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Solutions Homework 5
October 10, 2018

Solution to Exercise 1.5.11: Let

p(B, x) = δx(B) = IB(x),

for x ∈ IR andB ∈ B. Clearly p(·, x) is a Borel probability measure for each x,
so condition (ii) in the definition of conditional distributions holds (Definition
1.5.2). Turning to condition (i), of course P [X ∈ B|X] = E[IB(X)|X] by the
definition of conditional probability, and by Theorem 1.5.7(f), E[IB(X)|X]
= IB(X), a.s., so E[IB(X)|X = x] = IB(x), PX-a.s. But, as noted above,
this is just p(B, x).

This is intuitively the right answer since given X = x, we should have a
conditional probability totally concentrated on x, which is what δx does.

Solution to Exercise 1.5.12: We are looking for a conditional dis-
tribution of a two dimensional random vector, so our conditional distribution
has to “live” on two dimensional space. Note that we are given that the first
component X1 = x1, so its marginal conditional distribution should be δx1 .
See the result in Exercise 1.5.11. Now, the marginal conditional distribution
for X2 should be the obvious answer: PX2|X1(·|x1) = Law[X2|X1 = x1]. Note
that any r.v. is independent of a degenerate r.v., so there is only one way to
make a joint distribution with these marginals:

p(·, x1) = δx1 × Law[X2|X1 = x1].

Let’s check that this satisfies the requisite properties as spelled out in Remark
1.5.7(a):

(1) For all x1 ∈ IR, p(·, x1) is a Borel p.m. on (IR2,B2) since it is the product
of two Borel p.m.’s on IR.

(2) We want to check that for all B ∈ B2, p(B, x1) is a measurable function
of x1. Note that

p(B, x1) =
∫
IR2

IB(ξ1, ξ2) d
[
δx1 × PX2|X1(·|x1)

]
(ξ1, ξ2)

=
∫
IR

[∫
IR
IB(ξ1, ξ2) dδx1(ξ1)

]
dPX2|X1(·|x1)(ξ2)
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=
∫
IR
IB(x1, ξ2) dPX2|X1(·|x1)(ξ2)

= PX2|X1(B1(x1)|x1)
= P [X2 ∈ B1(x1)|X1 = x1] ,

where
B1(x1) = {x2 ∈ IR : (x1, x2) ∈ B}.

Note that for each x1, this set is measurable – this is implicitly one
of the conclusions of Fubini’s theorem, that we can fix the value of
one variable and then the function is measurable in the other vari-
able. Now, the last expression in our little calculation above, namely
P [X2 ∈ B1(x1)|X1 = x1], is a Borel function of x1 by definition of (this
kind of) conditional probability (expectation).

(3) Now, we want to show that for all Borel sets A ∈ IR, B ∈ IR2,

P [X1 ∈ A& (X1, X2) ∈ B] =
∫
IR
IA(x1)p(B, x1)dPX1(x1).

If we write out p(B, x1) as an integral and carry out the calculation as
in the previous step, then we obtain∫

IR
IA(x1)p(B, x1)dPX1(x1)

=
∫
IR
IA(x1)

[∫
IR
IB(x1, x2) dPX2|X1(·|x1)(x2)

]
dPX1(x1)

=
∫
IR

∫
IR
IA(x1)IB(x1, x2) dPX2|X1(·|x1)(x2)dPX1(x1)

=
∫
IR
E [IA(X1)IB(X1, X2)|X1 = x1] dPX1(x1)

(by equation (1.71) in Theorem 1.5.6)

= E [E [IA(X1)IB(X1, X2)|X1]]

= E [IA(X1)IB(X1, X2)]

= P [X1 ∈ A& (X1, X2) ∈ B],

which is the desired result.

Solution to Borel Handout Problem 2. Problem Statement: Here
is another example: Let (U, V ) be uniformly distributed on the unit square,
i.e. they have joint (Lebesgue) probability density

fUV (u, v) = 1, 0 < u < 1, 0 < v < 1.
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(a) Let X = V −U . Find the joint density of U and X and the conditional
density of U given X = x.

Solution: Let Z = U . This is a fairly simple linear transformation. The
inverse transform is

h1(x, z) = z,

h2(x, z) = x+ z.

So, (U, V ) = (h1(X,Z), h2(X,Z)) = h(X,Z). The Jacobian is easy to com-
pute:

J(x, z) = | detDh(x, z)| =

∣∣∣∣∣det

[
0 1
1 1

]∣∣∣∣∣ = 1.

Hence,

fXZ(x, z) = fUV (h1(x, z), h2(x, z))J(x, z)

= I(0,1)(z)I(0,1)(x+ z)

= I(−1,0](x)I(−x,1)(z) + I(0,1)(x)I(0,1−x)(z).

One may check that the last equation is true by logically verifying that the
inequalities 0 < z < 1 and 0 < x+ z < 1 are equivalent to

(−1 < x ≤ 0 & − x < z < 1) or (0 < x < 1 & 0 < z < 1− x).

It is easiest to see this by looking a the picture of {(x, z) : 0 < x + z < 1
and 0 < z < 1 } which is a parallelogram with vertices at (0, 0), (−1, 1),
(0, 1), and (1, 0). Now we can obtain the conditional density for Z given X
by inspection:

fZ|X(z|x) = C(x)I(−1,0](x)I(−x,1)(z) + C(x)I(0,1)(x)I(0,1−x)(z),

where C(x) is determined by
∫
fZ|X(z|x)dz = 1 for each x ∈ (−1, 1). Now

for each x ∈ (−1, 1), only one of the terms is positive, and by trivial calculus
we get

fZ|X(z|x) = I(−1,0](x)(1 + x)−1I(−x,1)(z) + I(0,1)(x)(1− x)−1I(0,1−x)(z).

Put differently,

Z|X = x ∼
{

Unif(−x, 1) if − 1 < x ≤ 0,
Unif(0, 1− x) if 0 < x < 1.
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In conclusion, since Z = U we get that the conditional distribution of U given
X = 0 is Unif(0,1), at least based on this family of conditional distributions.

(b) Let Y = V/U . Find the joint density of U and Y and the conditional
density of U given Y = y.

Solution: Let Z = U as before. Then the inverse transforms are

h1(y, z) = z

h2(y, z) = yz.

The Jacobian is

J(y, z) =

∣∣∣∣∣det

[
0 1
z y

]∣∣∣∣∣ = |z| = z,

noting that z > 0. Hence, the joint density for (Y, Z) is

fY Z(y, z) = fUV (h1(y, z), h2(y, z))J(y, z)

= I(0,1)(z)I(0,1)(yz)z.

It helps to draw a picture of the region where this joint density is non-zero,
but let’s reason it out “algebraically”. We have the inequalities

0 < z < 1, 0 < yz < 1.

Since we want to get fZ|Y , we need to fix values of y and see the dependence
on z, so we want to get bounds on z where the bounds depend on y, i.e. solve
for z. The inequalities give us 0 < z < min{1, 1/y}, and of course 0 < y.
Hence, we have

y ≤ 1 ⇒ 0 < z < 1,

y > 1 ⇒ 0 < z < 1/y.

Hence, we can write

fY Z(y, z) = I(0,1](y)I(0,1)(z)z + I(1,∞)(y)I(0,1/y)(z)z.

As before,

fZ|Y (z|y) = C(y)fY Z(y, z)

= 2zI(0,1)(z)I(0,1](y) + 2y2zI(0,1/y)(z)I(1,∞)(y).
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Putting in y = 1 we get

fZ|Y (z|1) = 2zI(0,1)(z).

(c) Note that the events [U = V ] and [X = 0] and [Y = 1] are all the
same. However,

fU |X(u|0) 6= fU |Y (u|1).

Explain.
Solution: The easiest and probably best way to explain this is to assume

that we don’t observe exact values for the random variables, but rather a
rounded off version. So, thinking of part (a), we observe (X̃, Z̃) which are
obtained by rounding off (X,Z) to a high number of decimal places, and
then we have discrete random variables. If they are rounded off to k decimal
places, then X̃ = X + ∆X where |∆X| ≤ .5 ∗ 10−k = ε, and

P [X̃ = x̃& Z̃ = z̃]
.
= fXZ(x, z)ε2,

P [X̃ = x̃]
.
= fX(x)ε,

P [Z̃ = z̃|X̃ = x̃]
.
=

fXZ(x, z)ε2

fX(x)ε
= fZ|X(z|x)ε.

Of course, the same calculations hold for Z|Y .
None of this gives a good intuitive explanation for me, yet. I think the

most informative way of looking at it is to “plot” the calculations in the
original coordinates where area is (proportional to) probability. So, for the
first transformation in part (a), we have illustrated the results with ε = 0.05,
i.e., rounding off to one decimal place. This appears in Figure 1. The shaded
area shows the values of (U, V ) where X = V − U would be rounded off to
0.0, i.e. −0.05 ≤ X ≤ 0.05. The darker shaded area shows the intersection of
the events [−.05 ≤ V −U ≤ .05] and [.15 ≤ U ≤ .25], where the latter event
corresponds to a rounded off value of U which is .2. Then the conditional
probability

P [.15 ≤ U ≤ .25 | − .05 ≤ X ≤ .05]

is the ratio of the lower left darker area to the area of the entire shaded
strip. The upper right darker shaded area corresponds to the intersection
of [−.05 ≤ V − U ≤ .05] and [.75 ≤ U ≤ .85], where the latter event
corresponds to a rounded off value of U which is .8. We see that the two
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conditional probabilities (for U near .2 and U near .8) are the same. In
fact, all the conditional probabilities for different values of U will be the
same, except when U is near the endpoints 0 and 1, when the analogue of
the darker areas will be cut off by the limits on U . Thus, the conditional
distribution of a rounded off U given a rounded off value of X will be nearly
uniform, with some deviations at the boundaries.

Now we consider the situation when we replace X with Y = V/U . The
shaded area represents the event .95 ≤ V/U ≤ 1.05, which is the event that
the rounded off value of Y = V/U is 1 (when rounding off to one decimal
place after the decimal point). Again, the lower left darker shaded area
corresponds to the intersection of this given event with |U − .2| ≤ .05, and
the upper darker area to |U− .8| ≤ .05. It is easy to check (using the formula
for area of a trapezoid) that the area corresponding to a rounded off value of
U intersected with .95 ≤ V/U ≤ 1.05 will be proportional to the rounded off
value, except at the endpoints. This makes the conditional density fU |Y (u|1)
= 2uI(0,1)(u) seem intuitively correct.

Going back to the conditional densities for the continuous random vari-
ables, we could make fU |X(u|0) and fU |Y (u|1) the same since the events
[X = 0] and [Y = 1] have probability 0, but then at least one of the con-
ditional densities would not be continuous (in the given variable, x or y),
which seems artificial. In any event, conditional distributions satisfy defin-
ing properties as a family and are unique only up to sets of probability 0.
There is no way to say whether particular distributions given [V − U = 0]
and [V/U = 1] are correct or not, but only if a family of distributions given
V − U or V/U is correct.

Solution to Exercise 2.1.7 Using linearity of the expectation oper-
ator and basic matrix algebra,

Cov[X, Y ] = E
[
(X − E[X])(Y − E[Y ])T

]
speq E[XY T ]− E

[
E[X]Y T

]
− E

[
XE[Y ]T

]
+ E[X]E[Y ]T

speq E[XY T ]− E[X]E[Y ]T − E[X]E[Y ]T + E[X]E[Y ]T

speq E[XY T ]− E[X]E[Y ]T .

Solution to Exercise 2.1.17
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Figure 1: Depiction of conditional probabilities for U given V −U is close to
0.
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Figure 2: Depiction of conditional probabilities for U given V/U is close to
1.
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If r ≥ 1, then for x ≥ 0, the mapping f(x) = xr is convex (the first
derivative is f ′(x) = rxr−1 which is nondecreasing on [0,∞)). Taking r = q/p
with 1 ≤ p ≤ q, we have by Jensen’s inequality

E[|X|p]q/p = f (E[|X|p])
≤ E [f(|X|p)]
= E [|X|q] .

Now, take the 1/q power of both sides and use the fact that power functions
are nondecreasing for positive powers.

Solution to Exercise 2.1.20: (a) The claim is that ψ(t) = t log t ≥
t− 1, which we should verify.

The figure shows a plot of ψ(t) and t−1 and it appears that the following
are true:

(i) t− 1 is tangent to ψ(t) at t = 1;

(ii) ψ(t) is a strictly convex function;

(iii) it is always above its tangent.

Let’s verify these three claims. We claim that the function ψ(t) = t log t is
strictly convex. The first and second derivatives are

ψ′(t) = log t + 1,

ψ′′(t) = 1/t.

As the second derivative is strictly positive, the claim (ii) follows. Also, ψ(1)
= 0 and ψ′(1) = 1, so the line y = t − 1 is the tangent at t = 1 (since the
values and slopes agree). Claim (iii) is a general property of convex functions,
but it is clear in case the function is differentiable (as it is here) since then
we know the first derivative is increasing, so ζ(t) = ψ(t) − (t − 1) satisfies
ζ ′(1) = 0, ζ ′(t) < 0 for t < 1, and ζ ′(t) > 0 for t > 1, so ζ has a unique
minimum at t = 1.

To show the integral defining K(Q,P ) exists, we will show that the
integral of the negative part is finite. Now we can’t do anything with
“
∫

log
(
dQ
dP

)
dQ” until we know it exists because none of our theorems apply.

As mentioned in class, we can show the integral of the negative part is finite.
There are a couple of trivial little facts about negative parts we need:
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Figure 3: Plot of y = x log(x) with line y = x− 1 overlaid.

Trivial Fact #1. f ≤ g then f− ≥ g−.

Trivial Fact #2. if f ≥ 0 then (fg)− = fg−.

So, we have∫ (
log

[
dQ

dP

])
−
dQ =

∫ (
log

[
dQ

dP

])
−

dQ

dP
dP

by Proposition 1.4.2 (a)

=
∫ (

log

[
dQ

dP

]
dQ

dP

)
−
dP

using Trivial Fact #2 since dQ
dP
≥ 0
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≤
∫ (

dQ

dP
− 1

)
−
dP

using Trivial Fact #1 and the inequality on t log t

≤
∫

(−1)− dP

since dQ
dP
− 1 ≥ 1

= 1.

(b) Now we can apply the usual results on integration as in Proposition
1.2.5 since we have shown the integral is well defined.∫

log

(
dQ

dP

)
dQ =

∫
log

(
dQ

dP

)
dQ

dP
dP

≥
∫ (

dQ

dP
− 1

)
dP

by the inequality proved above

=
∫ dQ

dP
dP −

∫
1 dP

=
∫

1 dQ − 1

= 1 − 1 = 0.

(c) Suppose K(Q,P ) = 0, and we will show P = Q. Since ψ is strictly
convex, by Jensen’s inequality∫

ψ

(
dQ

dP

)
dP ≥ ψ

(∫ dQ

dP
dP

)
= ψ(1) = 0,

with strict inequality if and only if dQ
dP

is constant, P -a.s. One observes that
the l.h.s. of the displayed inequality is K(Q,P ), and the r.h.s. is ψ (

∫
1dQ)

= 1 log 1 = 0. Also, if dQ
dP

is constant, P -a.s., then the constant must be 1

because that’s the integral of dQ
dP

w.r.t. P . But dQ
dP

= 1, P -a.s., means Q = P .

Solution to Exercise 2.2.1
For any complex number z = z1+iz2 it is clear that the modulus |z| = ‖z‖

where z = (z1, z2) is a 2-D vector. Therefore, the result will follow if we show
that for any f : (Ω,F) −→ (IRd,Bd), we have∥∥∥∥∫ fdµ

∥∥∥∥ ≤ ∫
‖f‖dµ.
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It will be useful to have this more general result.
If µ is a probability measure, then the result follows easily from Jensen’s

inequality. Note that the map ψ(x) = ‖x‖ is convex since if t ∈ [0, 1],
ψ (tx+ (1− t)y) = ‖tx+ (1− t)y‖ ≤ ‖tx‖+‖(1− t)y‖ = t‖x‖+ (1− t)‖y‖ =
tψ(x) + (1− t)ψ(y). Thus, writing E[· · ·] in place of

∫
· · · dµ and X in place

of f we have

ψ(E[X]) = ‖E[X]‖ ≤ E[ψ(X)] = E[‖X‖].

However, if µ is not a probability measure, this argument doesn’t apply,
and we are asked to prove the more general result. I have tried to find a
simple proof, but it doesn’t seem to exist. When you are stumped on some
general result about integrals, think of simple functions.

Let φ be a vector valued simple function, i.e. φ = (φ1, . . . φd) where each
component function φj is a simple function. For convenience, we can assume
the sets Ai in the representations of each φj are the same:

φj =
∑
i

aijIAi
.

In a vector notation:
φ =

∑
i

aiIAi
.

Now by the triangle inequality,∥∥∥∥∫ φdµ
∥∥∥∥ =

∥∥∥∥∥∑
i

aiµ (Ai)

∥∥∥∥∥
≤

∑
i

‖ai‖µ (Ai)

=
∫
‖φ‖ dµ,

which is the desired result.
Now we consider a general vector valued function f . Writing f = (f1, . . . , fd),

we can find simple functions φjn → fj as n→∞ for each j, 1 ≤ j ≤ d, and
|φjn| ≤ |fj| for all j and n. This latter inequality implies ‖φn‖ ≤ ‖f‖ where
φn = (φ1n, . . . , φdn) is a vector valued simple function. Note that we can
assume

∫
‖f‖dµ < ∞, since otherwise the inequality we are trying to prove

is trivial (assuming
∫
fdµ is defined; which for vector valued functions would

require all components are finite, which would imply
∫
‖f‖dµ <∞ anyway).
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Thus by DCT we have
∫
φjndµ →

∫
fjdµ for 1 ≤ j ≤ d, hence

∫
φndµ →∫

fdµ, and since ψ(x) = ‖x‖ is a continuous function, we have∥∥∥∥∫ φndµ
∥∥∥∥ → ∥∥∥∥∫ fdµ

∥∥∥∥ .
Now it is easy to see that ‖φn‖ is a simple function and ‖φn‖ ≤ ‖f‖, so by
DCT ∫

‖φn‖dµ →
∫
‖f‖dµ.

By the result we just proved for simple functions, we have ‖
∫
φndµ‖ ≤∫

‖φn‖dµ, so by the limiting results above we conclude ‖
∫
fdµ‖ ≤

∫
‖f‖dµ.

Solution to Exercise 2.3.3 (a) First of all, we need to derive the
m.g.f. for Z to verify that Z has the the N(0, I) distribution. Some students
simply jumped to the conclusion that Z ∼ N(0, I) without proving it. We
have

ψZ(u) = E
[
exp

(
utZ

)]
= E

[
exp

(∑
i

uiZi

)]

= E

[∏
i

exp (Zi)

]
=

∏
i

E [exp (Zi)]

by Theorem 1.3.4(b). since the components of Z are independent

=
∏
i

ψZi
(ui).

It is easy to check that

ψZi
(ui) = exp

(
u2i /2

)
.

Hence,
ψZ(u) = exp

(
utu/2

)
= exp

(
‖u‖2/2

)
.

Apply Theorem 2.2.1 (c) to obtain

ψX(v) = exp
(
vtµ

)
ψZ

(
Atv

)
= exp

(
vtµ

)
exp

(
(Atv)t(Atv)/2

)
= exp

(
vtµ + vt(AAt)v

)
,
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which is the m.g.f. of a N(µ,AAt) distribution as defined in Definition 2.3.5.
(b) Looking at equation (2.2.43), we will need to work with the exponent

to get it into the correct form. Write

W = V −1.

Then one can check

(x− µ)tV −1(x− µ) = xtWx − 2µ2Wx + µtWµ

=
n∑
i=1

Wiix
2
i + 2

n∑
i=2

i−1∑
j=1

Wijxixj − 2
n∑
i=2

i−1∑
j=i

Wijµixj + µtWµ.

Note that we have been careful to at least not duplicate terms. Thus, we
could have combined the first two summations into

∑n
i=1

∑n
j=1Wijxixj, but

for i 6= j there would be two identical terms. While it is not a requirement in
order to put the density in the exponential family form, it is always desirable
to avoid obvious linear constraints on the sufficient statistics and natural
parameters. Anyway, we have then that the density has the form

f(x) =
1

(2π)n/2 det(V )1/2
exp

[
−1

2
µtWµ

]

exp

−1

2

n∑
i=1

Wiix
2
i −

n∑
i=2

i−1∑
j=1

Wijxixj +
n∑
j=1

(
n∑
i=1

Wijµi

)
xj

 ,
which is an exponential family with

ηk =


−1

2
Wkk if 1 ≤ k ≤ n,
Wij if k = n+ (i− 1)(i− 2)/2 + j, for some 2 ≤ i ≤ n,

1 ≤ j ≤ i− 1∑n
i=1Wijµi if k = n(n+ 1)/2 + j, for some 1 ≤ j ≤ n;

Tk =


x2kk if 1 ≤ k ≤ n,
xixj if k = n+ (i− 1)(i− 2)/2 + j, for some 2 ≤ i ≤ n,

1 ≤ j ≤ i− 1
xi if k = n(n+ 1)/2 + j, for some 1 ≤ j ≤ n;

B(µ, V ) =
1

2
log det(V ) +

1

2
µtWµ

h(x) =
1

(2π)n/2
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(c) The family is more or less in canonical form: one has to make dν =
(2π)−n/2dm to eliminate the h(x) factor and express the normalizing constant
in terms of the η. The latter is not quite trivial but purely algebraic manip-
ulation. Checking to see if it is minimal and full rank is more important and
not just purely algebraic manipulations. We will follow the usual procedure
for checking full rank (which implies minimal) by checking that the sufficient
statistic does not satisfy a linear constraint and then that the space of the
natural parameter has nonempty interior. Now the sufficient statistic T (x)
is basically the n(n + 3)/2 vector of all linear and quadratic terms that can
be made with the components of x, so a linear constraint on T amounts to a
quadratic constraint on x. Since x varies over all of IRn, it is intuitively clear
it doesn’t satisfy any such constraint, m-a.e. To see this rigorously, consider
the set

A = {x :
∑
i

aix
2
i +

∑
i<j

bijxixj +
∑
i

cixi + d = 0},

where the ai, bij, ci, and d are constants. Then fix all but a single component
of x, say x1 is allowed to vary but x2, . . ., xn are fixed. Then the set of x1
satisfying the constraint is at most 2 points (the number of real solutions
of a quadratic equation), which has Lebesgue measure 0. Then we apply a
Fubini argument as in Exercise 1.3.17 to conclude mn(A) = 0.

To see that the space of natural parameter values has nonempty interior,
consider the map η(µ, V ) from IRn×Pn where Pn is the set of n× n strictly
positive definite matrices. An element V ∈ Pn may be treated as an n(n +
1)/2 dimensional vector of the independent entries in the matrix (recall such
a V is symmetric, so there are not n2 independent entries). We claim Pn
is an open subset of IRn(n+1)/2. Let V ∈ Pn and we will show there is a
neighborhood of V which is a subset of Pn. Now S = {x ∈ IRn : ‖x‖ = 1}
is a compact set, and the mappin x 7→ xtV x is continuous so it achieves its
minimum m on S, which is positive since V is strictly positive definite. If
T ∈ Pn then |xtV x−xtTx| ≤ n2 maxij |Vij−Tij| for x ∈ X since maxi |xi| < 1
and maxij |Vij−Tij| ≤ ‖V −T‖ when considered as vectors in IRn(n+1)/2. Thus,
if ‖V − T‖ < m/(2n2), it follows that xtTx > m/2 > 0 for all x ∈ S, and
hence for any x 6= 0 we have xtTx = ‖x‖2(x/‖x‖)tT (x/‖x‖) > (x/‖x‖)m/2 >
0, and hence T is strictly positive definite. This shows that the neighborhood
of radius m/(2n2) about V is contained in Pn, and hence Pn is open.

As V ranges over all of Pn, so does it’s inverse W . Thus, the range
the first n(n + 1)/2 components of η is essentially Pn, an open subset of
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IRn(n+1)/2. (The map which multiplies the first n components by −1/2 is
continuous and continuously invertible, so it preserves open sets). Now the
last n components of η are obtained by multiplying an arbitrary µ ∈ IRn by
W , so these vary over all of IRn. Thus, the space of natural parameter values
is Pn × IRn, which is a nonempty open set, and so has nonempty interior.

Solution to Exercise 2.3.10:
(a) For x a nonnegative integer, we have

fλ(x) = exp [(log λ) (x)− λ] (x!)−1.

The quantities in the exponential type family formulation are

η(λ) = log λ,

T (x) = x,

B(λ) = λ,

h(x) = (x!)−1.

Switching to the natural parameter and dropping the h(x), we have the
canonical form

f(x; η) = exp [ηx− eη] ,
and in particular, A(η) = eη. As λ ranges over (0,∞), log λ ranges over all of
IR, which is clearly the natural parameter space. This clearly has nonempty
interior (any neighborhood of any point is contained in this natural parameter
space). Also, T (X) is not a degenerate r.v. (in one dimension, satisfying a
linear constraint is the same as being a degenerate r.v.), so the family is full
rank.

(b) We have for x ∈ {0, 1, . . . , n},

fp(x) =

(
n
x

)
px(1− p)n−x

= exp {x log[p/(1− p)]− n log[1/(1− p)]}
(
n
x

)
,

and the exponential family components are

η(p) = log[p/(1− p)],
T (x) = x,

B(p) = −n log(1− p),

h(x) =

(
n
x

)
.
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In order to obtain A(η) we have to invert the mapping p 7→ η(p), which is
clearly,

p =
eη

1 + eη
,

and then
−n log(1− p) = n log(1 + eη) = A(η).

Thus, the canonical form is

f(x; η) = exp [ηx− (−n log(1 + eη))] .

As p ranges over (0, 1), η ranges over IR, which has nonempty interior. Note
that we have to rule out p = 0 and p = 1 when we put this into exponential
family type form. Clearly, for 0 < p < 1, X is a nondegenerate r.v., so we
have a full rank family.

Remarks: The transformation to the natural parameter p 7→ log[p/(1−
p)] is sometimes referred to as the logit or log-odds.

(c) Assuming 0 < x < 1, we may write the density as

fα,β(x) = exp

[
α log x+ β log(1− x)− log

Γ(α)Γ(β)

Γ(α + β)

]
[x(1− x)]−1.

The components of the exponential family are clearly

η(α, β) = (α, β) =

[
α
β

]
,

T (x) = (log x, log(1− x)),

B(α, β) = log
Γ(α)Γ(β)

Γ(α + β)
,

h(x) = [x(1− x)]−1.

One could also have chosen to express the density as

fα,β(x) = exp

[
(α− 1) log x+ (β − 1) log(1− x)− log

Γ(α)Γ(β)

Γ(α + β)

]
,

which would have resulted in η = (α − 1, β − 1) and h(x) = 1 (or h(x) =
I(0,1)(x)). Since we can “throw away” h(x), we generally prefer to make it
more complicated and simplify the natural parameter map, but it obviously
makes little difference.
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Setting A(η) = B(η1, η2) and using the dominating measure ν given by

dν(x) = [x(1− x)]−1I(0,1)(x)dm(x),

we have the canonical form

f(x; η) = exp[η′T (x)− A(η)].

Clearly η ranges over (0,∞) × (0,∞) as α and β range over (0,∞). Is this
the largest possible set of values for η? We will assume that the reader knows
from first year calculus that∫ 1

0
xα−1(1− x)β−1dx = ∞, if either α < 0 or β < 0.

So (0,∞)× (0,∞) is the natural parameter space. This is a nonempty open
set, so it has nonempty interior (an open set is equal to its interior). To show
that the sufficient statistic T (X) = (logX, log(1 − X)) doesn’t satisfy any
linear constraint, we will show that the family is identifiable. To this end,
we will show that given (α, β) ∈ (0,∞)× (0,∞) and (a, b) ∈ (0,∞)× (0,∞),
with (α, β) 6= (a, b), there are only finitely many values of x ∈ (0, 1) where

xα−1(1− x)β−1 = xa−1(1− x)b−1.

Note that if two Beta densities gave the same probability measure, these two
expressions would have to be equal for Lebesgue almost all x ∈ (0, 1). By
dividing one side of one equation by the other, this is equivalent to showing
that given (a, b) 6= (1, 1) there are only finitely many solutions to

xa−1(1− x)b−1 = 1.

By considering the cases 0 < a < 1, 1 < a <∞, etc., one can easily check that
there are only one or two solutions to the last equation for x ∈ (0, 1). Thus,
the family is identifiable and based on the remarks, the sufficient statistic
T (X) does not satisfy any linear constraints, and hence the family is full
rank.

(d) I believe that here the version of IN we are using is the one that
includes 0. I think this version of the negative binomial is the total number
of “failures” until we observe m “successes” in a sequence of independent
Bernoulli trials with “success” probability p. The author does have some
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confusion about whether 0 is a natural number or not. Anyway, with this
caveat, for x a nonnegative integer, the density (w.r.t. counting measure on
the nonnegative integers) can be written as

fp(x) = exp [x log(1− p)−m log(1/p)]

(
m+ x− 1
m− 1

)
,

and the exponential family components are

η(p) = log(1− p),
T (x) = x,

B(p) = −m log p,

h(x) =

(
m+ x− 1
m− 1

)

Solving for p, we obtain
p = 1− eη.

Note that as p ranges over (0, 1), η ranges over (−∞, 0). Note that we can
allow p = 1 in the Negative Binomial p.m.f. (probability mass function)
formula, but we have to delete this value when putting it in exponential
family form. Clearly (−∞, 0) is the natural parameter space since η ≥ 0
leads to 1− p ≥ 1 and

∞∑
x=0

(
m+ x− 1
m− 1

)
(1− p)x = ∞.

To see this, note that this is increasing in q = 1− p, and for q < 1 we have

∞∑
x=0

(
m+ x− 1
m− 1

)
qx = (1− q)−m → ∞, as q → 1.

So we have the canonical form

f(x; η) = exp[ηx− A(η)],

with
A(η) = −m log(1− eη), −∞ < η < 0.

Now the natural parameter space is a nonempty open set, so has nonempty
interior. The sufficient statistic T (X) = X clearly has a non-degenerate
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distribution, so does not satisfy any linear constraints, and thus the family
is full rank.

Solution to Exercise 2.3.14: The density w.r.t. counting measure
on INn is

fλ(y) = exp

[
−λ

n∑
i=1

ti + log λ
n∑
i=1

yi

]
n∏
i=1

1

yi!
.

This is clearly an exponential family where the sufficient statistic is

T =
n∑
i=1

Yi,

the natural parameter is
η(λ) = log λ,

and the negative log of the normalizing constant is

A(η) = eη
n∑
i=1

ti.

Of course the other (more or less irrelevant) factor is

h(y) =
n∏
i=1

1

yi!
.

In canonical form it looks like

fη(y) = exp

[
−eη

n∑
i=1

ti + η
n∑
i=1

yi

]
n∏
i=1

1

yi!
.

For part (c), So using Proposition 3.2.2 (b) we compute the m.g.f. for T
is

ψη(u) = exp

[
exp(η + u)

n∑
i=1

ti − exp(η)
n∑
i=1

ti

]

= exp

[
(eu − 1)eη

n∑
i=1

ti

]
.

Re-expressing this in terms of the original parameter λ gives

ψλ(u) = exp

[
(eu − 1)λ

n∑
i=1

ti

]
.
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Do we recognize this m.g.f.? Well, the m.g.f. of the Poisson(θ) is

∞∑
k=0

euk
θk

k!
e−θ

=
∞∑
k=0

(euθ)k

k!
e−θ

= exp [euθ] e−θ

= exp [(eu − 1)θ] ,

so we see that
∑
i Yi has a Poisson (λ

∑n
i=1 ti) distribution.


