. requiring unbiasedness of an estimator), although it is sometimes done for
convenience. Recall that a main reason for considering restrictions on the class
of estimators was to rule out “dumb” estimators like θ̂ ≡ 5, which have smaller
risk than any reasonable estimator (i.e. one which actually uses the data) if in
fact the true value of θ is 5. But the Bayes risk of θ̂ ≡ 5 will not be that good as
long as the prior is not concentrated in the neighborhood of θ = 5. Of course, if
we use Π = δ5, then θ̂ ≡ 5 is the Bayes estimator, but this results from a “dumb”
choice of prior.

Finding a Bayes rule is in general quite easy, from a formal point of view in
the sense that one can write down formulae involving conditional expectations.
Under the measurability conditions of the Two Stage Experiment Theorem (i.e.
that Pθ(B) is Borel measurable in θ for each fixed B), then there is a joint
distribution Law[X, θ] on Ξ ×Θ, and Pθ = Law[X|θ]. In all of the following, we
are taking expectations and conditional expectations w.r.t. the joint distribution
of X and θ. If we assume that Θ is a Euclidean space (which is good enough for
most applications), then by Theorem 1.5.6, there exists a conditional distribution
Law[θ|X = x], which is called the posterior distribution for θ. By successive
conditioning,

r(Π, δ) = E {E[L(θ, δ(X)) | θ ] } = E[R(θ, δ) ] (3.150)

= E {E[L(θ, δ(X)) |X ] } = E[ ρ̄(X, δ(X)) ]

where
ρ̄(x, d) = E[L(θ, d) |X = x ] (3.151)

is the posterior expected loss. Note that ρ̄ may be computed by integration w.r.t.
the posterior distribution. If we can find for fixed x a value δ⋆(x) in action space
to minimize ρ̄(x, .), then assuming measurability of δ⋆, for any other decision rule
δ,

ρ̄(X, δ⋆(X)) ≤ ρ̄(X, δ(X))

and plugging this into (3.150) we obtain

r(Π, δ⋆) ≤ r(Π, δ) ,
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i.e. δ⋆ is the Bayes rule. This gives a simple recipe for finding the Bayes rule.
As an example, suppose we wish to estimate a real valued estimand g(θ) under

squared error loss, so

ρ̄(x, d) = E[ (g(θ) − d)2 |X = x ] (3.152)

= E[ g(θ)2 |X = x ] − 2dE[ g(θ) |X = x ] + d2 .

Minimizing over d gives

δ⋆(x) = E[ g(θ) |X = x ] , (3.153)

which we would have expected anyway. Note here that we have implicitly assumed
that E[g(θ)2] < ∞ in order that the Bayes risk be finite. (If E[g(θ)2] = ∞ then
r(Π, δ) = ∞ for any δ by Exercise 3.5.7, so estimators have the same Bayes risk,
namely ∞, so all estimators are equally “optimal”). It is only necessary of course
that E[|g(θ)|] < ∞ for the estimator to be defined and finite.

If we make the additional assumption of a dominated family, i.e. P ≪ µ
where µ is σ–finite, then we can derive a density for the posterior distribution
(even if Θ is not a Euclidean space) and some of the general results above can
be simplified. Let f(x|θ) denote the density of Pθ w.r.t. µ. We have written it
as a conditional density as it is the conditional density of X given θ by the Two
Stage Experiment Theorem. Then we have

r(Π, δ) =
∫

Θ

∫

Ξ
L(θ, δ(x)) f(x|θ) dµ(x) dΠ(θ) (3.154)

=
∫

Ξ

[ ∫

Θ
L(θ, δ(x)) f(x|θ) dΠ(θ)

]

dµ(x) .

Fubini’s theorem was used at the last step, of course. Let A denote the action
space. Now suppose that for each fixed value of x we can find δ⋆ to minimize
over d ∈ A

ρ(x, d) =
∫

Θ
L(θ, d) f(x|θ) dΠ(θ) . (3.155)

Notice that the inner integral in (3.154) is ρ(x, δ(x)), so δ⋆(x) will minimize
the double integral in (3.154), i.e. δ⋆(x) will be the Bayes rule, provided it
is measurable. In some sense then, once we observe a value x of X, it is a
computing problem to minimize ρ(x, d) for that value of x. It may be necessary
to numerically compute the integral in (3.155), and to use this within a numerical
optimizer to minimize ρ(x, .).

The difference between ρ in (3.155) and ρ̄ in (3.151) is simply a normalization
constant, which we now discuss. For a function h : Θ −→ IR define

J(h) =
∫

Θ
h(θ) f(x|θ) dΠ(θ) ,
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provided the integral exists. Note that J(h) : Ξ −→ IR, but we will tend to think
of x as fixed. Then of course ρ(x, d) = J(L(., d)) (x). It follows from Exercise
1.5.12 that the posterior distribution Law[θ|X = x] ≪ Π has density

f(θ|x) =
f(x|θ)
J(1)

. (3.156)

In Bayesian statistics, when f(x|θ) is thought of as a function of x for fixed θ, it
is sometimes called the sampling density, and when it is thought of as a function
of θ for fixed x, it is called (a version of) the unnormalized posterior density,
since it only needs to be divided by the normalizing constant J(1) to become the
normalized posterior density. Actually, one can use any function h(θ|x) as the
unnormalized posterior density provided h(θ|x) has the property that dividing
by its integral w.r.t. dΠ(θ) gives f(θ|x). Note that we used an unnormalized
posterior in (3.155), so we can refer to ρ(x, d) as unnormalized posterior expected
loss, and the posterior expected loss is given by

ρ̄(x, d) =
ρ(x, d)

J(1)
.

Bayesian statisticians often write

f(θ|x) ∝ f(x|θ)

to indicate that the posterior density is proportional to an unnormalized posterior
density. This is useful since the normalization constant is frequently unneeded as
in (3.155).

We shall see that the posterior density has further uses, e.g. for construct-
ing interval or set estimates. Much of the current research in Bayesian statistics
centers on finding useful approximations or practical computing methods for eval-
uating expressions such as (3.153), (3.155), and (3.156).

Now we consider a standard example of Bayesian estimation.

Example 3.5.1 Suppose X1, X2, ..., Xn are i.i.d. N(µ, σ2). For the time being,
consider a fairly general prior distribution for (µ, σ2) which has Lebesgue density
denoted

dΠ

dm2
(µ, σ2) = π(µ, σ2)

where π(µ, σ2) = 0 if σ2 ≤ 0. Letting π(σ2) denote the marginal prior density of
σ2 and π(µ|σ2) the conditional prior density of µ given σ2, we can write the prior
joint density as

π(µ, σ2) = π(µ|σ2) π(σ2) (3.157)

(For simplicity, we are adopting a notational convention common in Engineering:
if the distribution of a random vector has a density then simply use the arguments
of densities to indicate the appropriate random variable. Also, note that we are



3.5. BAYESIAN ESTIMATION. 245

using the variable σ2, and to avoid confusion the student may want to replace it
with a simpler expression such as v.) Then the posterior density is

f(µ, σ2|x) ∝ (σ2)−n/2 exp

[

−1

2σ2

n
∑

i=1

(xi − µ)2

]

π(µ|σ2)π(σ2)

∝
{

(n−1σ2)−1/2 exp

[

−1

2(n−1σ2)
(µ− x̄)2

]

π(µ|σ2)

}

×

{

(σ2)−(n−1)/2 exp

[

−ns
2

2σ2

]

π(σ2)

}

(3.158)

where

x̄ =
1

n

n
∑

i=1

xi , s2 =
1

n

n
∑

i=1

(xi − x̄)2 .

Note that in (3.158) we have not kept factors which are functionally indepen-
dent of µ and σ2.

A simple calculation (see Exercise 3.5.4) shows that

f(µ, σ2|x) = f(µ|σ2, x)f(σ2|x) . (3.159)

Using this, one can see by inspection of the last expression in (3.158) that

f(µ|σ2, x) ∝ (n−1σ2)−1/2 exp

[

− 1

2(n−1σ2)
(µ− x̄)2

]

π(µ|σ2) (3.160)

since the only place µ appears in the r.h.s. of (3.159) is in f(µ|σ2, x).
Now, we will make a choice for a conditional prior for µ. We will select π(µ|σ2)

purely on the basis of mathematical convenience so that (3.160) can be put in a
nice form. The posterior for µ conditional on σ2 will be simple, namely a normal
distribution, provided π(µ|σ2) is also a normal density, say

Law[µ|σ2] = N(ν, τ 2) , ν = ν(σ2) , τ 2 = τ 2(σ2) . (3.161)

(Note that one way to recognize a normal density, say g(y), is to see that y only
appears in a quadratic form in an exponential. Since the sum of quadratic forms
is also a quadratic form, by choosing such a conditional normal prior for µ we
guarantee a conditional normal posterior.) To figure out the mean and variance
for f(µ|σ2, x) we carry out the usual elementary calculations of completing the
square in the exponent, which gives (Exercise 3.5.5)

exp

{

−1

2

[

(µ− x̄)2

(n−1σ2)
+

(µ− ν)2

τ 2

]}
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= exp





−1

2[(n−1σ2)−1 + (τ 2)−1]−1

(

µ − x̄/(n−1σ2) + ν/τ 2

(n−1σ2)−1 + (τ 2)−1

)2

− 1

2

(x̄− ν)2

n−1σ2 + τ 2

]

. (3.162)

There are several algebraic “simplifications” of the above expression which we
did not implement so as to permit some of the following interpretations.

(i) If σ2 is known, we are basically done at this point, i.e. f(µ|σ2, x) is the
posterior for µ.

(ii) For any random variable Y , define the precision as the reciprocal of its
variance, i.e.

Precision[Y ] =
1

Var[Y ]
.

From (3.162) one sees that

Var[µ|σ2, X] = [(σ2/n)−1 + (τ 2)−1]−1 , (3.163)

which can be restated as

Precision[µ|σ2, x] = Precision[X̄|µ, σ2] + Precision[µ|σ2] . (3.164)

(A conditional precision Precision[Y |Z] is defined in the obvious way with the
conditional variance.) Assuming σ2 is known, the posterior precision of the mean
µ is the sum of the sampling precision of the sample mean X̄ and the prior
precision of µ. This provides at least an easy way of remembering the formulae.
An entirely analogous result holds for multivariate observations. See Exercise
3.5.8.

(iii) One can also read off from (3.162) that

E[µ|σ2, X] =
X̄/(σ2/n) + ν/τ 2

(σ2/n)−1 + (τ 2)−1
(3.165)

=
Precision[X̄|µ, σ2] X̄ + Precision[µ|σ2] ν

Precision[X̄|µ, σ2] + Precision[µ|σ2]
.

Thus, if σ2 is known then the posterior mean of µ is a weighted average of
the sample mean X̄ and the prior mean ν with weights proportional to their
precisions as individual estimates of µ. To explain this last statement, if we use
sample mean X̄ to estimate µ ignoring the prior information, then its precision
is (n−1σ2)−1, and if we use the prior mean ν to estimate µ ignoring the sample
then its precision is (τ 2)−1. Again, besides some aesthetic appeal this provides
an easy way to remember the formulae.
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(iv) Note that putting n = 0 in (3.163) and (3.165) gives τ 2 and ν, respec-
tively. Thus, if we had no data, then the posterior would be the prior, which only
makes sense. This also provides a useful check on Bayesian calculations.

Now we return to (3.158) and (3.159) to investigate the marginal posterior of
σ2, i.e. f(σ2|x). If we substitute for f(µ|σ2, x) (which is normal with parameters
given in (3.163) and (3.165)) back into (3.159) and integrate out µ (which can
be accomplished by “juggling” the normalizing constants), we obtain (Exercise
3.5.5)

f(σ2|x) ∝ (3.166)

(τ 2)−1/2
[

(n−1σ2)−1 + (τ 2)−1
] −1/2

(σ2)−n/2 ×

exp

{

−1

2

[

(x̄− ν)2

n−1σ2 + τ 2
+
ns2

σ2

] }

π(σ2) .

(One error to watch out for here is dropping the factor of (τ 2)−1/2. We have
to keep track of this because τ 2 depends on σ2.) We see that there are two rather
ugly parts of the last expression: the first pair of factors,

(τ 2)−1/2
[

(n−1σ2)−1 + (τ 2)−1
] −1/2

and the first term within brackets in the exponent

(x̄− ν)2

n−1σ2 + τ 2
.

Were these two expressions each multiples of 1/σ2, then we could obtain a power
of 1/σ2 times an exponential of a negative constant times 1/σ2. We could then
transform to the precision parameter λ = 1/σ2 get a Gamma density except for
the factor of the prior density. Recall that we may allow τ 2 and ν to depend on
σ2 (see (3.161)), so if we choose

ν(σ2) ≡ ν , τ 2(σ2) = σ2/c (3.167)

for some fixed ν ∈ IR and c > 0, then (3.166) becomes

f(σ2|x) ∝ (3.168)

(σ2)−n/2 exp

{

−1

2

[

(x̄− ν)2

n−1 + c−1
+ ns2

]

1

σ2

}

π(σ2) .

Now make the substitution λ = 1/σ2 to obtain the posterior for λ as
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f(λ|x) ∝ λn/2 exp

{

−1

2

[

(x̄− ν)2

n−1 + c−1
+ ns2

]

λ

}

π(λ) . (3.169)

(One may be tempted to think that a “Jacobian” factor from the transforma-
tion is missing here, but that is absorbed in the prior π(λ). Note that putting n
= 0 in the above causes the posterior to reduce to the prior, as it should, but if
one incorrectly multiplies by the Jacobian 1/λ2, then this check will not apply.)
Note that the meaning of “f(.|x)” and “π(·)” is different between (3.168) and
(3.169). Choosing a Gamma prior for λ, say

Law[1/σ2] = Law[λ] = Gamma(α, β) (3.170)

for some α > 0 and β > 0, then

f(λ|x) ∝ λn/2+α−1 exp

{

−1

2

[

(x̄− ν)2

n−1 + c−1
+ ns2 +

2

β

]

λ

}

, (3.171)

and we see that the posterior is

Law[λ|X = x] = Gamma(n/2 + α, η(x)) (3.172)

where

(η(x))−1 =
1

2

[

(x̄− ν)2

n−1 + c−1
+ ns2

]

+
1

β
. (3.173)

Some remarks on this:
(v) Since in (3.170) we specified a Gamma prior on the reciprocal or inverse

of σ2, the prior on σ2 is called an inverse Gamma distribution. The special case
where 2α = m is an integer and β = 2 is called an inverse χ2. If 2α = m is an
integer and β > 0 is arbitrary, then the prior for σ2 is a scaled inverse χ2 with
scale parameter 2β−1 and degrees of freedom m. Under this prior, the posterior
for σ2 is also an inverse χ2 but the posterior scale parameter 2η−1 is the prior
scale parameter plus a data dependent term (twice the first term on the r.h.s. of
(3.173)), and the posterior degrees of freedom is sample size plus prior degrees of
freedom. This provides a convenient way of remembering the posterior, except
for the term added into the scale parameter.

(vi) The posterior mean of λ is

E[λ |X ] = [n+ 2α ]

[

(X̄ − ν)2

n−1 + c−1
+ nS2 +

2

β

] −1

. (3.174)

(vii) The posterior mean of σ2 is
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E[ σ2 | x ] = E[ 1/λ | x ] = [n + 2α− 2 ]−1

[

(X̄ − ν)2

n−1 + c−1
+ nS2 +

2

β

]

.

(3.175)
For this to be defined and finite, we need n+ 2α− 2 > 0. The above is then

the Bayes estimator of σ2 under squared error loss with the prior specified in
(3.161), (3.167), and (3.170) (provided that α > 2 so that E[1/(σ2)2] < ∞, and
hence that the Bayes risk under squared error loss is finite, for otherwise every
estimator is Bayes because they all have infinite Bayes risk).

Even though we have done much work, we are not yet finished. We would
still like to find the unconditional posterior distribution of µ. For convenience,
let

µ̂ = E[µ|σ2, X] =
nX̄ + cν

n+ c
(3.176)

where the last expression is easily derivable from (3.165) and (3.167). Since the
latter expression is independent of σ2, in fact we have that µ̂ = E[µ|X] by a
successive conditioning argument: E[µ|X] = E[E[µ|σ2, X]|X] = E[µ̂|X] = µ̂
since µ̂ is σ(X) measurable. But, to press forward and get the full marginal
posterior distribution, note that by (3.159) and (3.171),

f(µ, λ|x) ∝ f(µ|λ, x)λn/2+α−1 e−λ/η

and plugging in (3.160) we obtain

f(µ, λ|x) ∝ λn/2+α−1/2 exp
{

−
[

η−1 + (n+ c)(µ− µ̂)2/2
]

λ
]

.

(3.177)
Integrating out λ gives

f(µ|x) ∝
[

η−1 + (n+ c)(µ− µ̂)2/2
]−(n+2α+1)/2

. (3.178)

A final remark:
(viii) If 2α = m is an integer, then

Law[ [η(n+ c)(n+m)/2]1/2(µ− µ̂) |X = x ] = t(n+m) (3.179)

where tr denotes Student’s t distribution with r degrees of freedom.
Of course, this is all based on our choice of the “convenience prior” given in

(3.161), (3.167), and (3.170). Note that our prior has four parameters: ν (the
prior mean for µ), c−1/2 (the prior scale parameter for µ w.r.t. σ), α (prior shape
parameter for the inverse Gamma on σ2), and β−1 (prior scale parameter for σ2).
The Bayes estimators are not determined until these are specified, but we can
note the following:

as c→ 0 , µ̂→ X̄ , (3.180)
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i.e. as prior precision for µ tends to 0, our posterior mean approaches the sample
mean. Also,

as c→ 0 , β → ∞ , and α = 1/2 , E[σ2|X] → n

n− 1
S2 , (3.181)

i.e. under these limiting values of the prior for σ2, we obtain the UMVUE as the
limiting Bayes estimator.

2

The prior chosen in Example 3.5.1 is an example of a conjugate prior fam-
ily. This is a family of prior distributions corresponding to a given sampling
distribution Law[X|θ] wherein the posterior belongs back in this family. For
our example above, the prior is sometimes called a (conditional) normal (given
σ2)-inverse Gamma, and the posterior is also a normal-inverse Gamma. Several
examples of conjugate prior families corresponding to Binomial, Poisson, and
Gamma sampling distributions are given in Exercises 3.5.9, 3.5.10, and 3.5.11.
See also DeGroot Optimal Statistical Decisions (1970).

3.5.2 Some Philosophical Aspects of Bayesian Statistics.

Bayesian Statistics is a worthwhile subject of study for many reasons, but it is
very controversial. Many stastisticians and scientists are opposed to the use of
Bayesian Statistics in practical problems for “philosophical” reasons. The main
objections usually involve the assumption of a random parameter and the choice
of its prior distribution. Many critics of the Bayesian approach claim that the
parameter is simply not random. In their view, it is a fixed but unknown con-
stant. However, consider the following. Suppose a consulting client approaches
a statistician and tells him he will measure the weights of several mice in a lab-
oratory. Prior to weighing the mice, their weights are unknown constants, which
become revealed upon the act of weighing, and then they become known con-
stants (ignoring measurement error). However, any competent statistician will
be willing to regard the weights of the mice as realizations of some random vari-
able. The main difference between say the weight of an individual mouse and
the mean weight of the population of mice is that when doing inference on the
latter it is mathematically convenient and productive to assume that the individ-
ual represents a “randomly” chosen mouse from the population. But if it is also
mathematically convenient and productive to assume that the population mean
weight is a random variable, then why not? Of course, the critic of Bayesian
Statistics will probably hasten to point out that the experiment of selecting a
mouse at random is one that can be repeated more or less indefinitely, and in
the sense of long run frequencies one could in principle obtain a reasonable esti-
mate of the whole distribution of random mouse weights. This is basically the
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long run frequency interpretation of probability. Because of the prevalence of this
criticism of Bayesianism, the battle between Bayesians and other statisticians is
often formulated as Bayesianism vs. Frequentism (and non-Bayesian statisticians
are sometimes called frequentists, even though not all non-Bayesians would ac-
cept this designation). The frequentist will only allow that quantities that are
obtained from more or less indefinitely repeatable experiments may be considered
as realized values of random variables. Since there is only one population mean
mouse weight, and one cannot repeat the experiment of getting a population of
mice and getting a mean weight for that population, the mean population weight
can not be so considered as a realized value of a random variable according to
the frequentist.

The author believes that such thinking (that only quantities obtained from
repeatable experiments are candidates for randomness) is overly constraining and
narrow minded. “Randomness” is a construction of the human mind. Even such
“obviously” random experiments as flipping a coin are not so obviously random
if one thinks about them for long. Many people might claim that a coin flip is
perfectly predictable if one knows the initial position of the coin, the force exerted
on it by the thumb and fingers, and the local state of the atmosphere. Therefore,
such people would claim, a coin flip is not random, but simply difficult to predict
because of the huge amount of information required. Similar remarks hold for
other games of chance. It is well known that computer generated random numbers
are not “truly random.” (Reference ??) The author’s belief is that “randomness”
has proven to be a useful mathematical model for many phenomena, and to
constrain its application with some philosophical dogmas is like the Pope telling
Galileo that the Copernican system cannot be used as a model for planetary
motions since it conflicts with the official teachings of the Church. The only way
to determine if the Bayesian approach of assuming a random parameter is a good
one is to learn about it and try it out on practical problems, and see if it leads
to good and useful practical results.

Another objection against Bayesian Statistics that is often raised is that one
cannot know the prior distribution of the parameter, and by assuming one or
another prior distribution one inevitably biases the results in some sense towards
the prior. For instance, considering the simple framework of estimating a normal
mean from i.i.d. observations with known variance (see remark (iii) in Example
3.5.1 above), one has that the Bayes estimate under squared error loss with a
normal prior as in (3.161) has bias

E[µ̂|µ] − µ =
1

nτ 2/σ2 + 1
(ν − µ) . (3.182)

So the bias depends in a complicated way on the prior and σ2, but bias is pro-
portional to ν − µ, the difference in the prior mean and the unknown true value
of the parameter. More generally, Bayesian methods are “biased” in some way
towards the “likely” values of the parameter according to the prior. This is not
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necessarily so bad for at least two reasons. Firstly, one can investigate the extent
of the bias and often times show that it is negligible. For instance, in (3.182)
we see that the bias tends to 0 as n → ∞ or τ 2 → ∞. In the next chapter, we
will see that this first effect happens quite generally: the bias from the prior di-
minishes as the sample size increases. Thus, with a large sample, which is when
any kind of statistics works best, the “biasing” effect from the prior becomes
negligible. Also, we will discuss “noninformative” priors in the next section (e.g.
the prior in the normal mean example wherein ν2 → ∞) and see that one can
generally choose the prior so as to make any biasing from the prior small. See
Exercise 3.5.6. Secondly, one inevitably has such biases anyway. For instance,
in the example of mouse weights above, if the client reported that the estimate
of the mean mouse weight was 10 tons, any competent statistician would object
(of course, any competent client would know something was wrong in the first
place). Clearly, we think that 10 tons is a highly improbable value for a mean
mouse weight, given our prior experience with weights of mice and other animals.
Offhand, the author can confidently predict that the mean weight of any popu-
lation of adult mice would be between .01 and 100 grams, and one can certainly
choose a prior for which the bias of the estimated mean is negligibly small in this
range (Exercise 3.5.6).

Of course, one should be well informed about this possible problem of “bias”
with Bayesian methods and be somewhat careful with any practical application,
but it is not any more difficult to check this than many other aspects of statis-
tical models, such as assumed normality of the distribution of the observations
(given the parameter). Indeed, in the mouse weight example, a single extremely
obese mouse can be much more of a detriment to the estimate than any bias
resulting from the Bayesian prior assumptions. Indeed, in such a case it may
be necessary to consider the prior distribution of such extreme obesity so as to
adjust the estimator and get a reasonable estimate of the population mean. Sci-
entists almost always discard discrepant observations from their data sets without
further thought, indicating that they definitely have prior beliefs about the dis-
tribution of their data. There have been various proposals on how to “elicit”
priors, meaning to turn these vague prior beliefs into a probability distribution,
but these methods are probably seldom if ever used in practice, and it is usually
the statistician’s responsibility to somehow make good use of these prior beliefs.

The fact that the prior is in most cases indeterminate from a scientific or
objective viewpoint seems not so serious when one recalls that many statistical
models are “overachievers” (Efron, ??). For instance, we often time use calcu-
lations based on a normal distribution for analysis of variance, and the results
have been shown to be somewhat insensitive to the assumed normality, both the-
oretically and experimentally. Many practical results in agriculture have been
obtained with the normal distribution when it is obviously not accurate in a nar-
row sense. Probability models often have a way of bending to accomodate the
data without breaking. This is not universally true and a good applied statisti-
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cian knows what the shortcomings are of any statistical procedure, Bayesian or
not.

The criticism that the prior is not objectively determinable is not always
true in the sense that sometimes the prior can be inferred from past experience,
for instance if in the mouse weight example we consider our population not the
population of all mice but rather the population of laboratory mice supplied by
whatever company supplied them (which is probably a more reasonable defini-
tion of the population), then we may have data available from several suppliers
which can be used (if we think of our supplier as random supplier) to estimate
a prior distribution. In fact, we really have a two stage statistical model (ran-
domly selecting a supplier, then randomly selecting mice from that supplier),
and of course this should be taken into account. The Bayesian calculations then
just become a formal way of relating the first stage model (distribution of mean
weight of the mice from a random supplier) to the second stage (individual mice
selected at random from a given supplier), and one must still decide whether to
be Bayesian or not in the estimation problem (i.e. whether or not to use a prior
distribution on the supplier parameters). Such two stage models sometimes are
called “random effects” models.

Another approach that is sometimes used is to try to estimate the parameters
of the prior from the data. In the random effects type models above, if we
think of the supplier parameters as prior parameters, then this makes some sense
if we have several samples from different suppliers, but the technique is often
applied in the more classical Bayesian framework where we have one sample
which provides inference about a single realization of a parameter value from
the prior. Such an approach is sometimes referred to as “Empirical Bayesian”
since the “prior” is determined empirically. However, one can be a Bayesian
Empirical Bayesian (i.e. put a prior on the parameters of the distribution of
the parameter; this gives rise to so–called “heirarchical” Bayesianism, and one
can obviously extend the heirarchy ad nauseum, putting priors on top of priors),
or a non-Bayesian Empirical Bayesian (i.e. assume the parameters of the prior
are unknown constants and estimate them by a non–Bayesian method, most
commonly the method of maximum likelihood, discussed in Section 1).

In some cases, a client may be quite happy to use a subjectively determined
prior, in which case the statistician can simply make the computations whether
or not he or she believes in the client’s prior. In many real world situations, one
is confronted with the problem of making a decision where there are two kinds of
data: (i) quantifiable data, and (ii) nonquantifiable data. For instance, if we wish
to predict interest rates for next year, there is plenty of historical data on inter-
est rates which is quantified and can be used with other quantified data such as
new housing starts to help in building a statistical model (probably one involving
time series analysis) to make quantified predictions, including probability distri-
butions. (Note: in some sense, next year’s interest rate is a fixed but unknown
constant. After the year is over, it will be a known constant. But it may nonethe-
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less be useful to regard it as random, just as the (now known) values of present
and past interest rates may be regarded as observed values of random variables
for the purpose of performing a statistical analysis.) However, there are many
items which defy quantification in the usual sense, such as consumer optimism
and guesses about the likelihood of various options available to the Chairman of
the Federal Reserve Board (who has a big impact on interest rates). An expert
on such matters may be quite happy to come up with subjectively determined
probabilities for the various contingencies, and then Bayesian methods provide
a neat mathematical framework for combining the “quantifiable” data with the
data wherein quantification is necessarily subjective. This feature of Bayesian
methods has attracted some attention in the “Artificial Intelligence” community
in recent years (References??). Exercise 3.5.12 (e) gives an example where such
ideas may be useful in the Law.

Just as there are non-Bayesian statisticians who close their mind to Bayesian
methods on the basis of some rather airy philosophical basis, there are dogmatic
Bayesians who are critical of all statistical methods that do not fall within their
realm of approval. Their complaints about others’ methods often involve labels
such as “incoherent” and have generally not attracted a wide following. The
author finds their arguments even less convincing than the arguments against
Bayesian Statistics, and it is certainly true that many clients would refuse to
listen to a statistician who told them that they must use Bayesian methods. For
these reasons, we don’t consider them here.

Our goal is to explain Bayesian theory so as to bring out its inherent math-
ematical beauty and provide some understanding of it so that the student who
so chooses will be able to apply it wisely in the future. It is the author’s opinion
that one should not pay too much attention to any brand of philosophy, as in
modern times philosophy has mostly proved an impediment to science. Science
is a creative activity and should not be subject to prior restrictions because of
some abstract arguments.

3.5.3 Extensions of Bayesian Theory.

In this subsection, we discuss non-informative and improper priors. We also dis-
cuss various aspects of decision rules obtained from Bayes rules through limiting
operations and their application to admissability in the next subsection. Similar
ideas will appear in the next section when we discuss least favorable priors and
minimax rules.

In Example 3.5.1, we saw that the UMVUE’s of µ and σ2 could be obtained as
the limits of Bayes estimators. In the next example, we consider what happens
to the posterior distribution in this limit.

Example 3.5.2 Suppose X1, X2, ..., Xn are i.i.d. N(µ, σ2), as in Example 3.5.1.
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Recall there that we assumed a prior with Lebesgue density

π(µ, σ2) =

[c/(2πσ2)]1/2 exp
[ −c

2σ2
(µ− ν)2

]

(σ2)−(α+1)

Γ(α)βα
exp

[

−1

βσ2

]

, σ2 > 0 .

The prior was most conveniently thought of as (i) µ conditional on σ2 isN(ν, c−1σ2),
and (ii) the marginal on 1/σ2 is a Gamma(α, β). We may ignore the normalizing
constants and write

π(µ, σ2 ) ∝ (3.183)

(σ2)−1/2 exp
[ −c

2σ2
(µ− ν)2

]

(σ2)−(α+1) exp

[

−1

βσ2

]

, σ2 > 0 .

Using the r.h.s. of (3.183) as the prior density would yield the same posterior
when formally plugged into (3.192), even though it is not normalized to be a
probability density function. (Important Remark: We are using the propor-
tionality calculations with ∝ introduced in Example 3.5.1. These can be very
useful for saving work in Bayesian calculations, but one must be careful to avoid
errors. In calculating the posterior density, one can always “throw away” fac-
tors that do not depend on the parameter, even though they may depend on the
data. Very often (especially when using conjugate priors), after obtaining the un-
normalized posterior density using proportionality calculations one can perform
the normalization as in equation (3.156) “by inspection,” as one can recognize
the form of the unnormalized posterior density.) We already saw in (3.180) and
(3.181) that if we let

c→ 0 , β → ∞, and α = 1/2 ,

then we recover the UMVUE’s as the limit of the Bayes estimators. Applying
these same limiting values to the unnormalized prior on the r.h.s. of (3.183), we
obtain

π(µ, σ2) ∝ (σ2)−1 , σ2 > 0 . (3.184)

Note that this is a density w.r.t. Lebesgue measure m2 of a σ–finite mea-
sure. (One can show that this density corresponds to Lebesgue measure m2 on
(µ, log(σ2)); Exercise 3.5.14). One can formally do the calculations in Example
3.5.1 and obtain the posterior Lebesgue density

f(µ|σ2, X) = (2πn−1σ2)−1/2 exp
[ −1

2n−1σ2
(µ− X̄)2

]

(3.185)

f(σ2|X) =
(σ2)−[(n−1)/2+1]

Γ((n− 1)/2)(nS2)−(n−1)/2
exp

[

−(σ2)−1/(nS2)−1
]

. (3.186)

Note that this is a Lebesgue probability density if and only if n ≥ 2 (Exercise
3.5.14). Let us use Post[.|X = x] to denote the posterior distribution. This
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basically means the same thing as Law[.|X = x], but we want to remind ourselves
that the usual conditional probability calculations may not be valid because we
start out with a prior Π (with Lebesgue density given in (3.184)) which is not
a probability measure (so in particular Theorems 1.5.6 and 1.5.10 are no longer
valid as they were in Example 3.5.1, and the results of Theorem 1.5.5 are not
valid). Then we may write equations (3.185) and (3.186) as

Post[µ− x̄|σ2, X = x] = N(0, σ2/n) (3.187)

and
Post[ns2/σ2|X = x] = χ2

n−1 . (3.188)

Note that these posterior distributions are formally the same as the sampling
distributions Law[µ − X̄|σ2, µ] and Law[nS2/σ2|σ2, µ]. We hasten to add that
the interpretations are very different, although a Bayesian who uses the prior of
(3.184), which is not a probability measure, would obtain the same results for
many inferences as a non-Bayesian. Also, one can show (Exercise 3.5.14)

Post[(µ− x̄)/(s/
√
n− 1)|X = x] = tn−1 , (3.189)

which is the same as the sampling distribution Law[(X̄ − µ)/(S/
√
n− 1)|µ, σ2].

One should note however that

Post[ (µ− x̄)/(s/
√
n− 1) , ns2/σ2 |X = x ] 6= (3.190)

Post[(µ− x̄)/(s/
√
n− 1)|X = x] × Post[ns2/σ2|X = x] ,

whereas the analogous sampling distributions do factor (Exercise 3.5.14).

2

Before this last example, we assumed the prior Π was a probability measure.
Now, assuming a dominated family of sampling distributions P ≪ µ where µ
is σ–finite, we see that the expressions in (3.154), (3.155), and (3.156) are still
meaningful as mathematical expressions provided Π is σ–finite and

J(1)(x) =
∫

Θ
f(x|θ) dΠ(θ) < ∞ . (3.191)

(Note that we need Π to be σ–finite in order to apply Fubini’s theorem (e.g. at
(3.154)) and Radon-Nikodym theory.) If (3.191) holds, then as in (3.156) we have
a posterior probability density w.r.t. the prior Π, namely

f(θ|x) =
f(x|θ)
J(1)

, (3.192)

and this is a probability density. That is, even if we don’t require that Π be
a probability measure, we may still be able to obtain a probability distribution
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for the posterior, meaning that f(θ|x) is the density w.r.t. Π of a probability
measure. Note that in Example 3.5.1 we required that n ≥ 2, and in some
cases (3.191) holds for some x and not others (Exercise 3.5.20(d)). If Π(Θ) =
∞ then it is called an improper prior. If Π(Θ) < ∞ (and Π is nonzero), then
it is called a proper prior. A generalized prior is simply a σ–finite prior, which
may be proper or improper. Of course a proper prior can be normalized to be a
probability measure and the normalizing constant will cancel out in the formula
in (3.192). Thus, without loss of generality a proper prior may be assumed to
be a probability measure. (Indeed, any two priors Π1 and Π2 are equivalent (in
that they give the same posterior) if they are proportional, i.e. Π1(A) = cΠ2(A)
for all measurable A ⊂ Θ, where c is some positive, finite, constant.) If (3.191)
holds, then we say the posterior is proper for that x. It follows from Theorem
1.5.6 that the posterior is always proper if the prior is proper.

It can be argued that the improper prior we chose in (3.184) in “noninfor-
mative”. This is not a formal terminology, but intuitively speaking it seems
reasonable in that for instance the bias in the Bayes estimators under squared
error loss has disappeared, so we are no longer seemingly getting any “informa-
tion” from the prior. The notion of a “noninformative prior” is not a well defined
mathematical concept, although in many circumstances there are one or more
“reasonable” choices for a noninformative prior. In Example 3.5.1, the prior den-
sity π(µ, σ2) = 1 on IR × (0,∞) may seem like the most obvious choice for a
noninformative prior, although it will not agree with (3.184) of course.

Whether the posterior is proper or not, the unnormalized posterior expected
loss may still be finite, i.e. we may have

ρ(x, d) =
∫

Θ
L(θ, d) f(x|θ) dΠ(θ) < ∞ .

Again, this could happen for some x and not others. Anyway, the integral is
always defined (possibly +∞), and we can define a generalized Bayes rule δ⋆(X)
as a decision rule such that

ρ(x, δ⋆(x)) ≤ ρ(x, d) for all d ∈ A .

Otherwise said, a generalized Bayes rule minimizes unnormalized posterior ex-
pected loss under a generalized prior. We are implicitly assuming a dominated
family P ≪ µ, σ–finite. A strict (or proper) Bayes rule is a Bayes rule for a proper
prior. Thus, we have seen that for i.i.d. N(µ, σ2) observations, the UMVUE’s
of µ and σ2 are generalized Bayes estimators. In fact, they are not strict Bayes
estimators, and in general an unbiased estimator will never be a proper Bayes
estimator except in trivial situations (Exercise 3.5.21).

Improper priors and generalized Bayes rules have some intuitive appeal and
are used often in practice by Bayesians. We will see one theoretical application of
generalized Bayes rules in Theorem 3.5.1 below. Another mathematically useful
concept is the following.
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Definition 3.5.1 A decision rule δ⋆ is called extended Bayes iff there is a se-
quence of proper priors Πk such that

lim
n

[

r(Πn, δ
⋆) − inf

δ
r(Πn, δ)

]

= 0 .

In the above, the infimum is taken over all decision rules δ.

2

Intuitively, a decision rule is extended Bayes for a sequence of priors Πk iff it
minimizes the Bayes risk “in the limit”. Exercise 3.5.15 gives a simple character-
ization. When computing a Bayes risk, one can in principle use either formula

r(Π, δ) =
∫

Θ

∫

Ξ
L(θ, δ(x)) dPθ(x) dΠ(θ) (3.193)

=
∫

Θ
R(θ, δ) dΠ(θ) ,

or
r(Π, δ) =

∫

Ξ

∫

Θ
L(θ, δ(x)) dP (θ|x)dPX(x) . (3.194)

The first formula is in general easier since we usually already “have” the measures
Pθ = Law[X|θ] and Π, meaning usually we know the formulae for their densities.
The second formula requires computation of the posterior Law[θ|X = x] and
also of the unconditional density of X, i.e. PX = Law[X]. Finding the posterior
usually involves an extra integration (to compute J(1)), and finding PX involves
an extra integration. For instance, if P ≪ µ σ–finite, then

dPX
dµ

(x) = fX(x) =
∫

Θ
f(x|θ) dΠ(θ) . (3.195)

Thus, in general we recommend (3.193) as the easier way to calculate r(Π, δ),
and in fact to write out all iterated integrals involved in (3.193) and see which
integrals are easier to perform and use Fubini’s theorem to contemplate various
orderings of the iterated integrals. But it is worth thinking about (3.194) since
one can often perform the integrations “by inspection” anyway.

3.5.4 Admissability.

Now, we turn to another important notion in decision theory, and then apply
Bayesian methods.

Definition 3.5.2 A decision rule δ0 is called admissable w.r.t. the given loss iff
there is no decision rule δ which is better than δ0.

2
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Admissability is not a very strong condition on a decision rule. For instance,
in estimation of g(θ) with squared error loss and a situation where P ≪ Pθ0 the
degenerate estimator δ0(X) = g(θ0) is admissable. To see this, note that if δ
is better then (Ω,F , µ)E(θ0, δ) = Eθ0 [(g(θ0) − δ(X))2] ≤ 0 = (Ω,F , µ)E(θ0, δ0),
so δ(X) = g(θ0), Pθ0-a.s., which is the same as δ(X) = g(θ0), P-a.s., i.e. δ(X)
= δ0(X), P-a.s., and hence (Ω,F , µ)E(θ, δ) = (Ω,F , µ)E(θ, δ0) for all θ, and in
particular δ is not better than δ0. Of course, this situation wherein P ≪ Pθ0
is very common (e.g. exponential families), so it will typically be the case that
these trivial estimators are admissable.

Nonetheless, from a purely decision theoretic point of view, admissability is
a minimal requirement of a decision rule. If it is not admissable, then there is
one which is better, so (from a purely decision theoretic point of view) why not
use the better one? Of course, decision theory must not be taken too seriously in
applications (e.g. the model is never really known exactly, practical computability
of the procedure is important, etc.), but it is still of interest to enquire as to the
admissability of a decision rule. The following provides one sufficient condition.

Theorem 3.5.1 (a) Let Π be a generalized prior and suppose δ0 is an essentially
unique rule minimizing the generalized Bayes risk, then δ0 is admissable.

(b) Suppose:

(i) A dominated family, i.e. P ≪ µ, σ–finite;

(ii) The loss function is strictly convex;

(iii) The generalized prior Π satisfies

Π({ θ : f(x|θ) > 0 }) > 0 , for P −− almost all x ;

(iv) δ0 is a generalized Bayes rule with finite generalized Bayes risk.

Then δ0 is admissable.

Remarks 3.5.1 (1) The generalized Bayes risk of a decision rule δ is

r(Π, δ) =
∫

Θ

∫

Ξ
L(θ, δ(x)) dPθ(x) dΠ(θ) =

∫

Θ
R(θ, δ) dΠ(θ) .

The generalized Bayes risk is always defined (since a loss is a nonnegative func-
tion), but it may be +∞. Assuming a dominated family, one can always show
that a generalized Bayes rule is a minimizer of the generalized Bayes risk, but it
is often the case that the generalized Bayes risk is infinite for all rules. Thus, an
essentially unique generalized Bayes rule is not necessarily the essentially unique
minimizer of the generalized Bayes risk. For example, consider the case of i.i.d.
N(µ, σ2) observations with σ2 known and µ unknown. X̄ is the essentially unique
generalized Bayes estimator squared error loss w.r.t. the improper Lebesgue prior,
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but its risk is constant (σ2/n) and its Bayes risk is ∞ (as is the Bayes risk of all
decision rules in this setup, by Remark (5), below).

(2) The hypothesis in part (a) that δ0 is the essentially unique rule which
minimizes the generalized Bayes risk means the following: if δ1 is any decision
rule satisfying

r(Π, δ1) ≤ r(Π, δ) , for all δ, (3.196)

then δ1 = δ0, P-a.s.
(3) Condition (iii) in part (b) is a little tricky to state rigorously because of our

notational abuses. Letting θ denote the random parameter element (a mapping
from the underlying probability space into the parameter space), and θ0 denote
a specific parameter value, condition (iii) may be written as

Pθ0 [ { x ∈ Ξ : Π({ θ : f(x|θ) > 0 }) > 0 } ] = 1 , for all θ0 ∈ Θ .

Note that when we fix x ∈ Ξ, { θ : f(x|θ) > 0 } ⊂ Θ, so the Π measure of this
set makes sense.

(4) Condition (iii) in part (b) holds in all “usual” families and priors.
(5) The requirement of finite generalized Bayes risk in (iv) cannot be deleted.

See Exercise 3.5.22. Note that if any decision rule has finite generalized Bayes
risk, then the generalized Bayes rule has finite generalized Bayes risk (Exercise
3.5.17).

2

Proof. For part (a), suppose some other estimator δ1 is as good as δ0. Then
R(θ, δ1) ≤ R(θ, δ0), which implies that r(Π, δ1) ≤ r(Π, δ0). But since δ0 is the
essentially unique rule which minimizes r(Π, δ) over δ, it follows that δ1(X) =
δ0(X), P-a.s. Hence, δ1 is not better than δ0 (in fact, it has the same risk
function). Thus, there is no rule better than δ0, so it is admissable.

For part (b), we will show that the conditions on the prior and the loss imply
that any generalized Bayes rule is essentially unique, and if it has finite generalized
Bayes risk then it is the essentially unique rule minimizing the generalized Bayes
risk. (Note that we are not proving the existence of a generalized Bayes rule, just
showing that it is unique if it exists.)

We first note the following useful fact.

Lemma 3.5.2 If λ is a strictly convex function defined on A ⊂ IRd (where A is
convex, by definition of a convex function), then there is at most one point a ∈ A
where λ takes its minimum value.

Proof. Suppose there are two points a1 6= a2 in A which minimize λ. By
strict convexity, if 0 < p < 1, then

λ(pa1 + (1 − p)a2) < pλ(a1) + (1 − p)λ(a2) = λ(a1) .



3.5. BAYESIAN ESTIMATION. 261

The last equality follows since λ(a1) = λ(a2) = the minimum value of λ. But the
inequality above shows that λ had a smaller value at the point pa1 + (1 − p)a2

than at a1, which contradicts the assumption that λ achieves its minimum at a1.

2

Using this lemma, we show that under the hypotheses of part (b), the unnor-
malized posterior expected loss is strictly convex in d for fixed x. To this end, let
0 < p < 1, then because of strict convexity of L as a function of d,

L(θ, pd1 + (1 − p)d2) < pL(θ, d1) + (1 − p)L(θ, d2) . (3.197)

Now,

[ p ρ( x , d1 ) + (1 − p) ρ( x , d2 ) ] − ρ( x , pd1 + (1 − p)d2 ) =

∫

Θ
{ [ pL( θ , d1 ) + (1 − p)L( θ , d2 ) ] − L(θ, pd1 + (1 − p)d2) } f(x|θ) dΠ(θ)

≥ 0 .

If the last expression = 0, then since the integrand is nonnegative, it follows
that the integrand is 0, Π-a.e. (Proposition 1.2.7(b)). This implies

Π({ θ : f(x|θ) > 0 and

( [ pL(θ, d1) + (1 − p)L(θ, d2) ] − L(θ, pd1 + (1 − p)d2 ) > 0 }

= 0 .

In view of (iii), this means there is a set of θ’s with positive Π measure on
which

[ pL(θ, d1) + (1 − p)L(θ, d2) ] − L(θ, pd1 + (1 − p)d2 ) > 0 } = 0 .

But a set of positive measure is nonempty, so this contradicts the strict convexity
of L(θ, .). Hence, ρ(x, .) is strictly convex.

Now by the lemma, if for each fixed x, δ0(x) is a minimizer over d of ρ(x, d),
then it is unique for each fixed x. Thus, the generalized Bayes rule is unique.
Now we show that such a δ0 is the essentially unique minimizer ofthe generalized
Bayes risk. Using (i) and Fubini’s theorem, as in equation (3.154), we obtain for
any rule δ

r(Π, δ) =
∫

Θ

∫

Ξ
L(θ, δ(x)) dPθ(x) dΠ(θ) =

∫

Ξ
ρ(x, δ(x)) dµ(x) .
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If δ1 has a generalized Bayes risk no larger than δ0, i.e.

∫

Ξ
ρ(x, δ1(x)) dµ(x) ≤

∫

Ξ
ρ(x, δ0(x)) dµ(x) .

Since both integrals are nonnegative, and the one on the right is finite (hypothesis
(iv)), we may subtract and obtain

∫

Ξ
[ ρ(x, δ1(x)) − ρ(x, δ0(x)) ] dµ(x) ≤ 0 .

Since δ0 is unique generalized Bayes, ρ(x, δ0(x)) < ρ(x, δ1(x)), so the integrand
above is nonnegative, and hence by Proposition 1.2.7(b) ρ(x, δ0(x)) = ρ(x, δ1(x))
µ-a.s. In particular, there is a set of x’s with positive µ measure (and hence a
nonempty set) where ρ(x, δ1(x)) . ρ(x, δ0(x)), contradicting the fact proved above
that δ0 is unique generalized Bayes.

Thus, we have shown that δ0 is the essentially unique minimizer of the gen-
eralized Bayes risk (we can always obtain another minimizer by changing δ0 on
a P-null set), so it is admissable by part (a).

2

This result does not apply to many examples, such as the case of i.i.d. N(µ, σ2)
observations with σ2 known and µ unknown. X̄ is generalized Bayes under
squared error loss w.r.t. the improper Lebesgue prior, but its risk is constant
(σ2/n) and its Bayes risk is ∞ (as is the Bayes risk of all decision rules in this
setup, by Remark (5) after the Theorem). The next result can be applied to
this case, however. It is similar in spirit to the previous theorem, but deals with
extended Bayesian ideas rather than generalized Bayesian ideas.

Theorem 3.5.3 Suppose:

(i) The parameter space Θ is Euclidean, say Θ ⊂ IRp;

(ii) The risk function of any decision with finite risk for all θ is continuous;

(iii) δ0 is a decision rule such that for some sequence of priors { Πk } we have:

(a) r(Πk, δ0) < ∞ for all k;

(b) For any open set U ⊂ IRp with U ∩ Θ 6= ∅, lim infn Πn(U ∩ Θ) > 0;

(c) limn [ r(Πn, δ
⋆) − infδ r(Πn, δ) ] = 0.

Then δ0 is admissable.

Proof. Suppose δ1 is better than δ0, i.e. R(θ, δ1) ≤ R(θ, δ0) for all θ with
R(θ0, δ1) ≤ R(θ0, δ0) for some θ0. Let ǫ = (1/2)[ R(θ0, δ0) − R(θ0, δ1) ] > 0, then
by continuity of R(., δi) there is an open set U containing θ0 such that for all
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θ ∈ U ∩ Θ, R(θ0, δ1) < R(θ0, δ0) − ǫ. Now by (iii) (b), there is an N and M > 0
such that for all n ≥ N , Πn(U ∩ Θ) > M . Then for all n ≥ N ,

r(Πn, δ0) − inf
δ
r(Πn, δ) ≥ r(Πn, δ0) − r(Πn, δ1)

by (iii) (a),

=
∫

Θ
[R(θ, δ0) − R(θ, δ1) ] dΠn(θ) ≥

∫

U∩Θ
[R(θ, δ0) − R(θ, δ1) ] dΠn(θ)

≥ ǫΠn(U ∩ Θ) ≥ ǫM > 0 .

But this contradicts (iii) (c). Hence, no such better rule δ1 exists, and hence δ0
is admissable.

2

The student is asked to find where hypothesis (ii) was used in the above
proof. We use this last result in the proof of the next one. This theorem for
d ≥ 3 shocked the statistical community when it was discovered by Charles Stein
in 1956.

Theorem 3.5.4 Let X1, X2, ..., Xn be i.i.d. random d-vectors with the N(µ, σ2I)
distribution where σ2 is known. Consider estimation of µ under Sum of Squared
Errors Loss, viz.

L(µ, d) = ‖µ− d‖2 .

Then X̄ = (1/n)
∑

iX i is admissable if and only if d < 3.

Partial Proof. We only show admissability when d = 1. The proofs for
the other dimensions are rather lengthy. We only mention that for d ≥ 3, one
can explicitly produce an estimator for µ which has strictly smaller risk than X̄,
which is known as the Stein estimator. See Berger, Statistical Decision Theory.

We may assume w.l.o.g. that σ2 = 1 and n = 1 (Exercise 3.5.18), so we write
X for X̄. Since R(µ,X) = 1 it is necessary to use a sequence of finite priors for µ
in Theorem 3.5.3 so that (i) holds. Also, the risk function is clearly continuous,
infinitely differentiable in fact (Exercise 3.5.19). Let

Πn = anN(0, n)

where the an are to be determined. Note that we must keep track of the nor-
malizing (or “unnormalizing”) here as the constants are important in hypotheses
(iii) (b) and (c) of Theorem 3.5.3. Then (iii) (a) holds. For (ii), if U ⊂ IR is open,
then it contains an interval say (µ1, µ2), and

Πn(U) ≥ Πn((µ1, µ2)) = an

∫ µ2

µ1

(2πn)−1/2 exp
[

−1

2
nµ2

]

dmu
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≥ ann
−1/2 (2π)−1/2

∫ µ2

µ1

exp
[

−1

2
µ2
]

dmu ,

where in the last inequality we used the elementary monotonicity properties of
the exponential. Thus,

Πn(U) ≥ C ann
−1/2

where C is a positive constant. Condition (iii) (b) of Theorem 3.5.3 will hold as
long as

lim inf
n
an/n

1/2 > 0 . (3.198)

For (iii) (c), we can easily derive the Bayes estimator δ⋆n, and hence the infδ
r(Πn, δ), and the result is

inf
δ
r(Πn, δ) = r(Πn, δ

⋆
n) = an

1

1 + 1/n

and hence

r(Πn, δ
⋆) − inf

δ
r(Πn, δ) = an[1 − (1 + n−1)−1] =

an
n+ 1

.

Thus, (iii) (c) of Theorem 3.5.3 holds if

lim inf
n
an/n = 0 . (3.199)

We can satisfy both (3.198) and (3.199) by taking

an = np , 1/2 ≤ p < 1 .

Then Theorem 3.5.3 applies to show that X is admissable.

2

3.5.5 The Posterior Mode.

Suppose we have a dominated family with densities {f(x|θ) : θ ∈ Θ} with Θ ⊂ IRp

and a prior Π ≪ mp with Lebesgue density π(θ). A posterior mode is a value θ̂
which maximizes the posterior density. If it is the unique maximizer, we speak
of the posterior mode.

Remarks 3.5.2 (a) Maximizing the (normalized) posterior density π(θ|x) =
f(x|θ)π(θ)/

∫

f(x|ϑ)π(ϑ)dϑ is equivalent to maximizing the unnormalized poste-
rior f(x|θ)π(θ). Note that it is no harder to compute the unnormalized posterior
than to compute the likelihood f(x|θ) and the prior density π(θ) and multiply
the two together, and so the maximization can often be done numerically with
ease, in contrast to the computation of a formal Bayes estimator which requires
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calculation of a p dimensional integral for each evaluation of the objective func-
tion.

(b) It is often easier to work with the logarithm of the posterior. For instance,
ifX = (X1, . . ., Xn) where theXi’s are i.i.d. with density f(x|θ), then maximizing
the posterior is equivalent to minimizing

− log π(θ|X) =
n
∑

i=1

− log f(Xi|θ) + (− log π(θ)) .

Note that if − log f(Xi|θ) is convex in θ (which happens, for instance, if θ is the
natural parameter in an exponential family), − log π(θ) is convex in θ, and one
of them is strictly convex, then − log π(θ|X) is strictly convex and then there is
at most one mode. We will return to this shortly.

(c) The posterior mode is very dependent on the choice of dominating measure
for the prior. We only defined it in the case of a Lebesgue density for the prior
(or in Exercise 3.5.12, for a prior density w.r.t. counting measure). If we change
from mp to another measure, say µ, then we need to multiply by dmp/dµ, and
after taking negative logarithms, the objective function to be minimized becomes

n
∑

i=1

− log f(Xi|θ) + (− log π(θ)) +

(

− log
dmp

dµ
(θ)

)

,

which will in general be somewhat different.
(d) Sometimes, the posterior mode is referred to as the maximum a posteriori

or MAP estimator.

2

In Exercise 3.5.12 it was seen that the posterior mode is the optimal Bayes
estimator under 0 − 1 loss assuming a discrete parameter space, but here we
are interested in a continuous parameter space. We can show that the posterior
mode is a limit of Bayes estimators for a family of loss functions that mimic 0−1
loss. Specifically, we will lose 0 if the estimate is “close” to the true value, and
otherwise lose 1, and then let “closeness” tend to 0.

Proposition 3.5.5 Let π be a Lebesgue density for a generalized prior. Assume
the following:

(P1) The posterior is proper. Denote the posterior Lebesgue density by π(θ|X).

(P2) π(θ|X) is a continuous function of θ.

(P3) The posterior mode θ̂ exists and satisfies the following strong uniqueness
condition:

∀δ > 0, µ(δ) = sup{π(θ|X) : θ ∈ Θ and ‖θ − θ̂‖ > δ} < π(θ̂|X) .
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(P4) θ̂ is an interior point of Θ.

Let A ⊂ IRp be measurable and for r > 0 define the loss function

Lr(θ, d) = 1 − IA((θ − d)/r) . (3.200)

Assume the following:

(L1) A is bounded i.e.

∃M <∞ such that ∀θ ∈ A, ‖θ‖ ≤M.

(L2) mp(A) > 0.

Then there exists r0 > 0 such that for all r > 0 with r ≤ r0, a general-
ized Bayes estimate under the loss Lr exists. Letting θ̂r denote any such Bayes
estimator, we have

θ̂r → θ̂ as r → 0. (3.201)

Proof. Consider the posterior expected loss

ρr(d) =
∫

Lr(θ, d)π(θ|X) dθ.

Here, the value of X is fixed throughout, so we do not bother to show it as an
argument of the functions. Note that since 0 ≤ Lr(θ, d) ≤ 1, ρr(d) ≤ 1 by (P1).
For convenience, define for d ∈ IRp and r ≥ 0 the set

d + rA = { θ ∈ IRp : θ = d+ rα for some α ∈ A }
= { θ ∈ IRp : (θ − d)/r ∈ A } .

Note that by the fact that Lebesgue measure is translation invariant

mp(d+ rA) = mp(rA) .

Also, since mp(A) > 0, we have mp(rA) > 0. (In fact, mp(rA) = rpmp(A).)
Let λ > 0 be given. Using continuity of the posterior density in (P2), find

η(λ) such that

‖θ − θ̂‖ < η(λ) ⇒ π(θ|X) >
1

2
[π(θ̂|X) + µ(λ/2)] .

where µ(·) is given in (P3). Clearly, η(λ) < λ/2. Now, if r < η(λ)/M and
‖d − θ̂‖ > λ, then ‖d − θ̂‖ > λ/2 +Mr so (θ − d)/r ∈ A implies ‖θ − θ̂‖ > λ/2
and hence

ρr(d) = 1 −
∫

(d+rA)∩Θ
π(θ|X) dθ

≥ 1 − µ(λ/2)mp(rA) .
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But if λ is small enough that we may assume ‖θ − θ̂‖ < η(λ)/M implies θ ∈ Θ
(i.e. the η(λ)/M neighborhood of θ̂ is contained in Θ), which is possible by (P4),
then

ρr(θ̂) = 1 −
∫

(θ̂+rA)∩Θ
π(θ|X) dθ

≤ 1 − 1

2
[π(θ̂|X) + µ(λ/2)])mp(rA) .

Since π(θ̂|X) > µ(λ/2), for such λ we have for all r sufficiently small that ρr(d) >
ρr(θ̂) when ‖d− θ̂‖ > λ, i.e. any minimizer of ρr must be in a λ–neighborhood of
θ̂. Since λ can be taken arbitrarily small, this shows that any sequence of Bayes
estimators must converge to the posterior mode.

To show that a Bayes estimator exists under the loss Lr for all r sufficiently
small, one can first show that the posterior expected loss is continuous (use
continuity of the posterior density and boundedness of the set A along with the
fact that a continuous function on a closed and bounded set in IRp is uniformly
continuous), and then use the fact that a continuous function on a closed and
bounded set achieves its maximum. By taking r sufficiently small, we can use
the argument above to restrict attention to some neighborhood of θ̂.

2

Note that the posterior mode depends on the dominating measure used for the
prior density (we specifically used Lebesgue measure for the dominating measure
above, but one can consider the posterior mode under a prior density w.r.t. other
dominating measures).

Now we present a formal, decision theoretic justification for maximum like-
lihood in a very simplified setting. Suppose Θ = {θ1, θ2, . . . , θk} is a finite set,
that we use a uniform prior (i.e. the prior probability π(θi) = 1/k is the same for
each possible value), and we use a 0–1 loss function (i.e. L(θ, d) = 0 if d = θ and
otherwise L(θ, d) = 1). Then we claim the MLE is the Bayes estimator (Exercise
3.5.12). Referring back to Proposition 3.5.5, suppose the MLE exists and satisfies
a condition like the strong uniqueness condition in (P3) o that Proposition. Then
if we use a uniform prior on a bounded subset of Θ which includes the MLE, then
the posterior mode will be the MLE. Thus, we see that the MLE satisfies some
optimality “in the limit.”

Note that the posterior mode and MLE have an advantage over a optimal
(decision theoretic) Bayes estimator as in (3.155) above in the one need only
solve an optimization problem in contrast to the numerical integration in high
dimensions that would typically be required to find Bayes estimates.
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Exercises for Section 4.2.

3.5.1 (a) Verify (3.153) gives the Bayes estimator of g(θ) under squared error
loss.

(b) Assuming u(θ) > 0, find the Bayes estimator for g(θ) under the normalized
or weighted squared error loss

L(θ, d) =

[

d− g(θ)

u(θ)

] 2

.

State what moments must be finite for the Bayes risk to be finite, and what
moments must be finite for the estimator to be finite.

(c) Assuming g(θ) > 0, find the Bayes estimator for g(θ) under the relative
squared error loss obtained by putting u(θ) = g(θ) in (b), and answer the ques-
tions regarding finiteness of moments.

(d) Find Bayes estimators in the setting of Example 3.5.1 for the following
estimands under the normal–inverse Gamma prior and the following loss func-
tions:

(i) Estimate µ under the normalized squared error loss L((µ, σ2), d) = (d −
µ)2/σ2.

(ii) Estimate µ2 under squared error loss.

(iii) Estimate σ2 under relative squared error loss.

In each of (i), (ii), and (iii), state any conditions on the prior parameters necessary
for the Bayes risk to be finite and any conditions necessary for the estimators to
be finite.

3.5.2 Assuming a dominated family, show that a Bayes rule is a function of
any sufficient statistic. Conclude that we can replace the observation with any
sufficient statistic.

3.5.3 Suppose Π ≪ ν and P ≪ µ where ν and µ are σ–finite. Show that the
posterior Law[θ|X = x] ≪ ν and give a formula for the posterior density w.r.t.
ν.

3.5.4 Suppose X, Y , and Z are random vectors with joint density f(x, y, z)
w.r.t. some product of σ–finite measures µ × ν × ρ. Show that the conditional
density of (X, Y ) given Z can be factored as f(x, y|z) = f(x|y, z)f(y|z).
3.5.5 (a) Verify equations (3.162), (3.166), (3.168), (3.169), (3.171), (3.172),

(3.174), (3.175), (3.176), (3.177), (3.178), and (3.179).
(b) Check that setting n = 0 in (3.169) and (3.172) causes the posterior to

reduce to the prior.
(c) Show that E[µ|X] = µ̂ provided that (n + 2α)/2 > 1. What condition is

required for E[µ2] < ∞?
(d) Verify (3.180) and (3.181).
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3.5.6 (a) Verify (3.182).
(b) Show that the bias tends to 0 as n→ ∞.
(c) Show that the bias tends to 0 as ν2 → ∞.
(d) Assuming σ2 = 1, n = 10, 0 < ν < 100, find a lower bound on τ 2 so that

the bias in (3.182) is < 10−4 for any value of µ in the range 0 < µ < 100.
(d) If we want to make the bias < 10−10, under the same assumptions as in

(c), how large must we take τ 2?

3.5.7 (a) Suppose (X, Y ) are jointly distributed random variables, and that
E[X2] = ∞. Then E[(X − Y )2] = ∞.

(b) Show that part (a) implies that E[g(θ)2] = ∞ implies r(Π, δ) = ∞ under
squared error loss for any estimator δ.

(c) Give results similar to (b) for normalized and relative squared error loss.

3.5.8 For a random vector Y with nonsingular covariance matrix, define

Precision[Y ] = ( Cov[Y ] )−1 .

Now let X1, X2 .., Xn be i.i.d. random d-vectors with distribuion N(µ, σ2V )
where V is a known positive definite definite matrix, and µ ∈ IRd and σ2 > 0 are
unknown. Assume a “convenience” prior for (µ, σ2) of the form

Law[µ|σ2] = N(ν, c−1σ2V ) , Law[1/σ2] = Gamma(α, β) .

Here, ν ∈ IRn, c > 0, α > 0, and β > 0 are parameters of the prior. Let Y denote
the entire n× d dimensional observation vector (X1, X2, .., Xn).

(a) Find the conditional posterior Law[µ|σ2, Y ]. State and prove analogues
of (3.164) and (3.165) along the way. Explicitly check that (i) your posterior is
a genuine probability density function, and (ii) if n = 0 the posterior reduces to
the prior.

(b) Find the marginal posterior Law[σ2|Y ]. Make the same checks (i) and (ii)
as in part (a).

(c) Find Bayes estimates of σ2 under squared error loss and relative squared
error loss. Determine the ranges of the prior parameter values which make these
losses meaningful and the ranges which make the estimates meaningful.

(d) Find Bayes estimates for g(µ, σ2) = γ′µ under squared error loss and the
normalized squared error loss

L((µ, σ2), d) =

(

d− γ′µ

σ

) 2

.

Here, γ ∈ IRn is given.
(e) Find a Bayes estimate for g(µ, σ2) = γ′µ/σ under squared error loss where

γ ∈ IRn is given.
(f) Show that the prior family chosen here is a conjugate family for this

sampling distribution.
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3.5.9 Suppose X is B(n, p) with p unknown. Assume a Beta(α, β) prior for p.
(a) Show that this family of priors is a conjugate family for the given family

of sampling distributions.
(b) Find Bayes estimates for pm under squared error and relative squared error

loss where m 6= 0. State conditions on the prior parameters necessary for the
Bayes risk to be finite and conditions necessary for the estimator to be defined
and finite.

(c) Determine, if you can, values of the prior parameters (possibly limiting
values) for which the Bayes estimator of pm under squared error loss equals the
UMVUE, when that exists.

3.5.10 (a) Let X be a Poisson(µ) random variable with µ > 0 unknown. Find
a conjugate family of priors on µ. Determine the corresponding posterior. Be
sure to perform the “checks” (i) and (ii) in Exercise 3.5.8 (a).

(b) Find Bayes estimators for µ under squared error loss and relative squared
error loss. Determine which ranges of the prior parameters give meaningful Bayes
risks and estimators.

(c) What if we have i.i.d. observationsX1,X2, ..,Xn which are each Poisson(µ)?
(Hint: using Exercise 3.5.2, you should be able to avoid any hard work.)

3.5.11 Suppose X1, X2, ..., Xn are i.i.d. Gamma(α, β) random variables.
(a) Find a conjugate family of prior distributions for the parameters α and β.
(b) Find Bayes estimates for as general estimands as you can handle under

(regular, normalized, or relative) squared error losses.

3.5.12 (a) Suppose g(θ) is a discrete estimand, i.e. there is a finite or infinite
sequence a1, a2, .. such that g(θ) ∈ {a1, a2, ..} for all θ. Otherwise said, g may be
written in the form

g(θ) =
∑

i

aiIΘi
(θ)

where the ai are distinct I R numbers and {Θi : i = 1, 2, ..} is a finite or infinite
sequence of disjoint subsets of Θ whose union is Θ.

Consider the 0 − 1 loss

L(θ, d) =











0 if d = g(θ) ,

1 if d 6= g(θ) .

Let

Bj = { x ∈ Ξ :

P [ θ ∈ Θj |X = x ] ≥ P [ θ ∈ Θi |X = x ] for all i > j, and

P [ θ ∈ Θj |X = x ] > P [ θ ∈ Θi |X = x ] for all i < j. } .
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That is, Bj is the set of observations wherein Θj has highest posterior probability,
and j is minimal among indices of elements of the partition of parameter space
with highest posterior probability. Show that

δ(X) =
∑

i

ai IBi
(X)

is a Bayes estimator. When is the Bayes estimator unique?
(b) Specialize the part (a) to g(θ) = θ when Θ is a discrete set. Show that

the Bayes estimator is a “posterior mode”.
(c) Specialize (b) to the case where Θ is finite and Π is the discrete uniform

distribution on Θ. Show that the Bayes estimator is the “maximum likelihood
estimator”.

(d) Specialize (c) to the case Θ = {0, 1}. Show that in this case, we may
express the posterior distribution as follows

P [ θ = 1 |X ]

P [ θ = 0 |X ]
=

f(X|1)

f(X|0)
× P [ θ = 1 ]

P [ θ = 0 ]
,

assuming no divisions by 0. Note that the probability of an event divided by the
probability of the complementary event is called the odds (ratio) of the event.
Also, the ratio f(X|1)/f(X|0) is called a likelihood ratio. The above may be
stated as “the posterior odds equals the prior odds times the likelihood ratio.”

3.5.13 Consider the following “application”of Exercise 3.5.12. At a murder
scene, some tissue of the murderer has been found and a forensic expert says it
is type A. It is known that a proportion p of the population has this tissue type.
A suspect is arrested and his tissue is tested. At the trial, various evidence is
presented regarding motive, alibi, and so forth and a juror decides that based
on this (nonquantifiable) evidence alone, there is a prior probability π that the
suspect is guilty. Now, the forensic expert presents the “data”, which is the tissue
type of the suspect. Our parameter space is Θ = { “the suspect is guilty”, “a
random person is guilty” }. Show that the posterior odds of guilt, say g/(1 − g)
where g denotes the posterior probability of guilt, may be determined from

g

1 − g
=











π/(p[1 − π]) if suspect’s type is A,

0 if suspect’s type is not A.

Comment on the importance of various assumptions in the model and possible
violations of those assumptions which may cause serious problems. Also, state
why it is important that π be determined without reference to the tissue type
data.

In American courts, it is required that the suspect be proved guilty beyond
a “reasonable shadow of a doubt.” Suppose we interpret this to mean that the
posterior probability of guilt must be ≥ 95%. If the proportion of tissue type A
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in the population is 20%, find a lower bound on the prior odds of guilt (based on
the nonquantifiable evidence) in order that the subject be found guilty by this
standard. Translate this lower bound on odds into a lower bound on probability.

For more discussion of these ideas, see Finkelstein and Fairly, “A Bayesian
approach to identification evidence,” Harvard Law Review, volume 83, pages 489-
517, 1970.

3.5.14 (a) Suppose we use the improper prior m2 on (µ, log σ2) ∈ IR2 in the
framework of Example 3.5.2. Show that this leads to the improper prior with
density (3.184) for the ordinary parameterization (µ, σ2).

(b) Verify that the posterior in (3.186) is a Lebesgue probability density if
and only if n ≥ 2.

(c) Verify (3.189).
(d) Verify (3.190), but show that the analogous inequality with sampling

distributions doesn’t hold.

3.5.15 Given ǫ > 0, a rule δ⋆ is called ǫ-Bayes if there is a proper prior Π such
that

r(Π, δ⋆) ≤ ǫ + inf
δ
r(Πn, δ) .

Show that δ⋆ is extended Bayes if and only if it is ǫ–Bayes for every ǫ > 0.

3.5.16 Show that a strict Bayes rule is extended Bayes.

3.5.17 Show that if any decision rule has finite generalized Bayes risk, then the
generalized Bayes rule has finite generalized Bayes risk.

3.5.18 Verify that in the proof of Theorem 3.5.4 for d = 1, there is no loss of
generality in assuming that σ2 = 1 and n = 1.

3.5.19 Show that the risk function in the proof of Theorem 3.5.4 is continuous
and infinitely differentiable in µ.

3.5.20 Let X be B(n, p) with 0 < p < 1 unknown. Consider priors of the form

πp,J(p) ∝ [p(1 − p)]r , 0 < p < 1 ,

and loss functions of the form

L0(p, d) =

[

d− p

[p(1 − p)]v

]2

.

State conditions under which (i) the prior is proper; (ii) the posterior is proper;
(iii) the generalized Bayes estimator exists; (iv) the generalized Bayes estimator
has finite Bayes risk, and (v) the generalized Bayes estimator is extended Bayes
or proper Bayes. Give formulae for the Bayes estimator, ordinary risk, and Bayes
risk where possible.
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3.5.21 Show that a proper Bayes estimator δ under squared error loss is un-
biased if and only its Bayes risk is 0. Explain why this will never happen in a
practical statistical problem.

3.5.22 (a) Suppose X is a N(µ, I) random d-vector. Show that under sum of
squared errors loss (see Theorem 3.5.4), X is generalized Bayes, extended Bayes,
UMVUE (in the sense that it uniformly minimizes the sum of mean squared
errors among unbiased estimators; you will have to reason with ad hoc methods
or extend the theory of UMVUE estimators from Chapter 4).

(b) True or false (i.e. give proof or counterexample):

(i) A generalized Bayes rule is admissable.

(ii) An extended Bayes rule is admissable.

(iii) A UMVUE (in the sense above) is admissable.
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3.6 Minimax Estimation.

Consider a decision theoretic setup with loss function L(θ, d). The minimax risk
is

inf
δ

sup
θ

R(θ, δ) ,

where the infimum is over all allowable decision rules δ and the supremum is
over all parameter values. One must be careful that inf and sup are taken in
the correct order, but the word “minimax” itself gives the order: the “mini” of
“minimax” refers to the infimum and the “max” to the supremum. If δ⋆ is an
allowable decision rule whose maximum risk equals the minimax risk, then we
say δ⋆ is a minimax rule. That is, δ⋆ is minimax if and only if

sup
θ

R(θ, δ⋆) = inf
δ

sup
θ

R(θ, δ) . (3.202)

Note that the minimax risk is always defined, even if a minimax rule does not
exist. Why might a minimax rule be desired? For any rule δ the maximum
risk supθ R(θ, δ) is a quantity which characterizes in some sense the performance
of that rule. Thus, a minimax rule is one which optimizes (minimizes) that
performance criterion.

Now the problem of finding a minimax rule is one of minimizing over δ a
single real valued function, namely the maximum risk supθ R(θ, δ). This is in
contrast with the problem of finding a uniform minimum risk rule, i.e. one which
simultaneously minimizes risk over all parameter values. Thus, the principle of
minimaxity is similar in spirit to the principle of Bayesian decision theory – we
don’t try to find a rule which is simultaneously optimal for a lot of functions
R(θ, ·), but one which is optimal for a single objective – average risk (under the
prior) for a Bayes rule and maximum risk for a minimax rule. Similarly to the
principle of Bayesian decision theory, in seeking minimax rules we usually don’t
restrict the class of rules (e.g. by unbiasedness), but search over all possible rules
(subject to measurability, of course).

3.6.1 Least Favorable Prior Distributions.

It turns out that Bayesian methods are very useful for finding minimax rules. For
one thing, the Bayes risk of a proper Bayes rule always gives a lower bound on
minimax risk. To see this, let Π be a proper prior and δ any decision rule, then

r(Π, δ) =
∫

Θ
R(θ, δ) dΠ(θ)

≤
∫

Θ
sup
ϑ∈Θ

R(ϑ, δ) dΠ(θ) (3.203)

=

[

sup
ϑ∈Θ

R(ϑ, δ)

]

∫

Θ
1 dΠ(θ)

= sup
ϑ∈Θ

R(ϑ, δ) ,
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i.e. an average is always less than the maximum. Hence, taking infimums over
allowable decision rules we obtain

inf
δ
r(Π, δ) ≤ inf

δ
sup
θ

R(θ, δ) . (3.204)

Of course, if δΠ is a Bayes rule for this prior, then infδ r(Π, δ) = r(Π, δΠ), so

r(Π, δΠ) ≤ inf
δ

sup
θ

R(θ, δ) . (3.205)

But it is not necessary for a Bayes rule to exist in order that (3.204) be valid.
In the computation (3.203), we have equality if and only if Π({θ : R(θ, δ) <

supϑ R(ϑ, δ)}) = 0. Applying this to the Bayes rule, we have

r(Π, δΠ) = sup
θ

R(θ, δΠ) (3.206)

if and only if

R(θ, δΠ) = sup
ϑ

R(ϑ, δΠ) , for Π–almost all θ. (3.207)

We claim that if (3.206) holds, then in fact δΠ is a minimax rule, for if there is a
rule δ with strictly smaller maximum risk, it would have better Bayes risk than
δΠ, i.e. if supθ R(θ, δ) < supθ R(θ, δΠ), then

r(Π, δ) ≤ sup
θ
R(θ, δ) (by (3.203))

< sup
θ

R(θ, δΠ)

= r(Π, δΠ) (by (3.206))

which contradicts that δΠ is a Bayes rule for Π. So, if we can find a proper prior
Π⋆ whose Bayes rule δ⋆ has Bayes risk equal to its maximum risk, then δ⋆ is a
minimax rule.

While the calculations above which show this fact are simple and elegant,
there is more intuition behind it. Suppose Π⋆ is a proper prior whose Bayes rule
δ⋆ has Bayes risk equal to its maximum risk. Since the Bayes risk of δ⋆ under Π⋆

equals the minimax risk, we see from (3.204) that the minimal Bayes risk under
Π⋆ (which is after all r(Π⋆, δ⋆)) is largest among minimal Bayes risks over all
priors, i.e.

sup
Π

inf
δ
r(Π, δ) = inf

δ
r(Π⋆, δ) . (3.208)

Note that the l.h.s. of this last equation is “maximin” Bayes risk. Otherwise said,
Π⋆ has the worst optimal Bayes risk. When (3.208) holds, we say the prior Π⋆

is least favorable. To explain this terminology, think of the decision problem as
a game with opponents Nature vs. the Statistician (or Decision Maker). Nature
gets to choose a proper prior Π which is revealed to the Statistician, and the
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Statistician then gets to choose a decision rule δ, which of course will be the Bayes
rule for that prior (since the Statistician is no dummy and wants to minimize his
or her risk). The the Statistician will have the highest possible risk if Nature
chooses the least favorable prior, so we see that the prior is “least favorable” for
the Statistician.

The above then gives us a strategy for finding minimax rules: try to guess
a least favorable prior, find its Bayes rule, and then see if (3.206) holds for that
rule. Note that by (3.207), the risk of such a rule is almost surely constant under
the prior. A stronger notion is that its risk function is constant everywhere, not
just Π–almost everywhere. A decision rule with constant risk (over the entire
parameter space) is called an equalizer rule. Thus, a proper Bayes rule which is
an equalizer rule is minimax.

Example 3.6.1 Let X1, X2, . . ., Xn be i.i.d. with the Fisher–von Mises distri-
bution FM(α, φ), α > 0 and φ ∈ [0, 2π), which has Lebesgue density

fα,φ(x) =
1

I0(α)
exp [α cos(x− φ)] , 0 ≤ x < 2π.

Here

I0(α) =
∫ 2π

0
eα cosu du

is a so called modified Bessel function of order 0. This is a common model for
angular data, i.e. when the Xi’s are angles measured in radians. For example,
the Xi’s might be replicated measurements of the angle between two surveying
stations as measured by a surveyor’s transit. The density has a mode at x = φ,
and α controls the spread of the density about the mode: larger values of α
correspond to a tighter (narrower) spread. Geometrically, a value of Xi is best
thought of as a point on the unit circle. Note in particular that x = .05 radians
and x = 2π − .07 radians are really just .12 radians apart, not 2π − .12 radians
apart. We must remember this when specifying a loss function.

Some other simple properties of this family of distribution will be useful below.
First, for x and y in [0, 2π), define mod 2π addition and subtraction by

x⊕ y =











x+ y if x+ y < 2π,

x+ y − 2π if x+ y ≥ 2π,

and

x⊖ y =











x− y if x− y ≥ 0,

x− y + 2π if x− y < 0.

Note that this is basically addtion of angles, but we “wrap” around the circle to
always keep the value between 0 and 2π. Now, we claim that if X ∼ FM(α, φ),
then X ⊕ ϕ ∼ FM(α, φ⊕ ϕ), and similarly for X ⊖ ϕ. (Exercise 3.6.2).
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We will assume α > 0 is known and consider the problem of estimating φ
under the loss

L(φ, d) = 1 − cos(φ− d) .

Note that this loss has the properties that for φ−d close to 0, it is approximately
the same as squared error loss (look at the Taylor series expansion for cosu) and
that as φ− d increases to values bigger than π, it “wraps” around to reflect the
fact that φ and d are now getting closer.

It is reasonable to conjecture that a least favorable prior for φ is Unif(0, 2π),
which means we don’t favor any part of [0, 2π) over any other part, i.e. “complete
ignorance.” We will compute the Bayes estimator under this prior and see if it
has the requisite properties, e.g. is an equalizer rule. Now the posterior density
is

p(φ|X) ∝ exp

[

α
n
∑

i=1

cos(Xi − φ)

]

= exp

[

α
n
∑

i=1

(cos(Xi) cos(φ) + sin(Xi) sin(φ))

]

= exp

[

α

(

cosφ
n
∑

i=1

cosXi + sinφ
n
∑

i=1

sinXi

)]

= exp
[

αβ
(

cos(φ) cos(φ̂) + sin(φ) sin(φ̂)
)]

= exp
[

αβ cos(φ− φ̂)
]

,

where

φ̂ = Arg

(

n
∑

i=1

cosXi,
n
∑

i=1

sinXi

)

β =





(

n
∑

i=1

cosXi

)2

+

(

n
∑

i=1

sinXi

)2




1/2

are the argument and length of the vector (
∑n
i=1 cosXi,

∑n
i=1 sinXi), respectively.

Here, the argument of a vector is the counter clockwise angle it makes with the
positive x–axis, i.e.

Arg(x, y) =























































































tan−1(y/x) if x > 0 and y ≥ 0,

π/2 if x = 0 and y > 0,

tan−1(y/x) + π if x < 0 and y 6= 0,

−π/2 if x = 0 and y < 0,

tan−1(y/x) + 2π if x > 0 and y ≤ 0,

undefined if both x = 0 and y = 0.



278 CHAPTER 3. BASIC THEORY OF POINT ESTIMATION.

Thus, we recognize that the posterior of φ is FM(αβ, φ̂). An expression for an
unnormalized posterior expected loss is

ρ(x, d) =
∫ 2π

0
[1 − cos(d− φ)] exp

[

αβ cos(φ− φ̂)
]

dφ

= I0(αβ) −
∫ 2π

0
cos(d− φ) exp

[

αβ cos(φ− φ̂)
]

dφ

= I0(αβ) − cos(d− φ̂)
∫ 2π

0
cos(φ̂− φ) exp

[

αβ cos(φ− φ̂)
]

dφ

− sin(d− φ̂)
∫ 2π

0
sin(φ̂− φ) exp

[

αβ cos(φ− φ̂)
]

dφ

= I0(αβ) − cos(d− φ̂)
∫ 2π

0
cosϑ exp [αβ cosϑ] dϑ

− sin(d− φ̂)
∫ 2π

0
sin ϑ exp [αβ cos ϑ] dϑ

= I0(αβ) − cos(d− φ̂)
∫ 2π

0
cosϑ exp [αβ cosϑ] dϑ ,

where the last equation follows from a simple symmetry argument (the integrals
from 0 to π and from π to 2π are equal in magnitude and opposite in sign). Now

∫ 2π

0
cosϑ exp [αβ cosϑ] dϑ

= 2

[

∫ π/2

0
cosϑ exp [αβ cosϑ] dϑ +

∫ π

π/2
cosϑ exp [αβ cosϑ] dϑ

]

= 2
∫ π/2

0
cosϑ (exp [αβ cosϑ] − exp [−αβ cosϑ]) dϑ

> 0 ,

since cosϑ > 0 for 0 < ϑ < π/2 and ea > e−a for a > 0. Thus, we minimize the
posterior expected loss over d by maximizing cos(d− φ̂), i.e. by taking d = φ̂.

Now we will show that φ̂ is an equalizer. To do this, we write its functional
dependence on the data and observe that shifting all the data by a fixed amount
(mod 2π) shifts φ̂ by the same amount, i.e.

φ̂(X1 ⊕ ϕ,X + 2 ⊕ ϕ, . . . , Xn ⊕ ϕ) = φ̂(X1, X2, . . . , Xn) ⊕ ϕ .

Recalling that Lawα,φ[Xi ⊕ ϕ] = Lawα,φ⊕ϕ[Xi], we have for the distribution of φ̂
that

Lawα,φ[φ̂(X1, X2, . . . , Xn)] = Lawα,0[φ̂(X1 ⊕ φ,X2 ⊕ φ, . . . , Xn ⊕ φ)

= Lawα,0[φ̂(X1, X2, . . . , Xn) ⊕ φ] ,

and so

Eα,φ[1 − cos
(

φ− φ̂(X1, X2, . . . , Xn)
)

]

= Eα,0[1 − cos
(

φ−
{

φ̂(X1, X2, . . . , Xn) ⊕ φ
})

]

= Eα,0[1 − cos φ̂(X1, X2, . . . , Xn)] ,
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which doesn’t depend on φ, i.e. the risk for φ̂ is a constant (independent of φ)
and hence φ̂ is an equalizer. Since φ̂ is a Bayes rule, it then follows that it is
minimax.

In Exercise 3.6.3 we consider various issues about this problem and other
estimators which might seem reasonable at first glance. The estimator φ̂ derived
here from minimaxity considerations is in fact probably the “best” estimator for
this problem for general use.

2

3.6.2 Least Favorable Sequences of Priors.

Unfortunately, there are few instances where the above theory can be applied,
because all of these arguments require that the prior be proper and a prior which
is intuitively “least favorable” on a parameter space of infinite extent will typically
be improper. However, it is easy enough to produce “in the limit” versions of the
notions above and these prove to be very useful.

Theorem 3.6.1 Suppose {Πn : n ∈ IN} is a sequence of proper priors and δ⋆ is
a decision rule such that

sup
θ∈Θ

R(θ, δ⋆) = lim
n→∞

inf
δ
r(Πn, δ) . (3.209)

Then δ⋆ is minimax.

Proof. Suppose δ1 is another decision rule with smaller maximum risk than
δ⋆, i.e. supθR(θ, δ1) < supθR(θ, δ⋆). Then, by (3.209) we have for some n that

sup
θ
R(θ, δ1) < inf

δ
r(Πn, δ)

≤ r(Πn, δ1) ,

which violates the fact that the average risk for δ1 cannot exceed its maximum
risk (equation (3.203)). Hence, no such δ1 exists with smaller maximum risk than
δ⋆ and thus δ⋆ is minimax.

2

Corollary 3.6.2 An extended Bayes equalizer rule is minimax.

2
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Remarks 3.6.1 (a) Note that when (3.209) holds, no proper prior Π can have
minimal Bayes risk infδ r(Π, δ) smaller than limn infδ r(Πn, δ) since then the max-
imum risk of δ⋆ would be strictly less than the average risk r(Π, δ⋆). This justifies
the following terminology: we say a sequence of proper priors {Πn : n ∈ IN} sat-
isfying (3.209) for some rule δ⋆ is a least favorable sequence of priors. This can
provide some intuitive guidance in seeking the sequence of priors with which to
construct a minimax estimator.

(b) Since supθ R(θ, δ⋆) ≥ r(Πn, δ
⋆) ≥ infδ r(Πn, δ) it follows that δ⋆ is extended

Bayes under the given sequence of priors (assuming that it has finite Bayes risk
for all priors in the sequence). Since it’s maximum risk equals its limit of Bayes
risks, it follows as in (3.207) that limn Πn({θ : R(θ, δ⋆) < supϑR(ϑ, δ⋆)}) = 0, so
again δ⋆ is in some sense “almost” an equalizer rule. Very often, it will be an
equalizer rule, so Corollary 3.6.2 will apply.

Example 3.6.2 Let X1, X2, . . ., Xn be i.i.d. N(µ, σ2) with µ unknown. We will
consider first the case σ2 known and use squared error loss. Then we know that
X̄ has constant risk σ2/n. It follows from the a slight modification of the proof of
Theorem 3.5.4 that X̄ is extended Bayes, so it is minimax by Corollary 3.6.2. We
will briefly sketch that modified proof here. First of all, we need to use proper
priors (probability measures), so take an = σ2 in the proof of that theorem, and
thus we are using a sequence Πn = N(0, nσ2) of priors. Computing

lim
n

[

r(Πn, δ
⋆) − inf

δ
r(Πn, δ)

]

= σ2[1 − (1 + 1/n)−1] → 0 as n→ ∞.

Thus, X̄ is extended Bayes. Note that our least favorable sequence of priors is
one which becomes increasingly “noninformative” about µ – i.e. for any fixed n,
the N(0, nσ2) has a mode at µ = 0, but as n → ∞, the variance tends to ∞
thus increasing the region in which we are a priori “likely” to find µ. Looked
at differently,

√
nΠn tends to a multiple of Lebesgue measure (like a “uniform”

distribution on IR), which puts equal “likelihood” on each interval of the same
length, and it seems reasonable that such a state of indefiniteness would be “least
favorable” to the statistician.

Now suppose σ2 is unknown, and then the risk of X̄ under squared error loss is
no longer constant (because it depends on the unknown parameter σ2). However,
we can fix this in a simple if artificial way: change to the following “weighted”
squared error loss,

L((µ, σ2), δ) =
(δ − µ)2

σ2
. (3.210)

Then, the risk for X̄ under this loss becomes the constant 1/n, i.e. X̄ is an
equalizer rule. Showing it is extended Bayes is easy! Take the sequence of priors
N(0, n)×δ1 on Θ = IR×(0,∞) = {(µ, σ2) : µ ∈ IR &σ2 > 0}. Since this sequence
of priors is one that corresponds to σ2 = 1 known (i.e. the factor δ1 in the prior
corresponds to knowing for certain that σ2 = 1), and since the weighted squared
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error loss function above with σ2 = 1 reduces to squared error loss, we obtain the
same result as when it is known that σ2 = 1, i.e. that X̄ is extended Bayes.

2

It is very convenient in this last example that we can use the result from
known σ2 to take care of the unknown σ2 as well. In general, one wouldn’t
expect that in a multiparameter problem such a trick would work. There are
at least two special features of the last example to note: the extended Bayes
estimator that was derived under known σ2 does not depend on the known value
of σ2 and its risk does not depend on the known value of σ2, so that it continues
to be an equalizer rule even when σ2 is unknown. The student should look for
this situation in multiparameter (or nonparametric) settings as it can save much
labor.

Example 3.6.3 Now suppose X1, X2, . . ., Xn are i.i.d. Poisson(µ) with µ ≥ 0
unknown. We will consider first the estimation of bµ for some constant b > 0
when n = 1, i.e. just consider a single X ∼ Poisson(µ). In the end, we will show
how to reduce the case for n > 1 to the case when n = 1.

We begin with squared error loss. The mean squared error of the UMVUE
bX of bµ is Varµ[bX] = b2µ, which is not constant. However, we can rectify this
situation very easily (if perhaps artificially) by changing to the weighted squared
error loss,

L(µ, d) =
(d− bµ)2

µ
, (3.211)

under which the risk of bX becomes the constant b2. Now we need only show
that bX is extended Bayes (with this loss) to show it is minimax. Under a proper
Γ(α, β) prior with Lebesgue density of the form

π(µ) ∝ µα−1 exp[−µ/β] , µ > 0,

we have the posterior density

π(µ|X) ∝ µX+α−1 exp[−µ(1 + β−1)] , µ > 0,

which is Gamma(X +α, (1+β−1)−1). Now the unnormalized posterior expected
loss is

ρ(X, d) =
∫ ∞

0

(d− bµ)2

µ
µX+α−1 exp[−µ(1 + β−1)] dµ

= d2Γ(X + α− 1)(1 + β−1)−(X+α−1)

− 2bdΓ(X + α)(1 + β−1)−(X+α)

+ b2Γ(X + α+ 1)(1 + β−1)−(X+α+1) ,
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which gives the Bayes estimator

δα,β(X) = − −2bΓ(X + α)(1 + β−1)−(X+α)

2Γ(X + α− 1)(1 + β−1)−(X+α−1)

=
b(X + α− 1)

1 + β−1
.

To compute Bayes risk, we first compute bias

Biasµ[δα,β ] = E

[

b(X + α− 1)

1 + β−1
| µ

]

− bµ

=
b(µ+ α− 1)

1 + β−1
− bµ

=
−b(µβ−1 − α + 1)

1 + β−1

and variance

Varµ[δα,β] =
b2Var[X|µ]

(1 + β−1)2

=
b2µ

(1 + β−1)2

so the mean squared error is

MSEµ[δα,β] =
b2[µ+ (µβ−1 − α+ 1)2]

(1 + β−1)2

=
b2{µ2β−2 + µ[1 − 2β−1(α− 1)] + (α− 1)2}

(1 + β−1)2

so under ourGamma(α, β) prior (for which E[µ] = αβand E[µ−1] = 1/[(α−1)β]),
the Bayes risk is

r(Gamma(α, β), δα,β)

= E

[

MSEµ[δα,β]

µ

]

=
b2{E[µ]β−2 + [1 − 2β−1(α− 1)] + E[µ−1](α− 1)2}

(1 + β−1)2

=
b2{αβ−1 + [1 − 2β−1(α− 1)] + β−1(α− 1)}

(1 + β−1)2

=
b2

1 + β−1
.



3.6. MINIMAX ESTIMATION. 283

So, fixing α and letting β → ∞ we obtain

lim
β→∞

[r(Gamma(α, β), bX) − r(Gamma(α, β), δα,β)]

= lim
β→∞

{

b2 − b2

1 + β−1

}

= lim
β→∞

{

b2
β−1

1 + β−1

}

= 0 ,

and hence, bX is extended Bayes and thus minimax.
To finish up, returning to the case of i.i.d. X1, X2, . . ., Xn which are

Poisson(µ), we reduce by sufficiency to T =
∑

iXi, which is Poisson(nµ), and
so we want to estimate n−1Eµ[T ] (i.e. replace µ in the previous argument by
nµ and take b = n−1), and it follows that the minimax estimator is T/n, the
UMVUE. Recall that this is for the weighted squared error loss in (3.211).

2

3.6.3 Discussion of the Principle of Minimaxity.

While minimaxity has a certain appeal because it avoids the arbitrariness of se-
lecting a restricted class of decision rules as in the principle of uniform minimum
risk and avoids the arbitrariness of selecting a prior as in Bayesian decision theory,
it is not without its own set of problems. The focus of the principle of minimax-
ity of optimizing the “worst case” (i.e. maximum risk) leaves something to be
desired on philosophical grounds. After all, why should we worry so much about
the worst case risk if it is in a part of parameter space which is not too impor-
tant or likely (but here we are already becoming Bayesian)? More to the point,
by putting the emphasis on the worst case of risk, we may obtain a procedure
that does very poorly at many other parameter values. Examples are given in
Exercises 3.6.8 and 3.6.9 below. Also, minimax procedures do not exist for many
problems so the principle is useless in those situations. In general, if one can
find a minimax estimator for a reasonable loss function, and if the estimator is
“reasonable” from various points of view, then its minimaxity provides somewhat
of a compelling argument for the use of that procedure. Certainly in all of the
examples above, minimaxity a strong justification for use of the estimators so
derived. In Examples 3.6.2 and 3.6.3, we already had considerable justification
for the use of the particular procedures that were minimax (e.g. both procedures
were UMVUE). For Example 3.6.1 we derived a minimax estimator when unbi-
asedness would really not apply and it is the only non–Bayesian justification we
have seen for the procedure so derived. But it would be highly desirable to have
other justifications.
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Exercises for Section 4.3.

3.6.1 True or false (i.e. give proof or counterexample):
(a) An admissable equalizer rule is minimax.
(b) If δ0 is a minimax rule and δ1 is a better rule, then δ1 is also minimax.
(c) A minimax rule is admissable.
(d) Assuming a complete and sufficient statistic exists, if δ⋆ is a minimax esti-

mator under squared error loss which is also unbiased and δ⋆ has finite maximum
MSE which is achieved at some θ, then δ⋆ is also UMVUE.

(e) If for some proper prior Π,

inf
δ
r(Π, δ) = ∞ ,

then every rule is minimax.

3.6.2 Let X ∼ FM(α, φ) and let Y = X±̂ϕ where ±̂ denotes addition or
subtraction mod 2π. Verify that Law[Y ] = FM(α, φ±̂ϕ).

3.6.3 In the setup of Example 3.6.1 consider the sample mean X̄ as an estimator
of φ. Is it unbiased? (Hint: Look at φ = 0 and φ = π.) Does the principle of
unbiasedness make sense in this context?

3.6.4 Suppose g(θ) is an estimand which takes on only finitely many values, i.e.
there is a finite sequence of distinct values a1, a2, .., am such that g(θ) ∈ { a1,
a2, ..., am } for all θ. Find the minimax estimator under the 0-1 loss, given in
Exercise 3.5.12.

3.6.5 Prove Corollary 3.6.2.

3.6.6 Let X1, X2, . . ., Xn be i.i.d. with unknown density and having a finite
second moment. Find the minimax estimator of µ = E[Xi] under normalized
squared error loss given in (3.210). (Hint: the problem is easy.)

3.6.7 Find the minimax estimator of p, 0 < p < 1, in a B(n, p) observation
model under (i) squared error loss, and (ii) the loss

L0(p, d) =
(d− p)2

p(1 − p)
.

Compare both minimax estimators with the UMVUE.

3.6.8 Let Θ = [0, 1] = A and consider the loss L(θ, d) = (1− θ)d + θ(1 − d) =
θ(1 − θ) + d(1 − d) + (d − θ)2. Show that δ(X) ≡ 1/2 is a minimax rule. Note
that this is independent of the distribution of the observable. Comment.

3.6.9 Let Θ = (0, 1] and A = [0, 1]. Consider the loss L(θ, d) = min { (θ−d)2/θ,
2 }, i.e. the smaller of relative squared error and 2. Suppose X is B(n, θ). Show
that the unique minimax rule is δ(X) ≡ 0. Comment.
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3.7 Asymptotic Comparison of Estimators.

Because exact computations of risks such as mean squared error in finite samples
is so difficult, it has been common practice for some time to compare asymptotic
distributions of point estimators and to consider “asymptotic optimality”. Unfor-
tunately, this subject is fraught with considerable mathematical difficulty. Here,
we will primarily consider the class of M–estimates with regular score functions
as introduced below, which simplifies matters considerably, although the student
is forgiven for finding even this to be difficult. In the final subsection, we point
out some issues that indicate the difficulties faced in a more general theory and
provide some caveats to be watchful of.

3.7.1 Solutions of Random Equations: Univariate Case.

The next result is similar in spirit to the δ-method, and also very useful. Many
estimators in practice are obtained by solving random equations of the form

λ̂n(θ) =
1

n

n
∑

i=1

ψ(Xi, θ) = 0 , (3.212)

where X1, X2, . . . are i.i.d. We will also use X to denote a r.v. with the same
distribution as the Xi’s. Here, ψ is sometimes referred to as the score function.
The equation is solved for the variable θ, and we will denote a solution by θ̂n,
where the subscript n indicates the sample size. Let us assume for now that θ is
1-dimensional and that ψ is “regular”. Let θ0 be such that

E[ψ(Xi, θ0)] = 0 , (3.213)

i.e. θ0 solves the “population” version of (3.212) where the average over the
sample is replaced by E[·]. Since the l.h.s. of (3.212) tends to the l.h.s. of (3.213)
by the law of large numbers, we expect θ̂n to tend to θ0 in some sense. If θ̂n is
close enough to θ0 then by first order Taylor expansion about θ = θ0 we have

0 = λ̂n(θ̂n) = λ̂n(θ0) + Dλ̂n(θ0)
(

θ̂n − θ0
)

+ . . . .

Here, D is differentiation w.r.t. the θ variable. After some algebraic manipulation
we obtain

√
n
(

θ̂n − θ0
)

=
[

Dλ̂n(θ0)
]−1 [−√

nλ̂n(θ0)
]

+ . . . .

By the Weak Law of Large Numbers, Dλ̂n(θ0)
P→ E[Dψ(Xi, θ0)]. Note that

λ̂n(θ0) is an average of mean 0 random variables, and assuming they also have

finite variance, by the Central Limit Theorem −√
nλ̂n(θ0)

D→ N(0, E[ψ(Xi, θ0)
2]),

so by Slutsky’s Theorem (assuming E[Dψ(Xi, θ0)] 6= 0),

[

Dλ̂n(θ0)
]−1 [√

nλ̂n(θ0)
]

D→ N(0, σ2)
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where

σ2 =
E[ψ(X, θ0)

2]

E[Dψ(X, θ0)]2
. (3.214)

Assuming we can show the remainder terms are negligible, we will obtain

√
n
(

θ̂n − θ0
)

D→ N(0, σ2) (3.215)

as well.
There is one difficulty we have glossed over here. When solving equations,

there are always the problems with existence and uniqueness of a solution. The
best we will be able to do is show that there exists a sequence of roots of
(3.212) with probability tending to 1 for which (3.215) holds. There may be
other roots to (3.212) as well. Another difficulty which we alluded to is the need
for some “regularity” conditions, e.g. differentiability of ψ as a function of θ and
E[Dψ(Xi, θ0)] 6= 0. Conditions such as these will be stated in the theorem, but
the reader should keep in mind that one does not formulate such requirements
before constructing the proof, but rather proceeds with the proof and discov-
ers the “right” conditions as the need arises. Now we are prepared to state the
first theorem for univariate θ. Some further difficulties arise in the multivariate
version of the theorem. The reader may wish to skip the proof on first reading.

Theorem 3.7.1 Let X, X1, X2, . . . be i.i.d. random d-vectors taking values in
W. Suppose Θ ⊂ IR and θ0 ∈ Θ. Let ψ : W×Θ −→ IR be a given score function.
Assume that the following hold:

(A1) θ0 is an interior point of Θ;

(A2) E[ψ(X, θ0)
2] <∞;

(A3) E[ψ(X, θ0)] = 0;

(A4) For each fixed x ∈ W, ψ(x, ·) is differentiable (as a function of θ) in a
neighborhood of θ0; the derivative is denoted Dψ(x, θ);

(A5) E[|Dψ(X, θ0)|] <∞;

(A6) E[Dψ(X, θ0)] > 0.

(A7) There exists M : W −→ [0,∞) and a constant p > 0 such that for all θ in
a neighborhood of θ0,

| Dψ(x, θ) − Dψ(x, θ0) | ≤ M(x)|θ − θ0|p (3.216)

and

E[M(X)] < ∞ . (3.217)
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Let λ̂n(θ) be defined by (3.212). Then there exists a sequence θ̂n such that as
n→ ∞,

P
[

λ̂n(θ̂n) = 0
]

→ 1 (3.218)

and √
n
(

θ̂n − θ0
)

D→ N(0, σ2) (3.219)

where σ2 is given in equation (3.214).

Remarks 3.7.1 (a) In (A4) we specifically mention that differentiability is w.r.t.
θ. Note that x takes values in the arbitrary measurable space W, so in general
it makes no sense to speak of differentiability w.r.t. x. In particular, x may be a
discrete variable.

(b) We could have replaced (A6) with E[Dψ(X, θ0)] 6= 0. Under this ass-
sumption, one may take E[Dψ(X, θ0)] > 0 with no loss of generality since one
can replace ψ by −ψ if E[Dψ(X, θ0)] < 0.

(c) The condition in (3.216) is called a Hölder condition of order p on Dψ(x, ·).
Such conditions are widely used in analysis. A Lipschitz condition is a Hölder
condition of order 1. If a function is continuously differentiable, then it satisfies a
Lipschitz condition (Exercise 3.7.1). Note that (3.217) is something extra which
is required for us to control the behavior of the constant in the Hölder condition
that depends on the extra variable x.

(d) Note that θ0 figures prominently in our assumptions. In a situation where
θ̂n is used to estimate an unknown parameter θ0, one will have to verify these
conditions for arbitrary θ0 in Θ. In this setting, condition (A1) immediately rules
out boundary points of Θ, and in fact the “usual” asymptotic distribution theory
does not hold for boundary values of the parameter.

Before giving the proof of the theorem, we need the following lemma.

Lemma 3.7.2 Under the assumptions of the theorem, the following results hold
for all θ in a fixed neighborhood of θ0.

(a) E[|ψ(X, θ)|] < ∞. Hence, the function

λ(θ) := E[ψ(X, θ)]

is defined.
(b) λ is differentiable and the derivative may be computed by interchanging

differentiation and integration, i.e.

Dλ(θ) =
∫

W
Dψ(x, θ) dPX(x) .

where PX = Law[X] denotes the distribution of X.
(c) Dλ is continuous at θ0.
(d) Dλ(θ) > 0.
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Proof of Lemma. Simultaneously applying (A1), (A4), and (A7), let δ0 > 0
be such that the interval J0 = (θ0 − δ0, θ0 + δ0) ⊂ Θ, ψ(x, ·) is differentiable on
J0, and (3.216) holds. By the mean value theorem, for θ ∈ J0,

ψ(x, θ) = ψ(x, θ0) + Dψ(x, θ0)(θ−θ0) + [Dψ(x, θ̃)−Dψ(x, θ0)](θ−θ0) (3.220)

where θ̃ is between θ and θ0. By (3.216)

| Dψ(x, θ̃) − Dψ(x, θ0) | ≤ M(x)|θ̃ − θ0|p ≤ M(x)|θ − θ0|p , (3.221)

the last inequality following from the fact that θ̃ is between θ and θ0.
Now to prove part (a) of the Lemma, we have by the last two displays that

for all θ ∈ J0,

E[|ψ(X, θ)|] ≤ E[|ψ(X, θ0)|] + E[M(X)]|θ − θ0|1+p < ∞

where the last inequality follows from (A2) (which implies of course thatE[|ψ(X, θ0)|] <
∞) and (3.217).

For part (b) we have by (3.220) and (3.221) that for all θ ∈ J0,

|Dψ(X, θ)| ≤ |Dψ(X, θ0)| + M(X)|θ − θ0|p

≤ |Dψ(X, θ0)| + M(X)δp0 := G0(X) (3.222)

and EG0(X) <∞ by (A5) and (3.217). Thus, by the theorem on interchange of
differentiation and integration (Theorem 1.2.10), λ is differentiable on J0 and the
derivatives may be computed by interchange of differentiation and integration.

Turning to part (c), we have from (3.221) that

Dψ(x, θ) − Dψ(x, θ0) → 0 as θ → θ0

and

| Dψ(x, θ) − Dψ(x, θ0) | ≤ M(x)δp0 := G1(x)

with EG1(X) < ∞ by (3.217). Thus we may apply dominated convergence to
claim that

E[Dψ(X, θ)] → E[Dψ(X, θ0)] as θ → θ0 .

In view of part (b) (i.e. that we can interchange D and
∫

. . . dPX), this shows
that Dλ(θ) → Dλ(θ0) as θ → θ0, i.e. that Dλ is continuous at θ0.

Finally, for part (d), since Dλ is continuous at θ0 and positive at θ0 (assump-
tion (A6)), it follows that it is positive in a neighborhood of θ0.

2
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Proof of Theorem 3.7.1. The first task is to prove the existence of θ̂n,

and to show simultaneously that θ̂n
P→ θ0. Take δ1 small enough that for all

|θ − θ0| ≤ δ1, Dλ(θ) > 0, and in particular, λ is strictly monotone increasing in
the interval J1 := [θ0 −δ1, θ0 + δ1]. In view of assumption (A3) (which states that
λ(θ0) = 0), this means λ(θ0 − δ1) < 0 and λ(θ0 + δ1) > 0. Let

c1 =
1

2
min{−λ(θ0 − δ1), λ(θ0 + δ1)}

which is positive. Now by the weak law of large numbers, λ̂n(θ)
P→ λ(θ) for each

fixed θ ∈ J1 (note that we are using part (a) of Lemma 3.7.2 here), and so for
the two values θ0 ± δ1, given ǫ1 > 0 there exists N1 such that

∀n ≥ N1, P
[

λ̂n(θ0 − δ1) < −c1 and λ̂n(θ0 + δ1) > +c1
]

≥ 1−ǫ1 . (3.223)

(See Exercise 3.7.2.) Now let δk > 0 and ǫk > 0 be sequences that decrease to
0. Then by iterating this argument, we obtain an increasing sequence Nk and a
sequence of positive numbers ck such that

∀n ≥ Nk, P
[

λ̂n(θ0 − δk) < −ck and λ̂n(θ0 + δk) > +ck
]

≥ 1−ǫk . (3.224)

Since λ̂n is continuous in J1 (after all, it is differentiable by (A4) so it is certainly
also continuous), on the event in the last display, λ̂n(θ) = 0 for some θ ∈ Jk :=
(θ0 − δk, θ0 + δk) by the intermediate value theorem. Let θ̂n ∈ Jk be such a root
of λ̂n(θ) = 0 for Nk ≤ n < Nk+1, and otherwise let θ̂n be defined arbitrarily (i.e.
on the complement of the event in (3.224) where the root may not exist). Then,
given any δ > 0 and ǫ > 0, there is a k such δk < δ and ǫk ≤ ǫ, and

∀n ≥ Nk, P
[

|θ̂n − θ0| < δ
]

≥ 1 − ǫ . (3.225)

This shows that θ̂n
P→ θ0.

Turning now to the asymptotic normality, on the event where λ̂n(θ̂n) = 0,
following the same reasoning as in (3.220) and (3.221), we have by the mean
value theorem that for some θ̃n between θ0 and θ̂n,

0 = λ̂n(θ0) + Dλ̂n(θ0)
(

θ̂n − θ0
)

+
[

Dλ̂n(θ̃n) − Dλ̂n(θ0)
] (

θ̂n − θ0
)

(3.226)

and

| Dλ̂n(θ̃n)−Dλ̂n(θ0)| ≤
[

1

n

n
∑

i=1

M(Xi)

]

|θ̃n−θ0|p ≤
[

1

n

n
∑

i=1

M(Xi)

]

|θ̂n−θ0|p .

Now by the weak law of large numbers (in conjunction with (3.217))

1

n

n
∑

i=1

M(Xi) = OP (1)
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and by the first part of the proof

|θ̂n − θ0|p = oP (1)

and so the product is oP (1), of course. Using these bounds in (3.226) we obtain

−λ̂n(θ0) =
[

Dλ̂n(θ0) + oP (1)
] (

θ̂n − θ0
)

.

By (A5) and the weak law in conjunction with Lemma 3.7.2 (b),

Dλ̂n(θ0) = Dλ(θ0) + oP (1) ,

which when plugged into the previous display yields

−λ̂n(θ0) = [Dλ(θ0) + oP (1)]
(

θ̂n − θ0
)

.

Hence
√
n
(

θ̂n − θ0
)

=
−√

nλ̂n(θ0)

Dλ(θ0) + oP (1)
.

By the Central Limit Theorem (we need (A2) and (A3) for this),

√
nλ̂n(θ0)

D→ N(0, E[ψ(X, θ0)
2]) ,

and by Slutsky’s theorem (noting that Dλ(θ0) 6= 0 by (A6)),

−√
nλ̂n(θ0)

Dλ(θ0) + oP (1)
D→ N(0, σ2)

where σ2 is given by (3.214).

2

Example 3.7.1 Suppose X1, X2, . . ., Xn are i.i.d. and modelled by a gamma
distribution with density

fα(x) =
xα−1

Γ(α)
e−x , x > 0.

Here, α > 0 is an unknown parameter to be estimated. The maximum likeli-
hood estimator (to be discussed in more detail in a later chapter) is obtained by
maximizing (as a function of α) the log–likelihood

ℓ(α) =
n
∑

i=1

[ (α− 1) logXi − log Γ(α) − Xi] .
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Taking derivatives and setting to 0, then multiplying by −1/n, we get an equation
of the form (3.212) where the score function is

ψ(x, α) = − logXi +D log Γ(α) .

Here, D = d/dα. Suppose α0 is a solution of

E[logX] = D log Γ(α) .

We shall see in the a later chapter that the “regularity” conditions (A1), (A2),
and (A4) through (A7) hold here. Furthermore, α0 is unique, and the solution
α̂n to equation (3.212) is unique in this case. Then we obtain that

√
n[α̂n − α0]

D→ N(0, σ2) where

σ2 =
Var[logX]

[D2 log Γ(α0)]
2 .

Note that E[− logX] = D log Γ(α0), so E[ψ(X,α0)
2] = Var[logX], here. More-

over, it is easy to get an estimate of this “asymptotic variance” (more properly,
variance of the asymptotic normal distribution) by replacing Var[logX] with the
sample variance of the transformed data logX1, logX2, . . ., logXn.

2

We close this subsection by mentioning that the “regularity” conditions in-
volving smoothness of ψ are not necessary. For instance, consider for real valued
data

ψ(x, θ) =











−1 if x− θ < 0;
0 if x− θ = 0;
+1 if x− θ > 0.

In general, the corresponding equation λ̂n(θ) = 0 may not have a solution, but
there does exist θ̂n such that λ̂n(θ) ≤ 0 for θ < θ̂n and λ̂n(θ) ≥ 0 for θ > θ̂n.
Such a θ̂n will be a sample median. Now λ(θ) = 1 − F (θ) − F (θ − 0), where F
is the c.d.f. of the distribution of the Xi’s, and if F ′ = f exists and is positive at
θ0, the median of F (which is unique when the density f exists and is positive at

m), then
√
n[θ̂n− θ0]

D→ N(0, 1/[4f(θ0)
2]), which is exactly the result that would

be obtained by formally applying the conclusion of the theorem even though ψ
does not satisfy the differentiability requirement.

3.7.2 Solutions of Random Equations: Multiparameter

Case.

Now we consider the situation in which the parameter θ is a vector. Many of
the calculations and arguments of the previous subsection go through with but
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minor modification, but there is a major problem in the proof. We will give the
intuitive discussion here and derive the result, state the theorem, give the proof
of the one difficult point, and leave the rest to the reader.

Now consider a random equation of the form

λ̂n(θ) =
1

n

n
∑

i=1

ψ(Xi, θ) = 0 , (3.227)

where now θ ∈ Θ ⊂ IRp is a p-dimensional vector, and ψ : X × Θ −→ IRp, so
(3.227) is really p equations in p unknowns. As before, we assume X1, X2, . . . are
i.i.d., and we denote a solution by θ̂n. Let θ0 be the solution of the “population”
equation, i.e. E[ψ(X, θ0)] = 0 (where 0 is the zero vector). Assuming then that

we can show θ̂n
P→ θ0, we have similar nonrigorous calculations which are

0 = λ̂n(θ̂n) = λ̂n(θ0) + Dλ̂n(θ0)
(

θ̂n − θ0

)

+ . . . .

Note that Dψ(x, ·) is a p× p matrix. Similarly to the case where θ is unidimen-
sional (except there is a matrix inverse), we obtain

√
n
(

θ̂n − θ0

)

=
[

Dλ̂n(θ0)
]−1 [−√

nλ̂n(θ0)
]

+ . . . ,

provided Dλ̂n(θ0) is invertible (which it will be in the limit under our regularity

conditions). Again, Dλ̂n(θ0)
P→ E[Dψ(X, θ0)], and by the Central Limit Theorem

for vector valued random variables, −√
nλ̂n(θ0)

D→ N(0, V ) where the covariance
matrix is given by

V = E[ψ(X, θ0)ψ(X, θ0)
′].

Again, similarly to the previous argument for one dimensional θ, (see Exercise
3.7.3)

[

Dλ̂n(θ0)
]−1 [√

nλ̂n(θ0)
]

D→ N(0,Σ) (3.228)

where

Σ = E[Dψ(X, θ0)]
−1E[ψ(X, θ0)ψ(X, θ0)

′](E[Dψ(X, θ0)]
′)−1 , (3.229)

and we expect the same limit in distribution for
√
n(θ̂n − θ0).

Recall that a significant portion of the proof of Theorem 3.7.1 dealt with
establishing the existence of θ̂n. That was accomplished by using monotonicity
of λ in a neighborhood of θ0 and invoking the intermediate value theorem. None
of that machinery will extend to the case when θ is a vector. The following rather
elementary theorem from analysis will be very useful in this context.

Theorem 3.7.3 (Contraction Mapping Fixed Point Theorem) Suppose
F ⊂ IRd is a closed and bounded set and h : F −→ F is a contraction map, i.e.
there is a positive constant C < 1 such that

‖h(x) − h(y)‖ ≤ C‖x− y‖
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for all x and y in F . Then there exists a unique fixed point for h in F , i.e. a
unique point x0 ∈ F such that h(x0) = x0.

2

The proof is left as an Exercise 3.7.6. It may be found in a number of books
on analysis, e.g. Rudin Principles of Mathematical Analysis, Theorem 9.2.3, p.
220.

Theorem 3.7.4 Let X, X1, X2, . . . be i.i.d. random d-vectors taking values in
W. Suppose Θ ⊂ IRp and θ0 ∈ Θ. Let ψ : W × Θ −→ IR be a given score
function. Assume that the following hold:

(A1) θ0 is an interior point of Θ;

(A2) E[‖ψ(X, θ0)‖2] <∞;

(A3) E[ψ(X, θ0)] = 0;

(A4) For each fixed x ∈ W, ψ(x, ·) is differentiable (as a function of θ) in a
neighborhood of θ0; the derivative is denoted Dψ(x, θ);

(A5) E[‖Dψ(X, θ0)‖] <∞;

(A6) The p× p matrix Dψ(X, θ0) is invertible.

(A7) There exists M : W −→ [0,∞) and a constant q > 0 such that for all θ in
a neighborhood of θ0,

‖Dψ(x, θ) − Dψ(x, θ0)‖ ≤ M(x)‖θ − θ0‖q (3.230)

and
E[M(X)] < ∞ . (3.231)

Let λ̂n(θ) be defined by (3.227). Then there exists a sequence θ̂n such that as
n→ ∞,

P
[

λ̂n(θ̂n) = 0
]

→ 1 (3.232)

and √
n
(

θ̂n − θ0

)

D→ N(0,Σ) (3.233)

where Σ is given in equation (3.229).

Partial Proof. Many of the details are basically the same as in the proof
of Theorem 3.7.1, and therefore we do not give them. Lemma 3.7.2 holds with
minor modifications (e.g. in part (d) one can only claim that detDλ(θ) > 0, or
< 0, depending on the sign of detDλ(θ0)). Just to sketch the proof of part (b)
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of that Lemma, the claim in (3.222) is modified as follows: there exists a δ0 > 0
such that for ‖θ − θ0‖ < δ0,

‖Dψ(X, θ)‖ ≤ ‖Dψ(X, θ0)‖ + M(X)‖θ − θ0‖p

≤ ‖Dψ(X, θ0)‖ + M(X)δp0 := G0(X)

in the same way.
Now we turn to the main difference in the multiparameter case – establishing

existence of θ̂n. For convenience, we put

A = E[Dψ(X, θ0)] .

We first show that there exists δ0 such that if 0 < δ ≤ δ0, ‖ζ1‖ ≤ δ, and ‖ζ2‖ ≤ δ,
then

λ̂n(θ0 + ζ2) = λ̂n(θ0 + ζ1) + A(ζ2 − ζ1) + Rn(ζ1, ζ2) (3.234)

where

‖Rn(ζ1, ζ2)‖ ≤ p [Un +Mnδ
q] ‖ζ2 − ζ1‖ . (3.235)

Here, Un and Mn are random variables that don’t depend on either ζ1 or ζ2, and
satisfy

Un = oP (1), and Mn = OP (1) . (3.236)

To this end, applying the mean value theorem to the ith component of λ̂n along
the line segment between θ0 + ζ1 and θ0 + ζ2 (note that the mean value theorem
only applies to scalar functions of a scalar variable) gives

λ̂ni(θ0 + ζ2) = λ̂ni(θ0 + ζ1) + ▽λ̂ni(θ0 + ζ̃)′(ζ2 − ζ1) (3.237)

where ζ̃ is on the line segment between ζ1 and ζ2. Since ‖ζ̃‖ ≤ δ, we have by
(A7) that

‖ ▽ λ̂ni(θ0 + ζ̃) − ▽λ̂ni(θ0)‖ ≤ Mnδ
q

where

Mn = p1/2 1

n

n
∑

i=1

M(Xi) = OP (1) ,

the last relation following from the weak law of large numbers using (3.231).
Similarly, by the weak law in conjunction with (A5),

▽λ̂ni(θ0) =
1

n

n
∑

i=1

▽ψi(Xi, θ0)
P→ E[ψi(X, θ0)] := ai

where a′i is the ith row of A. Thus,

‖ ▽ λ̂ni(θ0 + ζ̃) − ai‖ := Uni = oP (1) .
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Now we have by Cauchy-Schwarz

| [▽λ̂ni(θ0 + ζ̃) − ai]
′ [ζ2 − ζ1] |

≤ ‖▽ λ̂ni(θ0 + ζ̃) − ▽λ̂ni(θ0) + ▽λ̂ni(θ0) − ai‖‖ζ2 − ζ1‖
≤ [Mnδ

q + Un] ‖ζ2 − ζ1‖ ,

where Un := maxi Uni. Plugging the preceding computations back into (3.237)
gives (3.234) through (3.236).

We will apply Theorem 3.7.3 to a closed ball of radius δ centered at the origin,
viz.

Fδ = {ζ ∈ IRp : ‖ζ‖ ≤ δ} .

Here, δ will be determined. Define

h(ζ) = ζ −A−1λ̂n(θ0 + ζ) .

By the first part of the proof, if ‖ζ‖ ≤ δ, then

‖h(ζ)‖ = ‖ζ − A−1[λ̂n(θ0) + Aζ + Rn(0, ζ)]‖

= ‖A−1[λ̂n(θ0) + Rn(0, ζ)]‖ ≤ ‖A−1‖ ‖λ̂n(θ0) + Rn(0, ζ)‖
≤ ‖A−1‖

{

‖λ̂n(θ0)‖ + [Mnδ
q + Un]δ

}

. (3.238)

Note that ‖A−1‖ is just a constant C1. Now by assumptions (A2) and (A3)
and Chebyshev’s weak law of large numbers, (1/n)

∑n
i=1 ψj(Xi, θ0) = OP (n−1/2),

which implies λ̂n(θ0) = OP (n−1/2). So, given ǫ > 0, there exist finite positive C2

and C3 such that
P
[

‖λ̂n(θ0)‖ > C2n
−1/2

]

< ǫ/3

P
[

|Mn| > C3

]

< ǫ/3

P [|Un| > 1/(4C1)] < ǫ/3 ,

for all n sufficiently large. The latter two inequalities follow from (3.236), of
course. Now take δ1 such that

C1C3δ
q
1 ≤ 1/4

and given δ < δ1, take n large enough that

C2n
−1/2 < δ/(2C1) .

We have that the event

En :=
[

‖λ̂n(θ0)‖ < C2n
−1/2 & |Mn| ≤ C3 & |Un| ≤ 1/(4C1)

]
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has probability P (En) > 1− ǫ for all n sufficiently large. On this event, if δ < δ1,
we have by (3.238)

‖h(ζ)‖ ≤ C1

{

δ

2C1
+
[

1

4C1
+

1

4C1

]

δ

}

= δ ,

i.e., on the event En, h maps Fδ into itself for all δ < δ1.
Now we show the contraction mapping property. For δ < δ1 and for all n

sufficiently large, we have on the event En for all ζ1 and ζ2 in Fδ,

‖h(ζ1) − h(ζ2)‖ = ‖ζ1 − A−1λ̂n(θ0 + ζ1) − ζ2 + A−1λ̂n(θ0 + ζ2)‖

= ‖A−1Rn(ζ1, ζ2)‖ ≤ C1[Un +Mnδ
q] ‖ζ1 − ζ2‖

≤ C1

[

1

4C1
+

1

4C1

]

‖ζ1 − ζ2‖ =
1

2
‖ζ1 − ζ2‖ .

This shows the contraction mapping property, so we conclude that there is a
unique ζ0 such that h(ζ0) = ζ0, i.e.

ζ0 = ζ0 − A−1λ̂n(θ0 + ζ0) =⇒ λ̂n(θ0 + ζ0) = 0 .

Setting θ̂n = θ0 + ζ0 on the event En (where we know ζ0 exists) and defining θ̂n
arbitrarily off of En, we have

P
[

λ̂n(θ̂n) = 0
]

≥ P (En) > 1 − ǫ .

This argument will also give that θ̂n
P→ θ0 with a little extra work. What was

shown is that given ǫ > 0 there exists δ1 (which depends on ǫ) such that for all
δ < δ1 there exists N (which depends on δ) such that for all n ≥ N , there is a
root θ̂n of λ̂n(θ) = 0 satisfying ‖θ̂n−θ0‖ ≤ δ. This latter follows because we took
θ̂n = θ0 + ζ0 and ‖ζ0‖ ≤ δ. Thus, given a positive sequence ǫk ↓ 0 we can find
a positive sequence δk ↓ 0 and a sequence of positive integers Nk ↑ ∞ such that
for all n ≥ Nk, P [‖θ̂n − θ0‖ > δk] < ǫk. As in the proof of Theorem 3.7.1, this

suffices to show θ̂n
P→ θ0.

Now the proof of asymptotic normality follows as in the proof of Theorem
3.7.1.

2

3.7.3 Asymptotic Relative Efficiency.

For an estimand g(θ) consider an estimator γ̂n based on n observations (where
θ denotes the parameter). The estimator (sequence) γ̂n is called consistent and
asymptotically normal (CAN for short) if no matter what the true value θ0 is,
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we have
√
n[γ̂n − g(θ0)]

D→ N(0, Vg(θ0)) where Vg(θ0) is a nonsingular covariance
matrix of appropriate dimension. (Conceivably, one could have a different nor-
malizing factor than

√
n, but we only consider here

√
n.) Note that consistency

of such an estimator follows from the fact that we center by g(θ0), which implies

γ̂n
D→ g(θ0).
We will now restrict attention to real valued estimands g(θ) so Vg(θ) is just

a positive scalar. Let γ̂n1 and γ̂n2 be two CAN estimators of the same estimand
g(θ) with asymptotic variance functions Vg1(θ) and Vg2(θ), respectively. Then
the asymptotic relative efficiency of γ̂n2 with respect to γ̂n1 is

ARE(θ; γ̂n2, γ̂n1) :=
Vg1(θ)

Vg2(θ)
.

For simplicity, we will often write ARE21, ARE(θ), AREγ̂n2,γ̂n1 , etc. rather then
ARE(θ; γ̂n2, γ̂n1) depending on the context. Usually, we choose the order of the
estimators so that the ARE ≤ 100%. To explain this, and in particular explain
why the ratio of the variances has the particular order chosen, suppose we are
going to take n1 observations and estimate g(θ) with γ̂n1. Then of course the
approximate variance of the estimator is Vg1(θ)/n1. How many observations
would we have to take to achieve the same “accuracy” using the estimator γ̂n2?
Well, using the asymptotic variance formula again, we would need n2 observations
where n2 solved Vg2(θ)/n2 = Vg1(θ)/n1, which means that n2 = n1/ARE21. (Of
course, this may depend on the parameter θ.) Note that if ARE21 < 100%, then
we need more observations using γ̂n2, and we would say γ̂n2 is less efficient than
γ̂n1.

Example 3.7.2 Let X1, X2, . . ., Xn be i.i.d. N(µ, σ2) random variables. Two
possible estimators for µ are the sample meanXn and the sample median, denoted
Mn. and Both are CAN estimators:

√
n(Xn − µ)

D→ N(0, σ2)

and √
n(Mn − µ)

D→ N(0, 1/[4f(µ)2]) = N(0, 1.570796σ2) .

Thus, the asymptotic relative efficiency of the median w.r.t. the mean forN(µ, σ2)
location estimation is

AREMn,Xn
=

σ2

1.570796σ2
= 63.7% .

Note that in this case, the ARE doesn’t depend on the parameter. This is typical
of location–scale problems. See Exercise 3.7.14.

2
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In Exercise 3.7.9 it is shown that that sample median is more efficient than the
sample mean for location estimation in the Laplace (double exponential) family.

Example 3.7.3 Suppose X1, X2, . . ., Xn are i.i.d. from Gamma(α, 1) distribu-
tion. (Recall that the mean of Gamma(α, β) is αβ and the variance is αβ2.) The
Maximum Likelihood estimation of α was already discussed in Example 3.1.2.
From our theory above, we have for the asymptotic distribution of the MLE,
denoted α̂n,

√
n(α̂n − α0)

D→ N(0, 1/ψ1(α0))

where ψ1 = D2 log Γ is the trigamma function. Since Eα[X] = α, a method of
moment estimator (which is much easier to compute) would be X̄n, which has
asymptotic distribution

√
n(X̄n − α0)

D→ N(0, α0) .

Now, the ARE of X̄n w.r.t. α̂n is

ARE(α) = 1/(αψ1(α)) .

In this case, the efficiency depends on the parameter α. It is relatively easy
to evaluate the expression for the ARE within Mathematica. In Figure 8.1 is
shown a plot of ARE(α). Note that apparently as α → 0, ARE(α) → 0, and
as α → ∞, ARE(α) → 100%. These facts can be shown mathematically. Also,
ARE(1) = 60.8%. Thus, we see that although the method of moment estimator
is very easy to compute, it has relatively low efficiency w.r.t. the MLE except for
large values of α.
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ARE of Xbar w.r.t. MLE in Gamma(alpha,1)

Figure 8.1

2

3.7.4 Asymptotically Optimal M–Estimators.

In each of the examples of the previous subsection, we saw that the MLE was
asymptotically more efficient than the other estimator. Here, we will prove in
general that under the regularity conditions of Theorem 3.1.2, the MLE will
be more efficient than any other M–estimator with score function satisfying the
regularity conditions of Theorem 3.7.4 for all θ0 ∈ intΘ, with one extra regularity
condition thrown in. We will also discuss more general results that have been
proven about the asymptotic efficiency of the MLE and other estimators. In
general, under regularity conditions, we say a CAN estimator is (asymptotically)
(fully) efficient if the variance of it’s limiting normal distribution is the same
as that of the MLE. (The words “asymptotically” and “fully” are in parentheses
since they are frequently omitted.) Sometimes, a fully efficient estimator is called
Best Asymptotically Normal or BAN for short. That is, if the estimand g(θ) is
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real valued, then the estimator sequence γ̂n is asymptotically efficient or BAN iff
under any value of θ in the interior of Θ,

√
n[γ̂n − g(θ)]

D→ N
(

0,▽g(θ)tI(θ)−1 ▽ g(θ)
)

.

We do note that when the regularity conditions do not hold, then the MLE
may not even have an asymptotically normal distribution. An example is given
in Exercise 3.7.8.

Now we consider M–estimators for a real valued estimand g(θ). The general
form of the estimation equation would be

1

n

n
∑

i=1

ψ(Xi, γ) = 0 , (3.239)

where the solution is γ̂n. In order to be a consistent estimator of g(θ), we need

Eθ[ψ(X, g(θ))] = 0 , ∀θ ∈ intΘ. (3.240)

This is assumption (A3) of Theorem 3.7.1, except we are estimating g(θ), not θ.
Assume the other regularity conditions of Theorem 3.7.1 hold for all Pθ, θ ∈ intΘ.
Then we have under any such θ,

√
n
(

θ̂n − θ0
)

D→ N (0, vψ(θ)) , (3.241)

where

vψ(θ) =
Eθ[ψ(X, g(θ))2]

{Eθ[Dψ(X, g(θ))]}2
. (3.242)

This is just equation (3.214).
Now we will show that the asymptotic variance of any regular M–estimator is

larger than that of the MLE. Thus, we are in the setting of a dominated family,
so we have densities dPθ/dµ = f(·; θ). We will also assume that all the regularity
conditions of Theorem 3.1.2 hold, and others as needed.

For simplicity, we first consider the case where θ is one dimensional and g(θ) =
θ. First rewrite equation (3.240) as

∫

ψ(x, θ)f(x; θ) dµ(x) = 0

and differentiate under the integral sign (this is the other regularity condition we
need), using the product rule, to obtain

∫

Dψ(x, θ)f(x; θ) dµ(x) +
∫

ψ(x, θ)Df(x; θ) dµ(x) = 0 .

Now applying the usual trick of multiplying and dividing by f(x; θ) in the second
integral, we obtain

∫

Dψ(x, θ)f(x; θ) dµ(x) = −
∫

ψ(x, θ)[D log f(x; θ)]f(x; θ) dµ(x) (3.243)
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and applying Cauchy–Schwartz to the second integral, we obtain

{∫

Dψ(x, θ)f(x; θ) dµ(x)
}2

≤
{∫

ψ(x, θ)2f(x; θ) dµ(x)
}{∫

[D log f(x; θ)]2f(x; θ) dµ(x)
}

.

Plugging this back into equation (3.242) yields

vψ(θ) ≥
∫

ψ(x, θ)2f(x; θ) dµ(x)

{∫ ψ(x, θ)2f(x; θ) dµ(x)} {∫ [D log f(x; θ)]2f(x; θ) dµ(x)}

=
1

∫

[D log f(x; θ)]2f(x; θ) dµ(x)
=

1

I(θ)
(3.244)

which is the asymptotic variance of the MLE of θ. This establishes then that
in the case of a univariate parameter, no M–estimator is more efficient than the
MLE, under regularity.

Now we consider the multiparameter case but with a univariate estimand. To
derive the analog of (3.243), differentiating w.r.t. θ and interchanging differenti-
ation and integration in the equation

∫

ψ(x, g(θ))f(x; θ) dµ(x) = 0

(which is equation (3.240)) gives the following analog of (3.243):

∫

Dψ(x, g(θ))f(x; θ) dµ(x) ▽ g(θ) = −
∫

ψ(x, θ)[▽ log f(x; θ)]f(x; θ) dµ(x) .

(3.245)
The factor ▽g(θ) comes from the chain rule:

▽θψ(x, g(θ)) = Dγψ(x, γ)|
γ=g(θ)

▽ g(θ).

In this last display we have been careful to indicate which variables the differenti-
ations are with respect to. Thus, on the r.h.s. one differentiates ψ(x, γ) w.r.t. its
second argument (remember, we never differentiate w.r.t. x), evaluates that at
g(θ), and multiplies this scalar times the vector ▽g(θ). Of course, one may verify
this by computing the appropriate partial derivatives which are the components
of the vector on the l.h.s. and applying the chain rule for each of these.

Denote the MLE by θ̂n and recall that the asymptotic variance of the MLE is

▽g(θ)tI(θ)−1 ▽ g(θ)

so what we want to show is that

Eθ[ψ(X, g(θ))2]

{Eθ[Dψ(X, g(θ))]}2
≥ ▽g(θ)tI(θ)−1 ▽ g(θ)t ,
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or what is the same

Eθ[ψ(X, g(θ))2] ≥ {Eθ[Dψ(X, g(θ))] ▽ g(θ)]t I(θ)−1 [Eθ[Dψ(X, g(θ))] ▽ g(θ)} .

But in view of (3.245) the last display is equivalent to

Eθ[ψ(X, g(θ))2] ≥

{Eθ[ψ(X, g(θ)) ▽ log f(X; θ)]}t I(θ)−1 {Eθ[ψ(X, g(θ)) ▽ log f(X; θ)]} .

For simplicity, write

Y := ψ(X, g(θ))

Z := ▽ log f(X; θ).

Recall that I(θ) = Covθ[▽ log f(X; θ)] = Cov[Z], and that E[Y ] = 0 and E[Z] =
0. So what we want to show is that

Var[Y ] ≥ Cov[Y, Z]Cov[Z]−1Cov[Z, Y ] .

But this identity is easy. Denote by γ = Cov[Z, Y ] and V = Cov[Z] and let a
be the vector a = V −1γ. Then Var[atZ] = atV a = γtV −1V V −1γ = γtV −1γ. We
also have Cov[Y (atZ)] = Cov[Y, Z]a = γtV −1γ. Therefore, using the correlation
inequality (or Cauchy–Schwartz), [γtV −1γ]2 = {Cov[Y (atZ)]}2 ≤ Var[Y ]Var[atZ]
= Var[Y ]γtV −1γ, which shows that Var[Y ] ≥ γtV −1γ, as desired.

We briefly comment on the extra regularity condition needed to derive (3.243)
or (3.245), namely that one be able to differentiate under the integral sign in

∫

ψ(x, g(θ))f(x; θ) dµ(x) = 0 .

In Lemma 3.7.2 it was shown that the assumptions of Theorem 3.7.1 allow one
to differentiate under the integral sign in

λ(γ) =
∫

ψ(x, γ)f(x; θ0) dµ(x) .

Note that θ0 is fixed here and we are differentiating w.r.t. the second variable
in ψ. In Theorem 3.1.2 we assumed that one can differentiate under the integral
sign in

∫

f(x; θ) dµ(x) = 1 .

Note that neither of these is enough to permit the differentiation under the inte-
gral sign that we needed above.

Certainly the student who is familiar with the derivation of the Rao–Cramér
inequality (and all graduate students of statistics should be familiar with that
argument) will find similarity with the above argument. It is common to argue
that the fact that the MLE is the most efficient regular estimator follows somehow
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from the Rao–Cramér inequality, but this is false. Recall that the Rao–Cramér
inequality says that

Varθ(γ̂n)

n
≥ ▽g(θ)tI(θ)−1 ▽ g(θ) ,

where γ̂n is any unbiased estimator of g(θ) based on n i.i.d. observations and
I(θ) is the information for a single observation. What we have claimed here is
that if γ̂n is any regular CAN estimator of g(θ), then the asymptotic variance
Vg(θ) in √

n[γ̂n − g(θ)]
D→ N(0, Vg(θ)) (3.246)

satisfies
Vg(θ) ≥ ▽g(θ)tI(θ)−1 ▽ g(θ) , ∀θ ∈ intΘ . (3.247)

Now there is a world of difference between the two statements. In the second
statement, we are not saying anything about whether the estimator is unbiased or

not. Furthermore,
√
n[γ̂n−g(θ)] D→ N(0, Vg(θ)) does not imply Var[

√
n(γ̂n−g(θ0)]

→ Vg(θ). Recall that convergence in distribution does not imply convergence of
moments. Thus, in principle we could have Varθ[

√
n(γ̂n − g(θ))] = ∞ for all n

and Vg(θ) below the Rao–Cramér lower bound. See Exercises 3.7.12 and 3.7.13
for relevant examples. Thus, even though the statement of the Rao–Cramér in-
equality is very suggestive about the variance of the limiting normal distribution,
it in fact does not apply to give the kind of result we have here.

3.7.5 Counterexamples and Further Topics.

We now show that in fact it is possible for an estimator sequence to be CAN
with an asymptotic variance that violates (3.247). The following example is due
to Hodges and Le Cam, but one can construct much more general examples.

Example 3.7.4 Let X1, X2, . . ., Xn be i.i.d. N(µ, 1). Then the information
about µ in a single observation is I(µ) = 1, and the MLE is Xn and of course
Law[

√
n(Xn − µ)] = N(0, 1), ∀n. Now fix a > 0 and define

δn =

{

Xn if |Xn| ≥ n−1/4,
aXn if |Xn| < n−1/4.

(3.248)

Given ǫ > 0,

Pµ[ |
√
n(δn − µ) − √

n(Xn − µ)| > ǫ ]

≤ Pµ[δn 6= Xn]

= Pµ[−n−1/4 < Xn < n−1/4]

= Pµ[
√
n(−n−1/4 − µ) <

√
n(Xn − µ) <

√
n(n−1/4 − µ)]

= Φ(n1/4 − n1/2µ) − Φ(−n1/4 − n1/2µ) .
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Now if µ > 0, then ±n1/4 − n1/2µ → −∞ as n → ∞, and if µ < 0, then
±n1/4 − n1/2µ → ∞ as n → ∞. Either way, both terms of the r.h.s. of the
last display tend to the same value (1 or 0 according as µ < 0 or > 0), and so
their difference tends to 0. Thus, we have shown that for µ 6= 0,

√
n(δn− µ) and√

n(Xn − µ) are convergence equivalent. Since the latter is N(0, 1) for all n, it
follows that

√
n(δn − µ)

D→ N(0, 1) , as n→ ∞, when µ 6= 0. (3.249)

Similarly, for µ = 0,

P0[ |
√
nδn − √

naXn| > ǫ ]

≤ P0[|Xn| ≥ n−1/4]

= Φ(−n1/4) + 1 − Φ(n1/4)

→ 0 , as n→ ∞ ,

which shows that
√
nδn and

√
naXn are convergence equivalent when µ = 0.

Thus,

√
n(δn − µ)

D→ N(0, a2) , as n→ ∞, when µ = 0. (3.250)

For this example, the Fisher Information for a single observation is I(µ) = 1, so
if we take a < 1 then we can make the limiting normal distribution of

√
n(δn−µ)

have a variance less that of the MLE at the point µ = 0, although at every other
value of µ it has a limiting normal distribution with variance equal to the variance
of the MLE. We say that such an estimator is superefficient at µ = 0. In fact,

we can take a = 0 and one has that
√
n(δn − µ)

D→ 0, a degenerate probability
measure at 0. One can also construct estimators which are superefficient at more
than one point. See Exercise 3.7.15.

2

Such superefficient estimators provide a counterexample to the conjecture
that the variance of the asymptotic normal distribution of any CAN estimator
cannot be less than the variance of the MLE. However, it can be shown (under
regularity conditions on the family, of course) that the set of points where the
variance of a limiting normal distribution is less than the variance of the of the
asymptotic normal distribution of the MLE is a set of Lebesgue measure 0, so
in some sense the set of superefficiency must be a small one. See Shao [Ref???],
Theorem 4.16, or Lehmann [Ref ???] ??? for more details and references. Also,
if one restricts attention to “regular” estimators (which in some sense we did
in the previous section, but we considered only M–estimators), then the MLE
is asymptotically optimal in some sense with respect to a loss function which is
almost squared error loss. See ???. Now the MLE is not unique in this regard.
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There exist many (infinitely many) estimators which are asymptotically fully
efficient. For instance, Bayes estimators with regular priors are asymptotically
efficient, in regular families. Nonetheless, Bayesian methods have not enjoyed
the popularity of maximum likelihood estimation at least classically, perhaps in
part because it is relatively easy to compute MLE’s and the associated confidence
regions. As modern computers have become more powerful the computational
issues associated with the integrals required for the computation of the posterior
distribution have become much more tractable and the popularity of Bayesian
methods is on the increase.
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Exercises for Section 5.7.

3.7.1 Let f be a real valued function defined on a compact subset of IRd. Sup-
pose f is continuously differentiable. Show that f satisfies the Lipschitz condition

|f(x) − f(y)| ≤ M‖x− y‖

for all x and y in the domain of f , where M is a constant that doesn’t depend
on x or y.

3.7.2 Verify that display (3.223) follows from the fact that λ̂n(θ0±δ1) P→ λ(θ0±
δ1).

3.7.3 Verify (3.228).

3.7.4 Under the assumptions of Theorem 3.7.1, show that there exists δ1 > 0
such that θ0 is the unique root of λ(θ) = 0 in {θ : |θ − θ0| < δ1}. (See Exercise
3.7.7 below for a result on the uniqueness of θ̂n which however depends on the
more complicated proof of Theorem 3.7.4.)

3.7.5 Let ψ0 : IR −→ IR be a bounded twice continuously differentiable function
with both ψ′

0 and ψ′′
0 bounded. Assume ψ′

0 > 0 and ψ0(−x) = −ψ0(x) for all x.
Let X1, X2, . . ., be i.i.d. random variables with distribution symmetric about its
median m0 (i.e. F (m0 + x) = 1 − F (m0 − x) where F is the c.d.f. of Law[Xi]).
Show that there is a sequence of random variables m̂n such that

(i) For each n, m̂n is the unique solution to

n
∑

i=1

ψ0(Xi −m) = 0 .

(ii)
√
n[m̂n −m0]

D→ N(0, σ2), and find the asymptotic variance σ2.

3.7.6 Prove Theorem 3.7.3.
Hints: Let x1 be any point of F and recursively define xn+1 = h(xn). Show

that for m > n,

‖xm − xn‖ ≤
m−1
∑

i=n

‖xi+1 − xi‖ ≤ MCn

where M is a finite constant that doesn’t depend on n or m. Argue then that
{xn} is a Cauchy sequence, that x0 = lim xn ∈ F , and that x0 is a fixed point.
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3.7.7 Under the assumptions of Theorem 3.7.4, show the following:
(a) There exists δ1 > 0 such that θ0 is the unique root of λ(θ) = 0 in {θ :

‖θ − θ0‖ < δ1}.
(b) Given ǫ > 0, there is a δ > 0 and N such that for all n ≥ N ,

P
[

λ̂n(θ) = 0 has a unique root in {θ : ‖θ − θ0‖ < δ}
]

> 1 − ǫ .

3.7.8 Let X(n) be the maximal order statistic from n i.i.d. U(0, θ) distribution.
Show that n[θ0 − X(n)] converges in distribution to an exponential r.v. and
determine the mean of the limiting exponential distribution. Hint: Pθ0 [n(θ0 −
X(n)) > y] = Pθ0 [all Xi < θ0 − y/n] = {Pθ0[X1 < θ0 − y/n]}n = [1− y/(nθ0)]

n →
exp[−y/θ0] as n→ ∞.

3.7.9 Find the ARE of the sample mean w.r.t. the sample median as an esti-
mator of location in the location family generated by the Laplace distribution,
i.e. the density is

fa(x) =
1

2
exp [−|x− a|] , x ∈ IR ,

where −∞ < a <∞.
What is the result if we include a scale parameter as well?

3.7.10 (a) Let X1, X2, . . ., Xn be i.i.d. with Expo(µ) distribution. Consider
the following estimators for g(µ) = Pµ[Xi > x0] = exp[−x0/µ]:

δ1n =
1

n

n
∑

i=1

I(x0,∞)(Xi)

δ2n = exp[−x0/Xn]

Thus, δ1n is the fraction of observations exceeding x0. Find the ARE of the less
efficient estimator w.r.t. the more efficient estimator.

(b) Let r = x0/µ. Find the limits of ARE as r → 0 and r → ∞.
(c) Plot the ARE over a reasonable range of values of r and find graphically the

maximum value of ARE and the value of r at which this occurs (approximately).
(d) Suppose the data are not truly from an exponential distribution. Are both

estimators still CAN?

3.7.11 Consider i.i.d. Unif(0, θ) observations and the two estimators

δ1n = max{Xi : 1 ≤ i ≤ n}
δ2n =

n+ 1

n
δ1n

Here, δ1n is the MLE and δ2n is the UMVUE. Of course, neither estimator is
asymptotically normal, but we will make an asymptotic comparison as best as
possible.
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(a) Show that the variance of the UMVUE is larger than that of the MLE,
but the ratio of variance tends to 1 as n→ ∞.

(b) Show that asymptotically, the MSE of the UMVUE is half that of the
MLE. Is it reasonable to claim that the MLE is asymptotically efficient in this
case?

(Hint: the density of δ1n is nθ−nxn−1 for 0 ≤ x ≤ θ.)

3.7.12 (a) Suppose
√
n[γ̂n−g(θ)] D→N(0, Vg(θ)). Let Vn, Yn, and γ̂n be mutually

idependent with Yn having a finite mean but infinite variance and Vn Bernoulli
with success probability pn → 1 as n→ ∞. Put

γ̃n := Vnγ̂n + (1 − Vn)Yn .

Show that V ar[γ̃n] = ∞ for all n but
√
n[γ̃n − g(θ)]

D→ N(0, Vg(θ)).
(b) Give a distribution for a random variable Y which has finite mean but

infinite variance.

3.7.13 Show that the MLE S2
n of σ2 based on i.i.d. N(µ, σ2) observations (both

parameters unknown) has a variance which is strictly smaller than the Rao–
Cramér lower bound for unbiased estimates. How can this be?

Advanced Exercises.

3.7.14 Consider a location–scale family

fab(x) =
1

b
f01

(

x− a

b

)

(a) Suppose â1 and â2 are CAN estimators of location which are location–
scale equivariant (i.e. location estimators). Show that ARE21 is independent of
the parameters.

(b) Same as (a) but for CAN estimators of scale which are location invariant
and scale equivariant (i.e. scale estimators).

3.7.15 Let X1, X2, . . ., Xn be i.i.d. N(µ, 1). Construct estimators of µ which
are superefficient at a set of points Λ = {µi : 1 ≤ i ≤ ∞} where

(a) inf{|µi − µj| : i 6= j} > 0.
(b) Λ is the set of dyadic rationals, i.e. the set of all points of the form k/2−j

where k is an arbitrary integer and j is a nonnegative integer. (Hint: choose
sequences jn → ∞ at an appropriate rate and αn → 0 at an appropriate rate and
put δn = k/2−j for a maximal j with j ≤ jn provided |Xn − k/2−j| ≤ αn and
otherwise δn = Xn.)

3.7.16 Obtain formulae the ARE’s of the method of moment estimators of α
and β w.r.t. the MLE’s in the Gamma(α, β) family. If you have access to
Mathematica or a similar system, plot graphs of these ARE’s.


