Solutions to Homework 2

September 24, 2018

Solution to Exercise 1.4.5: Note that $P_{\lambda}(\{n\})>0$ for all $n \in \mathbb{N}$, so if $B \subset \mathbb{N}$, then $P_{\lambda}(B)=\sum_{n \in B} P_{\lambda}(\{n\}),>0$ unless $B=\emptyset$. The only P_{λ} null set is \emptyset, for all λ, so $P_{\lambda} \ll P_{1}$.

If we let μ be counting measure on N, then $P_{\lambda} \ll \mu$ since for $B \subset \mathbb{N}$, $\mu(B)=0$ implies $B=\emptyset$, which implies $P_{\lambda}(B)=0$. The density is given by

$$
f_{\lambda}(n)=\frac{d P_{\lambda}}{d \mu}(n)=e^{-\lambda} \lambda^{n} / n!, \quad \forall n \in \mathbb{N}
$$

To see this, note that for $B \subset \mathbb{N}$,

$$
P_{\lambda}(B)=\sum_{n \in B} P_{\lambda}(\{n\})=\int_{B} f_{\lambda} d \mu .
$$

(Note: we don't actually need this, but it is probably the most natural way to think of this problem for statistics students.) Therefore,

$$
P_{\lambda}(B)==\int_{B} f_{\lambda} d \mu=\int_{B} \frac{f_{\lambda}}{f_{1}} f_{1} d \mu=\int_{B} \frac{f_{\lambda}}{f_{1}} d P_{1}
$$

i.e.

$$
\frac{d P_{\lambda}}{d P_{1}}(n)=\frac{f_{\lambda}(n)}{f_{1}(n)}=\frac{e^{-\lambda} \lambda^{n} / n!}{e^{-1} / n!}=e^{-\lambda+1} \lambda^{n} .
$$

One could also use Proposition 1.4 .2 (c) here.
Solution to Exercise 1.4.9: First of all note that \ll is a transitive relationship, i.e., $\nu \ll \mu$ and $\mu \ll \lambda$ implies $\nu \ll \lambda$. To see this, if we let $\mathcal{N}(\mu)$ denote the collection of μ-null sets for any measure μ, then $\nu \ll \mu$ is the same as $\mathcal{N}(\nu) \supset \mathcal{N}(\mu)$, and $\mu \ll \lambda$ means $\mathcal{N}(\mu) \supset \mathcal{N}(\lambda)$, so the transitivity property of set inclusion gives us that $\mathcal{N}(\nu) \supset \mathcal{N}(\lambda)$ and hence that $\nu \ll \lambda$.

Turning to the more substantive part of the problem, we have that the defining property of $d \nu / d \mu$ says

$$
\nu(A)=\int_{A}\left(\frac{d \nu}{d \mu}\right) d \mu \quad \forall A \text { measurable. }
$$

Since $\mu \ll \lambda$, we can apply part (a) of Proposition 1.4.2 to the r.h.s. and we obtain

$$
\nu(A)=\int_{A}\left(\frac{d \nu}{d \mu}\right)\left(\frac{d \mu}{d \lambda}\right) d \lambda \quad \forall A \text { measurable. }
$$

However, this just state that $(d \nu / d \mu)(d \mu / d \lambda)$ satisfies the defining property of $d \nu / d \lambda$, which we know exists and is essentially unique by the RadonNikodym theorem since we are assuming μ and λ are σ-finite and we know from the previous paragraph that $\nu \ll \lambda$. Thus, we conclude

$$
\frac{d \nu}{d \lambda}=\left(\frac{d \nu}{d \mu}\right)\left(\frac{d \mu}{d \lambda}\right), \quad \lambda-a . e .
$$

Finally, assuming $\mu \simeq \nu$, i.e., that both $\nu \ll \mu$ and $\mu \ll \nu$, we can substitute ν for λ in the above and get

$$
\begin{aligned}
1 & =\frac{d \nu}{d \nu}, \quad \nu-a . e . \\
& =\left(\frac{d \nu}{d \mu}\right)\left(\frac{d \mu}{d \nu}\right), \quad \nu-a . e .
\end{aligned}
$$

where the first equality follows since the constant function 1 satisfies the defining property to be the Radon-Nikodym derivative (namely, $\int_{A} 1 d \nu=$ $\nu(A))$. Now the equality above shows that both factors in the last expression must be nonzero, ν-a.e. So the reciprocal $(d \mu / d \nu)^{-1}$ is well defined ν-a.e., and the result follows.

Solution to Exercise 1.4.11: (a) Assume of course that the μ_{i} are σ-finite, and that the joint density factors. Then

$$
\begin{aligned}
P & {\left[X_{1} \in A_{1} \& X_{2} \in A_{2}\right] } \\
& =P\left[\left(X_{1}, X_{2}\right) \in A_{1} \times A_{2}\right] \\
& =\int_{A_{1} \times A_{2}} f\left(x_{1}, x_{2}\right) d\left(\mu_{1} \times \mu_{2}\right)\left(x_{1}, x_{2}\right) \\
& =\int I_{A_{1} \times A_{2}}\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right) d\left(\mu_{1} \times \mu_{2}\right)\left(x_{1}, x_{2}\right) \\
& =\int I_{A_{1}}\left(x_{1}\right) I_{A_{2}}\left(x_{2}\right) f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) d\left(\mu_{1} \times \mu_{2}\right)\left(x_{1}, x_{2}\right) \\
& =\iint I_{A_{1}}\left(x_{1}\right) I_{A_{2}}\left(x_{2}\right) f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) d \mu_{1}\left(x_{1}\right) d \mu_{2}\left(x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\int I_{A_{2}}\left(x_{2}\right) f_{2}\left(x_{2}\right) \int I_{A_{1}}\left(x_{1}\right) f_{1}\left(x_{1}\right) d \mu_{1}\left(x_{1}\right) d \mu_{2}\left(x_{2}\right) \\
& =\int I_{A_{1}}\left(x_{1}\right) f_{1}\left(x_{1}\right) d \mu_{1}\left(x_{1}\right) \int I_{A_{2}}\left(x_{2}\right) f_{2}\left(x_{2}\right) d \mu_{2}\left(x_{2}\right) .
\end{aligned}
$$

In the second to last line, we factored out the functions of x_{2} from the $d \mu_{1}\left(x_{1}\right)$ integral since they are "constants" (because the value of x_{2} is held fixed when computing $\left.\int \cdots d \mu_{1}\left(x_{1}\right)\right)$. In the last line, we factored out the constant from the $\int \cdots d \mu_{2}\left(x_{2}\right) \int I_{A_{1}}\left(x_{1}\right) f_{1}\left(x_{1}\right) d \mu_{1}\left(x_{1}\right)$ from the $\int \cdots d \mu_{2}\left(x_{2}\right)$ (since it doesn't involve x_{2}). We recognize the final expression as $P\left[X_{1} \in\right.$ $\left.A_{1}\right] P\left[X_{2} \in A_{2}\right]$, and since A_{1} and A_{2} are arbitrary (measurable) sets, this shows X_{1} and X_{2} are independent.
(b) For n random variables X_{1}, \ldots, X_{n} such that Law $\left[X_{1}, \ldots, X_{n}\right] \ll \mu$ $=\mu_{1} \times \cdots \times \mu_{n}$, where μ_{i} is on the range of X_{i}, and all the μ_{i} are σ-finite, then if the joint density $f_{1 \cdots n}=d \operatorname{Law}\left[X_{1}, \ldots, X_{n}\right] / d \mu$ factors as

$$
f_{1 \cdots n}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right),
$$

(where of course $f_{i}=d \operatorname{Law}\left[X_{i}\right] / d \mu_{i}$), then X_{1}, \ldots, X_{n} are independent.
Essentially the same argument as in part (a) will work. We start with

$$
P\left[X_{1} \in A_{1} \& \cdots \& X_{n} \in A_{n}\right]
$$

write it in terms of a multiple integral using Fubini's theorem, and we can factor out each of the individual integrals of the form $\int_{A_{i}} f_{i} d \mu_{i}$, and express the probability above as $\prod_{i=1}^{n} P\left[X_{i} \in A_{i}\right]$.

Solution to Exercise 1.5.2: To verify Remark 1.5.4, we simply need to check that $I_{A_{i}}=I_{\left\{a_{i}\right\}}(Y)$, but this is immediate since the A_{i} s are disjoint and the a_{i} s are distinct, so $Y(\omega)=a_{i}$ if and only if $\omega \in A_{i}$.

To verify equation (1.70), if we define

$$
h(y)=\int_{\Lambda_{1}} g(x, y) f_{X \mid Y}(x \mid y) d \mu_{1}(x)
$$

then we observe from the previous equation that

$$
h(Y)=E[g(X, Y) \mid Y] .
$$

Solution to Exercise 1.5.7: For part (a), let's start with

$$
\begin{aligned}
& E\left[(X-E[X \mid \mathcal{G}])^{2} \mid \mathcal{G}\right] \\
& \quad=\quad E\left[X^{2} \mid \mathcal{G}\right]-2 E[E[X \mid \mathcal{G}] X \mid \mathcal{G}]+E\left[E[X \mid \mathcal{G}]^{2} \mid \mathcal{G}\right] \\
& \quad=\quad E\left[X^{2} \mid \mathcal{G}\right]-2 E[X \mid \mathcal{G}] E[X \mid \mathcal{G}]+E[X \mid \mathcal{G}]^{2} .
\end{aligned}
$$

In the last equality, we used that $E[X \mid \mathcal{G}]$ is \mathcal{G} measurable, so can be "factored" out from $E[\cdot \mid \mathcal{G}]$ (Theorem 1.5.7 (h)), and $E[X \mid \mathcal{G}]^{2}$ is \mathcal{G} measurable, so it's conditional expectation w.r.t. \mathcal{G} is itself (Theorem 1.5.7 (f)). Of course, now the $-2 E[X \mid \mathcal{G}]^{2}$ in the middle term combines with the final term to give the desired result.

For part (b), we start with the definition of $\operatorname{Var}[X]$:

$$
\begin{aligned}
& E\left[(X-E[X])^{2}\right] \\
& =E\left[(X-E[X \mid \mathcal{G}]+E[X \mid \mathcal{G}]-E[X])^{2}\right] \\
& \text { adding and subtracting } E[X \mid \mathcal{G}] \\
& =E\left[(X-E[X \mid \mathcal{G}])^{2}\right]+2 E[(X-E[X \mid \mathcal{G}])(E[X \mid \mathcal{G}]-E[X])]+E\left[(E[X]-E[X \mid \mathcal{G}])^{2}\right] \\
& \text { by algebra and linearity of expectation } \\
& =E\left[E\left[(X-E[X \mid \mathcal{G}])^{2} \mid \mathcal{G}\right]\right]+2 E[E[(X-E[X \mid \mathcal{G}])(E[X \mid \mathcal{G}]-E[X]) \mid \mathcal{G}]] \\
& +E\left[(E[X \mid \mathcal{G}]-E[X])^{2}\right] \\
& \text { by total expectation (twice) } \\
& =E[\operatorname{Var}[X \mid \mathcal{G}]]+2 E[(E[X \mid \mathcal{G}]-E[X]) E[(X-E[X \mid \mathcal{G}]) \mid \mathcal{G}]]+E\left[(E[X \mid \mathcal{G}]-E[X])^{2}\right] \\
& \text { by the factorization result (Theorem 1.5.7 (h)) } \\
& =E[\operatorname{Var}[X \mid \mathcal{G}]]+2 E[(E[X \mid \mathcal{G}]-E[X])(E[X \mid \mathcal{G}]-E[X \mid \mathcal{G}])]+E\left[(E[X \mid \mathcal{G}]-E[X])^{2}\right] \\
& \text { by linearity of } E[\cdot \mid \mathcal{G}] \text { and Theorem } 1.5 .7 \text { (f) applied to } E[X \mid \mathcal{G}] \\
& =E[\operatorname{Var}[X \mid \mathcal{G}]]+\operatorname{Var}[E[X \mid \mathcal{G}]] \\
& \text { since } E[E[X \mid \mathcal{G}]]=E[X] \text { by total expectation. }
\end{aligned}
$$

It follows immediately that $E[\operatorname{Var}[X \mid \mathcal{G}]]=\operatorname{Var}[X]-\operatorname{Var}[E[X \mid \mathcal{G}]]$. Also, since $\operatorname{Var}[E[X \mid \mathcal{G}]] \geq 0$, we have $E[\operatorname{Var}[X \mid \mathcal{G}]] \leq \operatorname{Var}[X]$.

For part (c), it is clear that if $X=E[X \mid \mathcal{G}]$ a.s., then $\operatorname{Var}[X \mid \mathcal{G}]=0$, a.s. It seems reasonable that this would be necessary as well for $\operatorname{Var}[X \mid \mathcal{G}]=0$, a.s. Assume $\operatorname{Var}[X \mid \mathcal{G}]=0$, a.s., so

$$
\begin{aligned}
0 & =E[\operatorname{Var}[X \mid \mathcal{G}]] \\
& =E\left[E\left[(X-E[X \mid \mathcal{G}])^{2} \mid \mathcal{G}\right]\right] \\
& =E\left[(X-E[X \mid \mathcal{G}])^{2}\right],
\end{aligned}
$$

where the last equality follows by total expectation. But $(X-E[X \mid \mathcal{G}])^{2}$ is a nonnegative r.v., so its expectation being 0 implies $(X-E[X \mid \mathcal{G}])^{2}=0$, a.s., i.e., $X=E[X \mid \mathcal{G}]$ a.s. This shows $X=E[X \mid \mathcal{G}]$ a.s. is a necessary and sufficient condition for $\operatorname{Var}[X \mid \mathcal{G}]=0$, a.s.

Under our supposition, we have from part (a) that

$$
\begin{aligned}
\operatorname{Var}[X \mid \mathcal{G}] & =E\left[X^{2} \mid \mathcal{G}\right]-E[X \mid \mathcal{G}]^{2} \\
& =Y^{2}-Y^{2} \\
& =0, \quad \text { a.s. }
\end{aligned}
$$

Thus, by part (c), $X=E[X \mid \mathcal{G}]=Y$, a.s.
Solution to Exercise 1.5.9: Part (a) is easy: we know $E[X \mid Y]=$ k if $X=k$, a.s. The function $\phi(y) \equiv k$ is Borel measurable from the range space of Y to \mathbb{R}, and $E[X \mid Y]=\phi(Y)$, a.s.

For part (b), if $X_{1} \leq X_{2}$, a.s., then $\phi_{1}(Y)=E\left[X_{1} \mid Y\right] \leq E\left[X_{2} \mid Y\right]=$ $\phi_{2}(Y)$, a.s., so we claim that $\phi_{1}(y)=E\left[X_{1} \mid Y=y\right] \leq E\left[X_{2} \mid Y=y\right]=\phi_{2}(y)$, P_{Y}-a.s. Letting $A=\left\{y: \phi_{1}(y)>\phi_{2}(y)\right\}$, we have $P_{Y}(A)=P\left(Y^{-1}(A)\right)=$ $P(\{\omega: Y(\omega) \in A\})=P\left(\left\{\omega: \phi_{1}(Y(\omega))>\phi_{2}(Y(\omega))\right\}\right)=0$.

For part (c), the obvious conjecture is that

$$
E\left[a_{1} X_{1}+a_{2} X_{2} \mid Y=y\right]=a_{1} E\left[X_{1} \mid Y=y\right]+a_{2} E\left[X_{2} \mid Y=y\right] \quad, P_{Y} \text { a.s. }
$$

We have from the theorem that

$$
E\left[a_{1} X_{1}+a_{2} X_{2} \mid Y\right]=a_{1} E\left[X_{1} \mid Y\right]+a_{2} E\left[X_{2} \mid Y\right], P \text { a.s. }
$$

Now we know that $E\left[a_{1} X_{1}+a_{2} X_{2} \mid Y\right], E\left[X_{1} \mid Y\right]$, and $E\left[X_{2} \mid Y\right]$ can each be expressed as a function of Y, say

$$
\begin{aligned}
E\left[a_{1} X_{1}+a_{2} X_{2} \mid Y\right] & =h(Y) \\
E\left[X_{1} \mid Y\right] & =h_{1}(Y) \\
E\left[X_{2} \mid Y\right] & =h_{2}(Y) .
\end{aligned}
$$

See the discussion beginning in the middle of p. 70. Our equation above then says

$$
h(Y)=a_{1} h_{1}(Y)+a_{1} h_{1}(Y) \quad, P \text { a.s. }
$$

Also, by definition,

$$
\begin{aligned}
E\left[a_{1} X_{1}+a_{2} X_{2} \mid Y=y\right] & =h(y) \\
E\left[X_{1} \mid Y=y\right] & =h_{1}(y) \\
E\left[X_{2} \mid Y=y\right] & =h_{2}(y) .
\end{aligned}
$$

So, can't we conclude that

$$
h(y)=a_{1} h_{1}(y)+a_{1} h_{1}(y) \quad, P_{Y} \text { a.s.? }
$$

Let

$$
A=\left\{y: h(y) \neq a_{1} h_{1}(y)+a_{1} h_{1}(y)\right\} .
$$

This is a subset of the range space of Y. It is measurable in that space since it is the inverse image of the Borel set $\mathbb{R} \backslash\{0\}$ under the measurable map $h-\left(a_{1} h_{1}+a_{2} h_{2}\right)$. We want to show that $P_{Y}(A)=0$. Now

$$
P_{Y}(A)=P\left(Y^{-1}(A)\right)=P\left(\left\{\omega: h(Y(\omega)) \neq a_{1} h_{1}(Y(\omega))+a_{1} h_{1}(Y(\omega))\right\}\right) .
$$

We already observed this latter event has probability 0 when we noted that $h(Y)=a_{1} h_{1}(Y)+a_{1} h_{1}(Y), P$-a.s. So we are done.

The previous paragraph illustrates one way of proving a result for the conditional expectation of the type $E[X \mid Y=y]$: prove the corresponding result for for conditional expectation of the type $E[X \mid Y]$ and simply translate it over. This will work in most cases, so one doesn't have to do separate proofs. The P-null sets in Ω where an equality fails will automatically become a P_{Y}-null set on the range of Y by the same sort of argument as above. However, most students seem to want to derive a result using the defining properties of $E[X \mid Y=y]$. So, for example, we observe that $a_{1} E\left[X_{1} \mid Y=\right.$ $y]+a_{2} E\left[X_{2} \mid Y=y\right]$ is a Borel measurable function of y (whose domain is the range space of Y), and if A is a measurable set in the range space of Y, then

$$
\begin{aligned}
\int_{Y^{-1}(A)}\left(a_{1} X_{1}+a_{2} X_{2}\right) d P & =\int_{Y^{-1}(A)}\left(a_{1} E\left[X_{1} \mid Y\right]+a_{2} E\left[X_{2} \mid Y\right]\right) d P \\
& =\int_{A}\left(a_{1} E\left[X_{1} \mid Y=y\right]+a_{2} E\left[X_{2} \mid Y=y\right]\right) d P_{Y}(y)
\end{aligned}
$$

which shows that $a_{1} E\left[X_{1} \mid Y=y\right]+a_{2} E\left[X_{2} \mid Y=y\right]$ has satisifies the integral property to be $E\left[a_{1} X_{1}+a_{2} X_{2} \mid Y=y\right]$.

Moving on to part (d), it is very tempting to write " $E[E[X \mid Y=y]]$ " but this doesn't make sense. For a r.v. $Z, E[Z]=\int_{\Omega} Z d P$ is an integral over the underlying probability space, but the domain of the function $E[X \mid Y=y]$ is the range of Y, not Ω. Of course, the range of Y has the probability measure P_{Y}, so it makes sense to write

$$
\int_{\Lambda} E[X \mid Y=y] d P_{Y}(y)=E[X]
$$

where Λ is the range of Y. Since $\left.E[X \mid Y=y]\right|_{y=Y}$ is $E[X \mid Y]$, we have by the law of the unconscious statistician that

$$
\int_{\Lambda} E[X \mid Y=y] d P_{Y}(y)=\int_{Y^{-1}(\Lambda)} E[X \mid Y] d P=E[E[X \mid Y]]=E[X]
$$

where the last equality follows by part (d) of Theorem 1.5.7(d).
To deal with part (e) of the theorem, we need to translate $E[X \mid\{\emptyset, \Omega\}]$ into some kind of statement about $E[X \mid Y=y]$, we need to think of it as $E[X \mid Y]$ where $\sigma(Y)=\{\emptyset, \Omega\}$. But this happens if and only if Y is a constant r.v. (Check it out!). Hence, we claim

$$
\text { If } Y \text { is a constant r.v., } E[X \mid Y=y]=E[X], \quad P_{Y} \text {-a.s.. }
$$

Clearly if $Y=c$ where $c \in \Lambda$ is fixed, then for $h(Y)=E[X \mid Y]=E[X]$, we must have $h(c)=E[X]$, and $h(y)$ can be defined arbitrarily for $y \neq c$. But this means $h(y)=E[X], P_{Y}$-a.s., since $P_{Y}=\delta_{c}$.

Theorem 1.5.7(f) tells us that if $\sigma(X) \subset \sigma(Y)$, then $E[X \mid Y]=X$, a.s. Now, it wouldn't make sense to claim $E[X \mid Y=y]$ is equal to X, since they are functions with different domains. However, if $\sigma(X) \subset \sigma(Y)$, then we know from Theorem 1.5.1 that $X=\phi(Y)$ for some function ϕ whose domain is Λ, the range of Y. Thus, it would make sense to claim that

$$
\text { If } X=\phi(Y) \text { for some measurable } \phi \text {, then } E[X \mid Y=y]=\phi(y), \quad P_{Y}-\text { a.s. }
$$

The proof is immediate from

$$
\phi(Y)=X=E[X \mid Y], \quad \text { a.s. }
$$

Part (g) is a little trickier. Suppose Y_{1} is some other random element (with range space $\left(\Lambda_{1}, \mathcal{G}_{1}\right)$, say), and $\sigma\left(Y_{1}\right) \subset \sigma(Y)$. We know (at least if the
range of Y_{1} is $(\mathbb{R}, \mathcal{B})$ that then $Y_{1}=\psi(Y)$, for some ψ, by Theorem 1.5.1. So let us just assume

$$
Y_{1}=\psi(Y), \quad \psi:(\Lambda, \mathcal{G}) \longrightarrow\left(\Lambda_{1}, \mathcal{G}_{1}\right)
$$

Now it makes no sense to write " $E\left[E\left[X \mid Y_{1}=y_{1}\right] \mid Y=y\right]$ " since the domain of $E\left[X \mid Y_{1}=y_{1}\right]$ is Λ_{1}, and not Ω. (Recall that when we write $E[Z \mid Y=y]$, Z must be a r.v., i.e. a mapping from Ω to \mathbb{R}.) Also, how are we to match up the given values y_{1} and y ? If we are given $Y=y$ and $Y_{1}=\psi(Y)$, then it must be that $Y_{1}=\psi(y)$. So let's try the following:

$$
\text { If } Y_{1}=\psi(Y) \text {, then } E\left[E\left[X \mid Y_{1}\right] \mid Y=y\right]=E\left[X \mid Y_{1}=\psi(y)\right], \quad P_{Y_{1}}-\text { a.s. }
$$

Of course, we haven't fully interpreted $E\left[E\left[X \mid Y_{1}\right] \mid Y=y\right]$ into the requisite kind of conditional expectation, but there is no way to do so. Also, what does the r.h.s. mean? We are taking the function h_{1} given by $h_{1}\left(y_{1}\right)=$ $E\left[X \mid Y_{1}=y_{1}\right]$ and composing it with ψ, i.e. the r.h.s. is $h \circ \psi$ evaluated at y, and $h \circ \psi$ is a map from Λ to \mathbb{R}, so the domains and ranges of the two sides match. Again, the proof is trivial: $E\left[X \mid Y_{1}\right]=h\left(Y_{1}\right)=h(\psi(Y))=(h \circ \psi)(Y)$, so we apply our result above on part (f) of the theorem.

Now for the other side of the Law of Successive conditioning, we need to deal with $E\left[E[X \mid Y] \mid Y_{1}=y_{1}\right]$ when $Y_{1}=\psi(Y)$. We could just write

$$
\text { If } Y_{1}=\psi(Y) \text {, then } E\left[E[X \mid Y] \mid Y_{1}=y_{1}\right]=E\left[X \mid Y_{1}=y_{1}\right], \quad P_{Y_{1}}-\text { a.s. }
$$

Certainly everything makes sense: the l.h.s. and r.h.s. of the equation are the same kind of objects (both sides are functions with argument y_{1} varying over the domain Λ_{1} and the ranges are \mathbb{R}). And we know that $E\left[E[X \mid Y] \mid Y_{1}\right]$ $=E\left[X \mid Y_{1}\right]$ a.s. in this case, which proves the result. This one is easy.

Finally, part (h) is fairly straightforward: If X_{1} is $\sigma(Y)$-measurable, then $X_{1}=\psi(Y)$ for some measurable ψ, and we claim that $E\left[\psi(Y) X_{2} \mid Y=y\right]=$ $\psi(y) E\left[X_{2} \mid Y=y\right]$. We see that $\phi(y)=\psi(y) E\left[X_{2} \mid Y=y\right]$ is a Borel measurable function on the range of Y (since it is the product of two such functions), and $\phi(Y)=\psi(Y) E\left[X_{2} \mid Y\right]=E\left[\psi(Y) X_{2} \mid Y\right]$, where the last equality follows from the result given in the theorem.

The translation and proof of Theorem 1.5.8 is straightforward. For part (a), if $0 \leq X_{n} \uparrow X$, then we claim $E\left[X_{n} \mid Y=y\right] \rightarrow E[X \mid Y=y], P_{Y}$-a.s. We know that $\phi_{n}(Y)=E\left[X_{n} \mid Y\right] \rightarrow E[X \mid Y]=\phi(Y)$, a.s. Simply translate the null set to the range space of Y as in part (b) of the previous theorem. The dominated convergence theorem is similar.

